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Abstract

In this paper, we establish Jensen’s inequality for (p-q)-convex functions. By using Jensen’s inequality we obtain some
Hermite-Hadamard type inequality and several sharp inequalities. Some examples are given.
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1 Introduction

Let u be a positive measure on X such that u(X) = 1. If f is a real-valued function in L'(u),a < f(z) < b for all
x € X and ¢ is convex on (a,b), then

o /X fdu) < /X (o f)dn. (L.1)

The inequality (1.1]) is known as Jensen’s inequality. Let f : [a,b] — R be a convex function, then the inequality

b
WD < [ ety < HOEEAD (1.2

which is known in the literature as Hermite-Hadamard inequality (H-H inequality). Jensen’s inequality is one of
the important inequalities which has been possible with the help of convexity. This inequality has preserved some
important structure and also there are lot of inequalities which are the direct consequences of Jensen’s inequality,
such as Holder, Hermite-Hadamard and Young’s inequalities etc. Recently, many of mathematicians investigated
generalization of convex functions, such as MN-convex (M, N=A, G, H), p-convex, r-convex, and obtained the H-H
inequality for these convexities [T1, B} 6], [9] 121 8] 10l 1T} 14} 15} 16l 20, 22, B4]. In [43] [41] the author obtained Jensen’s
inequality for GG-convex and HH-convex functions. In this paper, via the defining of (p-q)-convex functions, we obtain
the Jensen’s and H-H inequalities for (p-q)-convex function and we show that a lot of convexity, such as MN-convexity
(M,N=A,G,H), p-convexity and r-convexity are special cases of (p-q)-convexity.

For the statement of the main results we introduce some notations and terminologies.
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Definition 1.1. A function M : (0,00) x (0,00) — (0,00) is called a mean if

L M(z,y) = M(y, =),

2. M(z,z) =z,

3. x < M(x,y) < y,wherever x <y,

4. M(azx,ay) = aM(z,y), for all a > 0.

Example 1.2.

1. The Arithmetic Mean A(x,y) = ,
2. The Geometric Mean G(z,y) = /7v,

1
3. The Harmonic Mean H(x,y) = T 1
A(;v 7)
)
P +yP 1
4. The Power Mean M, (z,y) = ( 2 > p#0 (p € R).
VY p=0

Definition 1.3. Let M, N be two means on real interval I C (0,00) and ¢ : I — (0, 00) be a continuous function. ¢
is called MN-convex if for all z,y € I,

e(M(z,y)) < N(f(z), f(y))-

T +

Note that this definition reduces to usual convexity when M (z,y) = N(z,y) = Y Since  is continuous, this

the MN-convexity of ¢ that is
@ (M(z,y);1—t,t) < N(p(2), p(y); 1 - 1,1)
for all z,y € I,t € [0,1] (see [26]). For example
1. ¢ is AG-convex, if for every x,y € I and ¢ € [0, 1],

otz + (1= t)y) < o' (x)e' " (y)

2. ¢ is GH-convex, if for every x,y € I and t € [0, 1],

t o1—t @(@@(ZU)
PV S T () + o)

Definition 1.4. Let I C (0,00) be interval and p,q € R. A continuous function ¢ : I — (0,00) is said to be
My, M,-convex or (p — g)-convex if the following inequality holds

p(ta” + (L 1)yP)F < (t(x) + (1 — 1)p"(y))T (p#0,g #0)
platy =) < (tp(x) + (1 — 1) (y)) ¥ (p=0,q+#0)
p(ta? + (1 —t)y")? < (@) () (p#0,q=0)
p(a'y' ") < ' ()p' H(y) (p=0,g=0)

wherever z,y € I and t € [0,1]. It can be easily seen that for p=¢=1,p=¢g=0,p=¢g=—-1land p=1,9¢=r,
(p — q)-convexity reduced respectively to classical convexity, GG-convexity, HH-convexity and r-convexity. In [45] the
authers proved that for 0 <¢ < 1,0 < p < g and x,y > 0 the following inequalities hold

'y T <t o+ (1 - t)yP)p < (taT+ (1 t)y?)s (1.3)
By easy calculations we see that for p < ¢ < 0, the inequalities
(ta? + (1 — t)yP)r < (ta? + (1 — t)y9) s < afy'~* (1.4)

hold. Inequalities (1.3) and (1.4]) show that ¢(x) = z is (p—¢)-convex if p < ¢, (0—¢q)-convex if ¢ > 0 and (p—0)-convex
if p<O.
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2 Main results

Theorem 2.1. Let ¢ be a (p — g)-convex function on (a,b) and let 0 <a < s <t <wu <b.
1. If (p>0and ¢ > 0) or (p <0 and g < 0), then

pl(t) = 9?(s) _ 9?(u) — (1)

tp — gP - upP — tp (2.1)
2. If (p>0and g <0)or (p<0and g >0), then
q(4) — 9 q(q) — o9
p?(t) — (s) > ¢ (u) — ¢?(t) (2.2)
tP — gP uP — tp
3. If p=0and g > 0, then
q(4) — 4 q(u) — o9(t
P1(t) = 9i(s) _ p?(u) — 92(t) (2.3)
Int —1Ins Inu —Int
4. If p=0and ¢ < 0, then
a(4) — 9 a(y) —
pI(t) — (s) > ¢ (u) — (1) (2.4)
Int —1Ins Inu —Int
5. If p> 0 and ¢ =0, then
np(t) —Inp(s) _ np(u) —Inp(t) (2.5)
tP — sP upP — tp
6. If p <0 and g =0, then
np(t) —Inp(s) o mep(u) - ne(t) (2.6)
tP — gP ub — tp
7. If p=q=0, then
In o(t) —Inp(s) < In (u) —Inp(t) (2.7)
Int —Ins Inu—Int
Proof .
p _¢p 1
1. Let p> 0,9 >0, and r = %, then 0 <7 <1 and t = (rs? + (1 — r)uP)». By the (p — q)-convexity of ¢ we
uP — s
have
1
e(t) < (re?(s) + (1 = r)p?(u))®
= oI(t) <rei(s) + (1 —r)e?(u) (¢>0)
= rel(t) + (L=r)pl(t) <rei(s) + (1= 71)¢(u)
= r(@(t) —¢(s)) < (1 —7)(?(u) — (1))
w -t a =P q
= ) - ¢1(6)) S S (9 (w) — (1)
pi(t) = (s) _ 9(u) = ¢I(t)
tP — gp - upP — tp ’
uP — P

Now let p < 0 and ¢ < 0. Then s? >t > uP, 0 < r = <landt= (rsp—|—(1—r)up)%. Since ¢ is

uP — spP
(p — q)-convex,

o(t) < (re?(s) + (1 —r)p?(u)
l(t) > (re(s) + (1 - 7“) a
it ) (1 - T)so"(t) @1

R
€




uP — gP
(wr =) — o7)

Since <0,
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we have

10— o'(s) _
tP — gP

P1(w) — (1)
ub — tp

2. Follows by similar way and the details are omitted.

3. Let p=0,g>0and 0 <r =

Since g > 0,

Ly

Inu—1Ins

Inu—1Int

< 1. Then t = u!="s". By the (p — ¢)-convexity of ¢ we have

Q=

o(t) < (re?(s) + (1 —r)e?(u))

\3

p1(t) <ref(s) + (1 = r)p?(u)
rf(t) + (1 = r)p(t) <ref(s) +
r(@?(t) — ¢?(s)) < (1 =) (" (u) -

Inu—1Int Int

Inu — lns(goq(t) —¢is)) < Inu —

plt) — ¢1(s) _ #(u) = 9*(D)
Int—Ins Inu—1Int

(1 =7)¢?(u)
(1)

—INS agw) — pi(1))

Ins

4. If p=0,q < 0, by similar way we obtain

P
5. Letp>0,q:0and0<r:u
uP — spP

Lol

4

6. Let p <0 and ¢ =0. Thensp>tp>upand0<r:u

4ol

=

@(t) = re?(s) +
@(t) — 9?(s)
Int—1Ins

(1= 1) ()
L ¢ — ()

= Inu—1Int

—qp

8=

< 1. Then t = ((1 — r)uP 4+ rsP)». By the (p — 0)-convexity of ¢ we have

p(t) < @"(s)p' " (u)

Inp(t) <rlng(s)+ (1 —r)lnp(u)

rinp(t)+ (1 —7r)Ine(t) <rlnep(s)+ (1 —r)lnp(u)
r(lng(t) —Ing(s)) < (1 —7r)(Inp(u) —Inp(t))

o Inlt) ~ Inp(s) < = (nplu) ~ Inco(t)

np(t) —Ine(s) _ ne(u) —np(t)

tP — sP upP — tp

P _¢p

< 1. So
ubP — spP

3 =

t=(rs? +(1—r)uP)
p(t) < " ()" 7 (u)

Inpt) <rlne(s)+ (1 —r)Inp(u)
2 ino(t) -

P — gP
e I (s))

np(t) —Inp(s)  mp(u) —ne(t)
tP — gpP

uP — tp

<

(Inp(u) — Inp(t))

7. If p=q =0, then ¢ is GG-convex. For details see [43] .

O

In the following theorem we obtain the Jensen’s inequality for (p — ¢)-convex functions.

Theorem 2.2. Let u be a positive measure on a c-algebra 9 in a set X, so that u(X) = 1. If f is a real function in

L'(n),0<a< f(xr) <bforall z € X, and if pis a (p —

q)-convex function on (a,b), then
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1. If p #£ 0 and ¢ # 0, then
1 1
o[ rrany < ([ (oo pyawt.
X X
2. If p=0and ¢ # 0, then
plelx i < ([ (oo pyrant.
3. If p#£ 0 and ¢ =0, then
so(/ frdp)r < elxmeendn
X
4. If p=¢q =0, then
(p(efx lnfdp) < efx ln(apof)d,u.
Proof .

L Putt=(fy f”d,u)%, then a < t < b. We distinguish two cases.
Case 1. (p>0and ¢ >0) or (p <0 and ¢ <0). Since ¢ is (p — ¢)-convex, the inequality (2.1) holds. Let

P1(t) — 97(5)

M = sup ra—

a<s<t

Then M is no larger than any of the quotients on the right side of (2.1)), for any u € (¢,b). It follows that

q — 4
Pt = 91(s) _ .
tP — gP -

Now let p > 0 and ¢ > 0, then

Hence for any x € X, we have
@(f(x)) = (t) + M(f"(x) — 7).

Since ¢ is continuous, ¢ o f and (¢ o f)? are measarable. By integrating both sides with respect to measure p,
we get

/ (g0 F)1dp > ¢9(t) + u( / fPdu— 1),
X X

D=

Now set t = ([ fPdu)?. It follows that

/ (g0 F)tdp > 7 / fPdu)t
X X
Pdu)v o f)9du)a.
= @(/Xf ) s(/xw f)tdp)
If p <0 and ¢ < 0, then

By the similar way we obtain

g =

/ (po f)ldu < soq(/ frdp)
X X
1 1
= so(/ frdp)r < (/ (po f)idp)s
X X
Case 2. (p>0and ¢ <0) or (p <0 and g >0). Since ¢ is (p — ¢)-convex, the inequality (2.2 holds. Let

q(t) — 4
o) = 1(s)
a<s<t tP — sP

m =
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Then m is no smaller than any of the quotients on the right side of (2.2)), for any u € (¢,b). It follows that

o)~ ')

tP — sP -

Now let p > 0 and ¢ < 0, then

(1) — 99(s) > mi(t? — s7)
é~¢@ o1(t) + m(s? — 17)
) < 990 + e — )
N /@mfu w+m4ﬂw—m ((X) = 1),

. It follows that

=

Now set t = ([ fPdu)

/X(QOf)qduéwq(/Xfpdu)%
= sﬂ(/ frdp)s < (/X(QOf)qduﬁ (¢ <0).

If p <0 and g > 0, then

By the similar way we obtain
/ (pof)ldu> soq(/ fPdu)
X X
N W(jiffpdu)% < g[;<¢<>f>qdu>% (4> 0)

. Put t = eJx™fdi then a < t < b. Let ¢ > 0 since ¢ is (p — q)-convex, the inequality (2.3) holds. Let

a(4) — 4
M= sup ? (t) — ¥%(s)
a<s<t Int—Ins

Then

Pi(t) — 1)
Int —1Ins
@l(t) — ¢?(s) < M(Int —Ins)
©(s) > 9(t) — M(Int — Ins)

<M

oy

So for any x € X, we have
P1(f() = @9(t) — M(nt —Ins)

By integrating both sides with respect to measure u, we obtain

[ e pydnz 10 - Maine ~ [ 1 pap)

X X
Now set ¢t = e/x ™ fdi Thys
/ (9o f)idu = @(elx I
X
1
= pleb i < ([ (po i (>0,
X

If p=0 and g < 0, by the similar way we get

o) —90s)
Int—1Ins
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where . .
o PI(t) — ¢(s)
a<s<t Int—1Ins
Hence
¢(t) — ¢?(s) = m(Int —Ins)
= ¢l(s) < ¢l(t) —m(nt —1Ins)
= / (po Hldp < i(t) —m(nt — / In fdu).
X X

Now set t = e/xnfdr Thys

/ (o f)idu < @7 (exnFdn)
X

= p(efxmany < ( /X (0o

fidp)s (g <0)

3. Put t = ([ fpd/,a)%, then a < t < b. Let p > 0. By the (p — ¢)-convexity of ¢ the inequality (2.5)) holds. Let

1 _
M= sup np(t) —Ingp(s)
a<s<t tP — sP
Inp(t) —Ing(s) .
tP — gP -
Inp(t) —Inp(s) < M(tP — sP)
Inp(s) > Inp(t) — M(tP — sP)

np(f(z)) = Inp(t) — M(t?
/ In(p o f)du > Inp(t)
X

O

Since t = ([ fpdu)%, we obtain

— () (Ve X)

/ fPdp)

/1n(<p0f)du21n<p(/ frdp)e
X X

= w(/ frap)r < elx
X

In(iof)dp

If p<O0and ¢g=0,putt=(f, fpdu)%. By the similar way we obtain

I p(t) ~ Ingp(s) _
tP — gP =

Inp(t)
Inp(s) > Inp(t)

(m

b4y

/X In(p o f)du > np(t) -

4

X
4. For the proof of (4) see [43].

0

Corollary 2.3. Let X = {1,292, -
which includes the image of f, then

axn}v

pl{re)) =+ and f(z) = i > 0. Mg s (p -

¢ () - lns@(S))
a<s<t tP — sP

—Inp(s) <m(tP — sP)
— m(tp — SP)
Inp(f(x)) = Ine(t) —m(t” -

m(er = [ prdy)

/ln(<p0f)du21n<p(/ frdu)r
X X

P (@)

q)-convex function on J
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1. If p #£ 0 and ¢ # 0, then

Q=

2. If p=0 and ¢ # 0, then

AS)
3
Q
=
Q
)
S
g/
INA
/N
SN
NgE
AS)
L)
£
~
Q=

3. If p# 0 and ¢ = 0, then

4. If p=¢g =0, then

Proof is obvious by theorem .

Corollary 2.4. Let f : [a,b] — (0,00) (b > a > 0) be a continuous function and ¢ : J — (0,00) be a (p — ¢)-convex
function on an interval J which includes the image of f. Then

1. If p #£ 0 and ¢ # 0, then
1 1
b » b i
P fP(x) p o?(f(x))
v (b?’ —aP J, zl-P de) = b —ar J, xl-P de
2. If p=0 and ¢ # 0, then
v L
s Jo 2i8ds < L ()
¢(61b1 >_ Inb—-Ina J, =« de

1
boep H no(f (e
@( ol %w) ¢ ot 2 B

b —a? J, xl-p

Q=

3. If p# 0 and ¢ = 0, then

4. If p=¢q =0, then

b In f(x) b In p(f(x))
SO (eln bilna fa T dw) < elnbilna fa wz dz

d.
Proof . For the proof of (1) and (3) put X = [a,b] and du = m in the theorem [2.2. For the proof of (2)

d
and (4) put X = [a,b] and dp = m in theore. O
In the following theorem we obtain the Hermite-Hadamard inequality for (p — ¢)-convex functions.

Theorem 2.5. Let ¢ : [a,b] — (0,00) (b > a > 0) be a (p — ¢)-convex function. Then
1. If p # 0 and ¢ # 0, then

(p(ap;rb”)’l’ = (bppap /ab i(?dﬂcf < <W>;

2. If p=0 and ¢ # 0, then

D) < ( i s&ﬂ(oc)d%)é  (2lerem)’

Inb—1na T

3. If p# 0 and ¢ = 0, then

1
PLpP\r P n o (x)
so(a; ) < e LS < fo(@)e)
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4. If p=¢q =0, then

p(Vab) < emrms 1SR <\ /o))

Proof .
1. Put f(z) = z in corollary (1). Hence

1
p x p p?(x)
¥ (bp _ap/a xl—pdm> < (bp_ap/a xl-p dac)
P4 pp b b () @
a B P wi(x
<,0< 2 ) = (bp —aP/a zl-p da:)

This proves the left side. For the proof of the right side, by the change of variable z = ((1 —t)a? + tb”)% nd
the (p — ¢)-convexity of ¢ we have

b q % 1 q _ p % 1 %
L[ e < (Gl [ S (a0 -ty
v —ar J, xl-P bP—aP Jo ((1—t)ar +tb?)» 1 P

< (/01(1—1?) 9(a) + to? (b)dt)‘l’ _ (W);

2. Put f(z) = z in corollary (2). Hence

lnb—lna T

b a(
= (,0(\/(%) <lnb lna/ = >

This proves the left side. For the proof of the right side by change of variable = a*~*b! and (p — q)-convexity
of ¢ we have

i 1
1 b QOq(‘T) a 1 1 @q(al_tbt) — :
<lnb—lna/a T dx lnb—lna/o al—tpt a "' (Inb —Ina)dt

(/ol((l—t) “(a) + (b ))dt)é - (W);

Q=

Q= D

IN

3. Put f(z) = z in corollary (3). Hence

1
b D » In (=
%) p x dz < e?P- apfb W)dw
bp —ar J, xl-P

1
aP +bP\ » b In o(x)
= © < 5 S 61,1)3,;1) fa Z1-p dzx

For the proof of the right side by change of variable x = ((1 — t)a? + tb”)% and (p — g)-convexity of ¢ we have

P b In o),  p "n o((1 —t)a? + tbp)l
[ /

_ W — aP)((1 — t)aP + tbP) 5~ Ldt
bp — P xl—p bp — P ((1 _t)ap+tbp) p( a )(( )a + )

< /0 In (pl_t(a)gpt(b)dt — M =In @(a)@(b)

So
e [ S e o /e@e®) — | /o) o (b)
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4. Put f(z) =z in corollary [2.4] (4). See also [43].

O

Theorem 2.6. (i) If ¢ is convex (concave) and increasing on (a,b), then ¢ is (p — g)-convex (concave) on (a,b),
whenever p<1<gq (p>12>gq)

(ii) If ¢ is (p — ¢)-convex (concave) and decreasing on (a, b), then ¢ is convex (concave) on (a,b), whenever p <1 <
¢ (pz1=4q)

Proof . (i) Let ¢ be convex, increasing and p <1 < ¢q. We have

p(ta? + (1= )y?)7 < p(te + (1 — 1)) < to(x) + (1 — D)p(y)
< (tp(x) + (1= 1) (y)7  (p #0)
p(z'y' ™" < (z) + (1 —t)p(y)
)

(to
otz + (1 —t)y) <ty
(te?(2) + (1 = ) (y)7  (p=0)

Hence ¢ is (p — q)-convex. The proof of (ii) is simillar and can be omitted. O

Theorem 2.7. Let ¢ : [a,b] = (0,00) (b>a>0), ¢>0and g(z) = goq(x%) (p #0), g(x) = ¢?(e”) (p =0). Then
@ is (p — q)-convex on (a b) if and only if g is convex on (a?,b?) (p > 0) or (b, aP) (p < 0) or (lna ln b) (p=0).

Proof . Let ¢ be (p — ¢)-convex on (a,b). So

Q=
=
BN

(=)
~

p(ta? + (1 — )y?) < (te(x) + (1 - 1) (y))
whenever x,y € (a,b) and t € [0,1]. Put X = 2P and Y = y”. Then
PUX + (1= 1)Y)7 < (t"(X7) + (1= )p"(Y7))s
= IX +(1-1)Y)r < @I(X7) + (1 —t)p?(Y?) (g>0)
= gtX +(1-1)Y) <tg(X)+(1-t)g(Y)

It is obvious that X,Y € (a?,b”) (p > 0) or X, Y € (b?,a”) (p < 0). Now let p = 0 and ¢ be (p — ¢)-convex on
(a,b), then

Q=

pla'y' ™) < (t(x) + (1 - 1)p"(y))
= iy ") <) + (1= 1)¢l(y) (¢>0)
Put z =eX and y =Y. So

(pq(etX-i-(l—t)Y) < t@q(eX) + (1 _ t)(pq(eY)
= gX+1-t)Y)<tg(X)+(1-t)gY) (Ina<X,Y <lInbd).

O

Theorem 2.8. Let ¢ be a (p — g)-convex function on [a,b] and ¢ > 1, p # 0. Then the following inequality holds

I ¢(a)(pb"*! +aP*! — (p + 1)abP) + ¢?(b)(pa’*! + 0P+ — (p+ 1)ba?) ] @
), et s { (b= ) —a®)(p+1)

b
Especially for p = g = 1, bi z)dz < M.
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Proof . By change of variable x = (¢t + (1 — t)ap)% and (p — g)-convexity of ¢ we have

I p 1t " it —a I
= 1— v 1— v
= | et = 2 [ e+ (-0 T (1 0e)
P —aqP [}

=000 /o (b9 (b) + (1 — £) (@) T (#8 + (1 — t)a?) " dt.

bP — aP 1
Since p(bi—aa) fol(tbp + (1 - t)ap)%fldt =1 and p < 1, by the concavity of h(z) = 2% and classical Jensen’s

bP — aP
inequality .1.1 du =
LD ¢ p(b—a)

(tbP + (1 — t)ap)%fldt) we obtain

1

bP — aP 1 . B . o %71 :
< (p(b—a)/o (tp?(D) + (1 — t)p(a))(tb” + (1 —t)a?) dt)

1
q

b —aP 1 q a q o a pyio1
= (p(ba)/o (t(9b) — pi(a)) + ¢(a))(E (P — a®) + aP) dt)

Again by change of variable ¢(b? — aP) + a? = 2P and easy calculations we get

P _ qP b 2P — qP %
- (5(’) —a) / (o (#7() = 97(@)) + 9" (@) d:c)

_ {w‘l(a)(pbpﬂ + @t — (p 4 Dab?) + () (pa? ! + B — (p+ 1>bap>] :

(b—a)(b? —a®)(p+1)
O

3 Examples
1. p(x) =z is (p — ¢q)-convex (p < q) on [a,b] (b > a > 0). Hence by theorem [2.5 we have

1 1 1
aP +bP\ » D b x4 a ad 4+ b7\ ¢
< <
< 2 ) - (bp—ap/a xl—pdx> —< 2 ) 07#p<q)

1 1
1 b g ! a? 4+ b1\«
1
P bP P P N
(a;r ) < ot I7 5 < Vab (p<0=gq)

Thus

Q=

1 1
be — g q ad + b9\ ¢
vVab < | —mM— < 0
“= (q(lnb—lna)) _( 2 ) (0<q)
1
p bP\ r PInb—aP Ina
<a§ )< BT < Vab (< 0)

Soif vy <0< a < g, then

1 1
aY b\ 7 bYInb—a¥lna b — a® o
(552 s s ()
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In the other words by means notations we have

bYInb—aY1lna
M,(a,b) <e

bY —a”

< La,ﬁ(a7b) < M, (

is not convex on (0,00), but it is (p
theorem i,

z¥) =
3. P(z) =

v

1"(93

is concave and nondecreasing on (0, 00) [13]. So by theorem (i) ¢ is (p — ¢)-concave on (0, 00)
when p > 1 > ¢. Hence by theorem [2.5| ﬁ (1)

~—

q)-convex on (0,00), where p = 2, ¢ = —2. Because by
(1+ x)? is convex on (0, c0)

for b > a > 0, we have

1 < 1
A B S I A IO RS GION
(] > >\ —F—

2 bp —ar J, xl-P 2
We investigate these inequalities in two special cases
(i) For p =g =1 we have

P(a) + ¥(b) 1 /b a+b
< <
2 “b—a aw(x)dxiw 2
N P(a) 4+ (b) < InT(b) — InT(a) <4 a+b
2 - b—a - 2
L ez TO) o poaeg
ST =
Especially for b = a + 1 we get
RICESICS I I'(a+1) )
ST =
1
Finally since I'(a 4+ 1) = al'(a) and ¥ (a + 1) = ¢(a) + - (a > 0) we obtain
Y(a)+55 <a< e¥lat3)
(ii) For p =2 and ¢ = 1 we have
1
P(a) + ¥ (b) 2 b a+b?\?
2 s b2 —a? J, wplr)de < ¢ 2
b
IEICEY

(%) 2 ’ a? +v?
< Ry lxlnf(xﬂz/a 1nF(m)dm1 §¢(

-)
R TOP I

b 2
5 lblnl“(b) —alnT'(a) — / lnF(w)dac] P (a b )
a
Especially for b = a + 1 and considering | L™ T(z)dx =
Y@+t 2

5 <5 [(a+1D)InT(a+1)—alnT(e) +a—alna—var]
a

<1/1(ag—|—a—|—1>é
- 2

—a+ alna+ 27 [40] we obtain

- [lna—klnf(a)—&—a—\/ﬂ] Sd)<a2+a+;)%
= (0t )W) + 5

< 2
2a) InT(a+ —&—72)1/} <a +a+2>

2w—a+(a+%)w(a2+a+%)%

1)+a—V2r < (a
eVIr—at(at)((@+35) < T(g+1)
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