http://dx.doi.org/10.22075/ijnaa.2024.33970.5071

Some properties of bicomplex holomorphic functions

Mahmoud Bidkham ${ }^{\text {a,* }}$, Abdollah Mir ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Semnan University, Semnan, Iran
${ }^{b}$ Department of Mathematics, University of Kashmir, Srinagar, 190006, India

(Communicated by Mugur Alexandru Acu)

Abstract

In this paper, we first establish the bicomplex version of Rouche's theorem. Also, a new approach is given to prove the maximum modulus principle for bicomplex holomorphic functions. Our proof is based on the direct method and extends the result proved by Luna-Elizarraras et al. Finally, we generalize the Hurwitz's theorem to bicomplex space.

Keywords: Bicomplex Function, Rouche's Theorem, Maximum Modulus Principle, Hurwitz's theorem 2020 MSC: 30C10, 30C15

1 Introduction and Statement of Results

In abstract algebra, a tessarine or bicomplex number is a hypercomplex number in a commutative, associative algebra over real numbers with two imaginary units. In 1892 Corrado Segre introduced [11, 6] bicomplex numbers in Mathematische Annalen, which form an algebra isomorphic to the tessarines. Also, mathematicians proved a fundamental theorem of tessarine algebra: a polynomial of degree n with tessarine coefficients has n^{2} roots, counting multiplicity [8]. Rouche's theorem in complex analysis states that if the complex-valued functions f and g are holomorphic inside and on some simple closed contour K, with $|g(z)|<|f(z)|$ on K, then f and $f+g$ have the same number of zeros inside K, where each zero is counted as many times as its multiplicity [7].

In this paper, we prove the bicomplex version of Rouche's theorem; also we prove that a bicomplex function f cannot attain a maximum or minimum of $|f|$ in a bicomplex domain. In this direction, we state some basic definitions and properties of bicomplex number [1, 9]. Let $\mathbb{B C}$ be the bicomplex algebra, i.e.,

$$
\mathbb{B} \mathbb{C}=\left\{x_{1}+i x_{2}+j\left(x_{3}+i x_{4}\right): x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{R}\right\},
$$

with $i^{2}=-1, j^{2}=-1$ and $i j=j i=1$. Assuming $Z=x_{1}+i x_{2}+j\left(x_{3}+i x_{4}\right)=: z_{1}+j z_{2}$, we remark that every bicomplex number has the following unique representation:

$$
Z=z_{1}+j z_{2}=\left(z_{1}-i z_{2}\right) e_{1}+\left(z_{1}+i z_{2}\right) e_{2}
$$

where $e_{1}=\frac{1+i j}{2}$ and $e_{2}=\frac{1-i j}{2}$. If $Z=z_{1}+j z_{2} \in \mathbb{B C}$, the norm of Z is defined as follows:

$$
\|Z\|=\sqrt{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}} .
$$

[^0]It can be easily verify that for $Z=\alpha e_{1}+\beta e_{2}$ where $\alpha, \beta \in \mathbb{C}$,

$$
\|Z\|=\sqrt{\frac{|\alpha|^{2}+|\beta|^{2}}{2}}
$$

If we define $d: \mathbb{B} \mathbb{C} \times \mathbb{B} \mathbb{C} \rightarrow \mathbb{R}_{\geq 0},\left(Z_{1}, Z_{2}\right) \mapsto d\left(Z_{1}, Z_{2}\right)$, by setting $d\left(Z_{1}, Z_{2}\right)=\left\|Z_{1}-Z_{2}\right\|$ for every Z_{1}, Z_{2} in $\mathbb{B} \mathbb{C}$, then $(\mathbb{B} \mathbb{C}, d)$ is a metric space.

Suppose that $Z, W \in \mathbb{B C}$ and $Z W=1$, then each of the elements Z and W is said to be the inverse of each other. An element that has an inverse is said to be invertible (non-singular), and an element that does not have an inverse is said to be non-invertible(singular). For a bicomplex number $Z=\alpha e_{1}+\beta e_{2} \in \mathbb{B} \mathbb{C}$, it is easy to verify that Z is invertible if and only if $\alpha, \beta \neq 0$; in this case, if we denote the inverse of Z by Z^{-1}, then we have

$$
Z^{-1}=\alpha^{-1} e_{1}+\beta^{-1} e_{2}
$$

Definition 1.1. Suppose that

$$
\begin{aligned}
& X_{1}=\left\{z_{1}-i z_{2}: z_{1}, z_{2} \in \mathbb{C}\right\}, \\
& X_{2}=\left\{z_{1}+i z_{2}: z_{1}, z_{2} \in \mathbb{C}\right\},
\end{aligned}
$$

we say that $X=X_{1} \times_{e} X_{2}(\subseteq \mathbb{B} \mathbb{C})$ is Cartesian set generated by X_{1} and X_{2}, if

$$
X=\left\{z_{1}+j z_{2} \in \mathbb{B} \mathbb{C}: z_{1}-i z_{2} \in X_{1}, z_{1}+i z_{2} \in X_{2}\right\}
$$

Definition 1.2. Let $a=\alpha+j \beta$ be a fixed point in $\mathbb{B C}$ and r, r_{1} and r_{2} denote numbers in \mathbb{R} such that $r>0, r_{1}>0$ and $r_{2}>0$. The open ball $B(a, r)$ and closed ball $\bar{B}(a, r)$ with center a and radius r are defined as follows:

$$
\begin{aligned}
& B(a, r)=\left\{z_{1}+j z_{2} \in \mathbb{B C}:\left\|\left(z_{1}+j z_{2}\right)-(\alpha+j \beta)\right\|<r\right\}, \\
& \bar{B}(a, r)=\left\{z_{1}+j z_{2} \in \mathbb{B} \mathbb{C}:\left\|\left(z_{1}+j z_{2}\right)-(\alpha+j \beta)\right\| \leq r\right\} .
\end{aligned}
$$

The open discus $D\left(a ; r_{1}, r_{2}\right)$ and closed discus $\bar{D}\left(a ; r_{1}, r_{2}\right)$ with center a and radii r_{1} and r_{2} are defined as follows:

$$
\begin{aligned}
& D\left(a ; r_{1}, r_{2}\right)=\left\{z_{1}+j z_{2} \in \mathbb{B C}: z_{1}+j z_{2}=w_{1} e_{1}+w_{2} e_{2},\left|w_{1}-(\alpha-i \beta)\right|<r_{1},\left|w_{2}-(\alpha+i \beta)\right|<r_{2}\right\}, \\
& \bar{D}\left(a ; r_{1}, r_{2}\right)=\left\{z_{1}+j z_{2} \in \mathbb{B C}: z_{1}+j z_{2}=w_{1} e_{1}+w_{2} e_{2},\left|w_{1}-(\alpha-i \beta)\right| \leq r_{1},\left|w_{2}-(\alpha+i \beta)\right| \leq r_{2}\right\}
\end{aligned}
$$

It is easy to verify that if $0<r_{1} \leq r_{2}$, then for every bicomplex number a,

$$
D\left(a ; r_{1}, r_{2}\right) \varsubsetneqq B\left(a, \sqrt{\frac{r_{1}^{2}+r_{2}^{2}}{2}}\right) .
$$

Now, to prove the bicomplex version of Rouche's theorem, we first prove the following two theorems.
Theorem 1.3. Let X_{1} and X_{2} be bounded domains in \mathbb{C}, and let X be the Cartesian domain generated by X_{1} and X_{2}. Also,

$$
F\left(z_{1}+j z_{2}\right)=f_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}
$$

and

$$
G\left(z_{1}+j z_{2}\right)=g_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+g_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}
$$

are bicomplex holomorphic functions in X. If
(i) $|F(z)|<|G(Z)|$ for every $Z \in \partial X$,
(ii) $G(Z)$ having at least one zero in X,
then $H(Z)=F(Z)+G(Z)$ has the same number of zeros in X as $G(Z)$ does.

Theorem 1.4. Let X_{1} and X_{2} be bounded domains in \mathbb{C}, and let X be the Cartesian domain generated by X_{1} and X_{2}. Also,

$$
F\left(z_{1}+j z_{2}\right)=f_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}
$$

and

$$
G\left(z_{1}+j z_{2}\right)=g_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+g_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}
$$

are bicomplex holomorphic functions in X. If
(i) $|F(z)|<|G(Z)|$ for every $Z \in \partial X$,
(ii) $G(Z)$ having no zero in X,
then $H(Z)=F(Z)+G(Z)$ has no zero in X as $G(Z)$ does.
By combining Theorems 1.3 and 1.4 , we have the following Theorem 1.5 .
Theorem 1.5. (Analogue of the Rouche's Theorem) Let X_{1} and X_{2} be bounded domains in \mathbb{C}, and let X be the Cartesian domain generated by X_{1} and X_{2}. Also,

$$
F\left(z_{1}+j z_{2}\right)=f_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}
$$

and

$$
G\left(z_{1}+j z_{2}\right)=g_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+g_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}
$$

are bicomplex holomorphic functions in X. If $|F(z)|<|G(Z)|$ for every $Z \in \partial X$, then $H(Z)=F(Z)+G(Z)$ has the same number of zeros in X as $G(Z)$ does.

Example 1.6. Assume that

$$
F(Z)=e_{2} Z^{10}-6 e_{1} Z^{9}+e_{2} Z^{5}+6 e_{2} Z^{3}-e_{2} Z+101 e_{1}=P(Z)+Q(Z)
$$

where

$$
P(Z)=-6 e_{1} Z^{9}+e_{2} Z^{5}+6 e_{2} Z^{3}+2 e_{2} Z+e_{1}=\left(-6 \alpha^{9}+1\right) e_{1}+\left(\beta^{5}+6 \beta^{3}+2 \beta\right) e_{2},=\phi(\alpha) e_{1}+\psi(\beta) e_{2},
$$

and

$$
Q(Z)=e_{2} Z^{10}-3 e_{2} Z+100 e_{1}=100 e_{1}+\left(\beta^{10}-3 \beta\right) e_{2}=\eta(\alpha) e_{1}+\zeta(\beta) e_{2}
$$

then $Q(Z)$ has no zeros, also

$$
|\zeta(\beta)|<|\phi(\alpha)|, \quad \text { and } \quad|\psi(\beta)|<|\eta(\alpha)|,
$$

for $|\alpha|=|\beta|=1$ ([7], p. 342, 343). For every bicomplex number $Z=\alpha e_{1}+\beta e_{2}$, and every complex number a, we have

$$
\left|a e_{1} Z^{n}\right| \leq \frac{\sqrt{2}}{2}|a||\alpha|^{n}, \quad \text { and } \quad\left|a e_{2} Z^{n}\right| \leq \frac{\sqrt{2}}{2}|a||\beta|^{n}
$$

Hence, if $Z \in \partial D(0 ; 1,1)$, since $|\alpha| \leq 1,|\beta| \leq 1$ based on triangle inequality, we have

$$
|P(Z)| \leq \frac{16 \sqrt{2}}{2}, \quad \text { and } \quad|Q(Z)| \geq \frac{96 \sqrt{2}}{2}
$$

By Theorem 1.5, $Q(Z)$ and $F(Z)$ have the same number of zeros inside $D(0 ; 1,1)$. Hence, $F(Z)$ having no zeros inside $D(0 ; 1,1)$.

Example 1.7. Assume that

$$
P(Z)=9 Z^{5}+Z^{3}-\left(\frac{3+4 i}{8}+\frac{11}{24} i j\right) Z^{2}+\frac{1}{48}((2-i)+(6 i-1) j) Z-\frac{7}{48}(i-j),
$$

and put

$$
\begin{aligned}
F(Z) & =Z^{3}-\left(\frac{3+4 i}{8}+\frac{11}{24} i j\right) Z^{2}+\frac{1}{48}((2-i)+(6 i-1) j) Z-\frac{7}{48}(i-j) \\
& =\left(\alpha^{3}-\frac{5+3 i}{6} \alpha^{2}+\frac{1}{6} \alpha-\frac{i}{3}\right) e_{1}+\left(\beta^{3}+\frac{1-6 i}{12} \beta^{2}-\frac{2+i}{24} \beta+\frac{i}{24}\right) e_{2} \\
& =: \phi(\alpha) e_{1}+\psi(\beta) e_{2}
\end{aligned}
$$

and $G(Z)=9 Z^{5}$, then for every $Z \in \partial D(0 ; 1,1)$, we have

$$
|G(Z)| \geq \frac{9 \sqrt{2}}{2}, \quad \text { and } \quad|F(Z)| \leq 2 \sqrt{2}<|G(Z)|
$$

By Theorem 1.5, $P(Z)$ and $G(Z)$ have the same number of zeros in $D(0 ; 1,1)$, but $G(Z)$ has all its zeros in $D(0 ; 1,1)$. Therefore, $P(Z)$ has all its zeros in $D(0 ; 1,1)$.

Proposition 1.8. Assume $F(Z)=f_{e_{1}}(\alpha) e_{1}+f_{e_{2}}(\beta) e_{2}$ be non-constant and holomorphic in an open set containing $\bar{D}(0 ; 1,1)$. If $|F(Z)|=1$ for every $Z \in \partial D(0 ; 1,1)$, then the image of $F(Z)$ contains the $D(0 ; 1,1)$.

In the following two theorems, we prove that for a bicomplex holomorphic function $F(Z)$ in a bicomplex domain $X,|F(Z)|$ cannot attain a maximum (minimum) in D, unless $F(Z)$ is constant.

Theorem 1.9. (Analogue of the Maximum Modulus Theorem) If

$$
F\left(z_{1}+j z_{2}\right)=f_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}
$$

is a holomorphic function in a domain X, then $|F(Z)|$ cannot attain a maximum in X unless $F(Z)$ is constant.

Theorem 1.10. (Analogue of the Minimum Modulus Theorem) If

$$
F\left(z_{1}+j z_{2}\right)=f_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}
$$

is a holomorphic function in a domain X, and $F(Z)$ is invertible in X. Then $|F(Z)|$ cannot attain a minimum in X unless $F(Z)$ is constant.

Remark 1.11. If X is a bounded domain in $\mathbb{B} \mathbb{C}$, then $\bar{X}=X \bigcup \partial X$ is a compact set in $\mathbb{B} \mathbb{C}$ and hence $|F(Z)|$ attains a maximum and minimum on \bar{X}, therefore based on Theorems 1.9 and 1.10 maximum and minimum of $|F(Z)|$ occur on ∂X.

Finally, we prove the bicomplex version of Hurwitz's theorem.
Theorem 1.12. Let X_{1} and X_{2} be bounded domains in \mathbb{C} such that $\overline{X_{1}}$ and $\overline{X_{2}}$ compacts, also X be cartesian set determined by X_{1} and X_{2}. If a sequence $\left\{F_{n}\right\}$ of holomorphic functions in X and continues on ∂X, is uniformly convergent on every compact subset of X to a function F and F does not vanish in ∂X, then there exists some positive integer N, such that for every $n \geq N, F_{n}(Z)$ in X has the same number of zeros as the function $F(Z)$ does counting every root as many times as its multiplicity indicates.

2 Lemma

We will need the following lemmas to prove our results.
Lemma 2.1. Let X_{1} and X_{2} be domains in \mathbb{C}, and let X be the Cartesian domain generated by X_{1} and X_{2}, then boundary X is the union of the following three disjoint sets:
$T_{1}=\left\{\alpha e_{1}+\beta e_{2}: \alpha \in X_{1}, \beta \in \partial X_{2}\right\}, \quad T_{2}=\left\{\alpha e_{1}+\beta e_{2}: \alpha \in \partial X_{1}, \beta \in X_{2}\right\}, \quad T_{3}=\left\{\alpha e_{1}+\beta e_{2}: \alpha \in \partial X_{1}, \beta \in \partial X_{2}\right\}$.
Lemma 2.2. Let X_{1} and X_{2} be open sets in \mathbb{C}. If $f_{e_{1}}: X_{1} \longrightarrow \mathbb{C}$ and $f_{e_{2}}: X_{2} \longrightarrow \mathbb{C}$ are holomorphic functions on X_{1} and X_{2} respectively, then the function $f: X_{1} \times_{e} X_{2} \longrightarrow \mathbb{B} \mathbb{C}$ defined as

$$
f\left(z_{1}+j z_{2}\right)=f_{e_{1}}\left(z_{1}-j z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+j z_{2}\right) e_{2}, \quad \forall z_{1}+j z_{2} \in X_{1} \times_{e} X_{2}
$$

is $\mathbb{B C}$-holomorphic on the open set $X_{1} \times X_{2}$ and

$$
f^{\prime}\left(z_{1}+j z_{2}\right)=f_{e_{1}}^{\prime}\left(z_{1}-i z_{2}\right) e_{1}+f_{e_{2}}^{\prime}\left(z_{1}+i z_{2}\right) e_{2}, \quad \forall z_{1}+j z_{2} \in X_{1} \times_{e} X_{2}
$$

These lemmas and the next lemma are proved by Charak et al. [2, 3, 10].
Lemma 2.3. If X is an open set in $\mathbb{B C}$, and let $f: X \longrightarrow \mathbb{B C}$ be a $\mathbb{B C}$-holomorphic function on X, then there exist holomorphic functions $f_{e_{1}}: X_{1} \longrightarrow \mathbb{C}$ and $f_{e_{2}}: X_{2} \longrightarrow \mathbb{C}$ with

$$
X_{1}=\left\{z_{1}-i z_{2}: z_{1}+j z_{2} \in X\right\}, \quad X_{2}=\left\{z_{1}+i z_{2}: z_{1}+j z_{2} \in X\right\}
$$

such that

$$
f\left(z_{1}+j z_{2}\right)=f_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}, \quad \forall z_{1}+j z_{2} \in \mathbb{B} \mathbb{C}
$$

Lemma 2.4. (Weierstrass) Let $\left\{F_{n}\right\}$ be a sequence of bicomplex holomorphic functions on a domain D, which converges uniformly on compact subsets of D to a function F. Then F is bicomplex holomorphic in D [3, 4].

Lemma 2.5. Let $f(z)$ be an analytic complex function in a domain D and continue on its closure \bar{D}. If $|f(z)|$ is constant on the boundary of D, then $f(z)$ has a zero in D [7, 5].

3 Proofs of the Theorems

3.1 Proof of Theorem 1.3

Let $Z_{1}=\alpha_{1} e_{1}+\beta_{1} e_{2} \in X$ such that $G\left(Z_{1}\right)=0$ and $\alpha \in \partial X_{1}$, then by lemma 2.1. $Z=\alpha e_{1}+\beta_{1} e_{2} \in \partial X$ and based on (i), $|F(Z)|<|G(Z)|$, i.e.

$$
\sqrt{\frac{\left|f_{e_{1}}(\alpha)\right|^{2}+\left|f_{e_{2}}\left(\beta_{1}\right)\right|^{2}}{2}}<\sqrt{\frac{\left|g_{e_{1}}(\alpha)\right|^{2}+\left|g_{e_{2}}\left(\beta_{1}\right)\right|^{2}}{2}}=\sqrt{\frac{\left|g_{e_{1}}(\alpha)\right|^{2}}{2}} .
$$

Hence, $\left|f_{e_{1}}(\alpha)\right|<\left|g_{e_{1}}(\alpha)\right|$, for every complex number α with $\alpha \in \partial X_{1}$. Since, X_{1} is a bounded domain, hence by Lemma 2.3 . $f_{e_{1}}$ and $g_{e_{1}}$ are holomorphic functions on X_{1} and by applying Rouches's theorem, we find that $f_{e_{1}}(\alpha)+g_{e_{1}}(\alpha)$ has the same number of zeros in X_{1} as $g_{e_{1}}(\alpha)$ does.

Let β be a complex number with $\beta \in \partial X_{2}$, then $Z=\alpha_{1} e_{1}+\beta e_{2} \in \partial X$ and based on (i), $|F(Z)|<|G(Z)|$, i.e.

$$
\sqrt{\frac{\left|f_{e_{1}}\left(\alpha_{1}\right)\right|^{2}+\left|f_{e_{2}}(\beta)\right|^{2}}{2}}<\sqrt{\frac{\left|g_{e_{1}}\left(\alpha_{1}\right)\right|^{2}+\left|g_{e_{2}}(\beta)\right|^{2}}{2}}=\sqrt{\frac{\left|g_{e_{2}}(\beta)\right|^{2}}{2}}
$$

Hence, $\left|f_{e_{2}}(\beta)\right|<\left|g_{e_{2}}(\beta)\right|$, for every complex number β with $\beta \in \partial X_{2}$. Since, X_{2} is a bounded domain, then by Lemma 2.3 . $f_{e_{2}}$ and $g_{e_{2}}$ are holomorphic functions on X_{2} and by applying Rouches's theorem, we find that $f_{e_{2}}(\beta)+g_{e_{2}}(\beta)$ has the same number of zeros in X_{2} as $g_{e_{2}}(\beta)$ does.

Therefore, $H(Z)=F(Z)+G(Z)=\left(f_{e_{1}}(\alpha)+g_{e_{1}}(\alpha)\right) e_{1}+\left(f_{e_{2}}(\beta)+g_{e_{2}}(\beta)\right) e_{2}$, has the same number of zeros in X as does $G(Z)$ and this completes the proof of Theorem 1.3 .

3.2 Proof of Theorem 1.4

Assume that $Z^{*}=\alpha^{*} e_{1}+\beta^{*} e_{2} \in X$ such that $H\left(Z^{*}\right)=0$. Hence, $\left(f_{e_{1}}+g_{e_{1}}\right)\left(\alpha^{*}\right)=0$ and $\left(f_{e_{2}}+g_{e_{2}}\right)\left(\beta^{*}\right)=0$, and therefore,

$$
\begin{equation*}
\left|f_{e_{1}}\left(\alpha^{*}\right)\right|=\left|g_{e_{1}}\left(\alpha^{*}\right)\right| \quad \text { and } \quad\left|f_{e_{2}}\left(\beta^{*}\right)\right|=\left|g_{e_{2}}\left(\beta^{*}\right)\right| . \tag{3.1}
\end{equation*}
$$

For every $\alpha \in \partial X_{1}$, since, $Z=\alpha e_{1}+\beta^{*} e_{2} \in \partial X$, then $|P(Z)|<|Q(Z)|$. It follows that

$$
\left|f_{e_{1}}(\alpha)\right|^{2}+\left|f_{e_{2}}\left(\beta^{*}\right)\right|^{2}<\left|g_{e_{1}}(\alpha)\right|^{2}+\left|g_{e_{2}}\left(\beta^{*}\right)\right|^{2}
$$

and by (3.1), we obtain $\left|f_{e_{1}}(\alpha)\right|<\left|g_{e_{1}}(\alpha)\right|$, for every complex number α with $\alpha \in \partial X_{1}$. By Lemma 2.3 and applying Rouche's theorem for $f_{e_{1}}(\alpha)$ and $g_{e_{1}}(\alpha)$, we find that $g_{e_{1}}(\alpha)$ has at least one zero in X_{1}. Using a similar argument used above, we find that $g_{e_{2}}(\beta)$ has at least one zero in X_{2}. Hence, $G(Z)$ has at least one zero in X, which contradicts with this fact that $G(Z)$ does not vanish in X. Hence, $(F+G)(z)$ has no zeros in X and this proves the desired result.

3.3 Proof of Proposition 1.8

For every complex number α with $|\alpha|=1$, since, $\alpha e_{1} \in \partial D(0 ; 1,1)$, hence, $\left|F\left(\alpha e_{1}\right)\right|=1$, and

$$
\left|f_{e_{1}}(\alpha)\right|^{2}+\left|f_{e_{2}}(0)\right|^{2}=1
$$

Therefore, $\left|f_{e_{1}}(\alpha)\right|$ is constant for every complex number α with $|\alpha|=1$ and by Lemma 2.5, $\phi(\alpha)$ has a zero in $\{\alpha \in \mathbb{C}:|\alpha|<1\}$. Similarly, we can prove that $\left|f_{e_{1}}(\beta)\right|$ also has a zero in $|\beta|<1$ and hence, $F(Z)$ has a zero in $D(0 ; 1,1)$. For every bicomplex number W in $D(0 ; 1,1)$, we have

$$
|W|<1<|F(Z)|
$$

for every $Z \in \partial D(0 ; 1,1)$. So, Theorem 1.5 implies that $F(Z)-W$ and $F(Z)$ have the same number of zeros in D, therefore $F(Z)-W$ has at least one zero in D. This proves the desired result.

3.4 Proof of Theorem 1.9

Let $X_{1}:=\left\{z_{1}-i z_{2}: z_{1}+j z_{2} \in X\right\}$ and $X_{2}:=\left\{z_{1}+i z_{2}: z_{1}+j z_{2} \in X\right\}$, then by Lemma 2.3, there exist holomorphic functions $f_{e_{1}}: X_{1} \rightarrow X$ and $f_{e_{2}}: X_{2} \rightarrow X$ such that

$$
F\left(z_{1}+j z_{2}\right)=f_{e_{1}}\left(z_{1}-i z_{2}\right) e_{1}+f_{e_{2}}\left(z_{1}+i z_{2}\right) e_{2}, \quad \forall z_{1}+j z_{2} \in \mathbb{B} \mathbb{C}
$$

Suppose that $|F(Z)|$ attains maximum at a point $Z_{0}=\alpha_{0} e_{1}+\beta_{0} e_{2}$ in X. If $B\left(Z_{0}, r\right) \subset X$, then $D\left(Z_{0} ; r, r\right) \varsubsetneqq$ $B\left(Z_{0}, r\right)$, and

$$
\left|f_{e_{1}}(\alpha)\right|^{2}+\left|f_{e_{2}}(\beta)\right|^{2} \leq\left|f_{e_{1}}\left(\alpha_{0}\right)\right|^{2}+\left|f_{e_{2}}\left(\beta_{0}\right)\right|^{2}, \quad \forall \alpha e_{1}+\beta e_{2} \in D\left(Z_{0} ; r, r\right)
$$

For every $Z=\alpha e_{1}+\beta_{0} e_{2}$ such that $\left|\alpha-\alpha_{0}\right|<r$, since, $Z \in D\left(Z_{0} ; r, r\right)$ and $\alpha \in X_{1}$, we have $|F(Z)| \leq\left|F\left(Z_{0}\right)\right|$, i.e.

$$
\left|f_{e_{1}}(\alpha)\right|^{2}+\left|f_{e_{2}}\left(\beta_{0}\right)\right|^{2} \leq\left|f_{e_{1}}\left(\alpha_{0}\right)\right|^{2}+\left|f_{e_{2}}\left(\beta_{0}\right)\right|^{2}
$$

Therefore, $\left|f_{e_{1}}(\alpha)\right| \leq\left|f_{e_{1}}\left(\alpha_{0}\right)\right|$, for every complex number α with $\left|\alpha-\alpha_{0}\right|<r\left(\alpha \in X_{1}\right)$. Since, $f_{e_{1}}$ is analytic in X_{1}, hence, based on the maximum modulus theorem, $f_{e_{1}}$ is constant. Using a similar argument as used for $f_{e_{1}}$, we find that $f_{e_{2}}$ is also constant. Therefore, $F(z)$ is constant and this proves the desired result.

3.5 Proof of Theorem 1.10

Let $Z_{0}=\alpha_{0} e_{1}+\beta_{0} e_{2} \in X$ such that for every $Z \in X$, we have $\left|F\left(Z_{0}\right)\right| \leq|F(Z)|$. Choose a disk $B\left(Z_{0}, r\right)$ contained in X. For every complex number α with $\left|\alpha-\alpha_{0}\right|<r$, since, $Z=\alpha e_{1}+\beta_{0} e_{2} \in X$, hence, $\left|F\left(Z_{0}\right)\right| \leq|F(Z)|$, i.e.

$$
\left|f_{e_{1}}\left(\alpha_{0}\right)\right|^{2}+\left|f_{e_{2}}\left(\beta_{0}\right)\right|^{2} \leq\left|\left|f_{e_{1}}(\alpha)\right|^{2}+\left|f_{e_{2}}\left(\beta_{0}\right)\right|^{2}\right.
$$

or

$$
\left|f_{e_{1}}\left(\alpha_{0}\right)\right| \leq\left|f_{e_{1}}(\alpha)\right|
$$

for every α with $\left|\alpha-\alpha_{0}\right|<r$. Also, as $F(Z)$ is invertible in X, then $f_{e_{1}}\left(z_{1}-i z_{2}\right) \neq 0$ in X_{1} and $f_{e_{2}}\left(z_{1}+i z_{2}\right) \neq 0$ in $X_{2}\left(X_{1}, X_{2}\right.$ is defined in Theorem 1.5). Now, by applying maximum modulus theorem for $f_{e_{1}}$, we find that $f_{e_{1}}$ is constant in disk $\left|\alpha-\alpha_{0}\right|<r$ and therefore (by uniqueness theorem) $f_{e_{1}}$ is constant in X_{1}.

Similarly, we can get $f_{e_{2}}$ is constant in X_{2} and therefore, $F(Z)$ is constant in X. This completes the proof of Theorem 1.10 .

3.6 Proof of Theorem 1.12

Assume that $m=\operatorname{Min}_{Z \in \partial X}|F(Z)|$, based on hypothesis, $m>0$ and we can find positive integer n_{0} such that for every $n \geq n_{0}$, we have

$$
\left|F_{n}(Z)-F(Z)\right|<m \leq|F(Z)|
$$

for all $Z \in \partial X$. By Lemma 2.4, F is holomorphic, hence, by Theorem 1.5, $F_{n}(Z)=\left(F_{n}(Z)-F(Z)\right)+F(Z)$ and $F(Z)$ have the same number of zeros in X. This completes the proof of Theorem 1.12.

References

[1] D. Alpay, M.E. Luna-Elizarraras, M. Shapiro, and D.C. Struppa, Basics of Functional Analysis with Bicomplex Scalars, and Bicomplex Schur Analysis, Springer Briefs in Mathematics, 2014.
[2] K.S. Charak and D. Rochon, On the factorization of bicomplex meromorphic functions, Trends in Mathematics, Birkhäuser Verlag Basel/Switzerland, 2008, pp. 55-68.
[3] K.S. Charak, D. Rochon, and N. Sharma, Normal families of bicomplex holomorphic functions, Fractals $\mathbf{1 7}$ (2009), no. 3.
[4] M.E. Luna-Elizarraras, M. Shapiro, D.C. Struppa, and A. Vajiac, Bicomplex number and their elementary function, CUBO Math. J. 14 (2012), no. 2, 61-80.
[5] M. Marden, Geometry of Polynomials, 2nd ed., Mathematical Surveys, vol. 3, Amer. Math. Soc, Providence, R.I., 1966.
[6] A.A. Pogorui and R.M. Rodriguez-Dagnino, On the set of zeros of bicomplex polynomials, Complex Variab. Elliptic Equ. 51 (2006), no. 7, 725-730.
[7] S. Ponnusamy and H. Silverman, Complex Variables with Applications, Springer Science \& Business Media, 2007.
[8] R.D. Poodiack and K.J. LeClair, Fundamental theorems of algebra for the perplexes, College Math. J. 40 (2009), no. 5, 322-335.
[9] G.B. Price, An Introduction to Multicomplex Spaces and Functions, Monographs and Textbooks in Pure and Applied Mathematics, vol. 140, Marcel Dekker, Inc., New York, 1991.
[10] J.D. Riley, Contributions to the theory of functions of a bicomplex variable, Tohoku Math. J. Second Ser. 2 (1953), no. 5, 132-165.
[11] C. Segre, Le rappresentazioni reali delle forme complesse e gli enti iperalgebrici (The real representation of complex elements and hyper algebraic entities), Math. Ann. 40 (1892), 413-467.

[^0]: * Corresponding author

 Email addresses: mbidkham@semnan.ac.ir (Mahmoud Bidkham), abdullahmirdrabmir@yahoo.com (Abdollah Mir)

