ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2023.31374.2246

General 3D-Jensen ρ -functional equation and ternary Hom-Jordan derivation

Sajad Abdollahnajad, Javad Shokri, Mohammad Ali Abolfathi*, Ali Ebadian

Department of Mathematics, Faculty of Sciences, Urmia University, P. O. Box 165, Urmia, Iran

(Communicated by Abasalt Bodaghi)

Abstract

In this paper, we introduce the concept of ternary Hom-Jordan derivation and solve the new 3D-Jensen ρ -functional equations in the sense of ternary Banach algebras. Moreover, we prove its Hyers-Ulam stability using the fixed point method.

Keywords: Ternary Hom-Jordan Derivation, 3D-Jensen ρ -functional equations, Fixed point method

2020 MSC: 17A40, 39B52, 17B40, 47B47

1 Introduction and preliminaries

The Hyers-Ulam stability problem which arises from Ulam's question says that for two given fixed functions φ and ψ , the functional equation $\mathcal{F}_1(G) = \mathcal{F}_2(G)$ is stable if for a function g for which $d(\mathcal{F}_1(g), \mathcal{F}_2(g)) \leq \varphi$ holds, there is a function h such that $\mathcal{F}_1(h) = \mathcal{F}_2(h)$ and $d(g,h) \leq \psi$ [7, 9, 18, 20]. In 1941 [9], Hyers solved the approximately additive mappings on the setting of Banach spaces. First, Th. M. Rassias [18] and Aoki [1] and then a number of authors extended this result by considering the unbounded Cauchy differences in different spaces. For example see [6, 8, 11, 12, 14]. F. Skof in 1983 [19], proved the stability problem of quadratic functional equation between normed and Banach spaces.

A ternary Banach algebra $\mathfrak A$ with $\|.\|$ is a complex Banach algebra equipped with a ternary product $(a,b,c) \to [a,b,c]$ of $\mathfrak A^3$ into $\mathfrak A$. This product is $\mathbb C$ -linear in the outer variable, conjugate $\mathbb C$ -linear in the middle variable associative in the sense that [a,b,[c,v,u]]=[a,[b,c,v],u]=[[a,b,c],v,u] and satisfies $\|[a,b,c]\| \leq \|a\|.\|b\|.\|c\|$ and $\|[a,a,a]\|=\|a\|^3$ (see [21]). Ternary structures and their extensions, known as n-ary algebras have many applications in mathematical physics and photonics, such as the quark model and Nambu mechanics [4,5,10,13,16]. Today, many physical systems can be modeled as a linear system. The principle of additivity has various applications in physics especially in calculating the internal energy in thermodynamic and also the meaning of the superposition principle. Throughout this paper, $\mathfrak A$ is a ternary Banach algebra.

Definition 1.1. A mapping $h: \mathfrak{A} \to \mathfrak{A}$ is called a ternary homomorphism, if h is a \mathbb{C} -linear and

$$h([x_1, x_2, x_3]) = [h(x_1), h(x_2), h(x_3)] \quad \forall \ x_1, x_2, x_3 \in \mathfrak{A}.$$

Email addresses: s.abdollahnajad@urmia.ac.ir (Sajad Abdollahnajad), j.shokri@urmia.ac.ir (Javad Shokri), m.abolfathi@urmia.ac.ir (Mohammad Ali Abolfathi), a.ebadian@urmia.ac.ir (Ali Ebadian)

Received: November 2022 Accepted: February 2023

^{*}Corresponding author

Definition 1.2. Let $h: \mathfrak{A} \to \mathfrak{A}$ be a ternary homomorphism. A \mathbb{C} -linear $D: \mathfrak{A} \to \mathfrak{A}$ is called a ternary hom-derivation if D satisfies

$$D([x_1, x_2, x_3]) = [D(x_1), h(x_2), h(x_3)] + [h(x_1), D(x_2), h(x_3)] + [h(x_1), h(x_2), D(x_3)]$$

for all $x_1, x_2, x_3 \in \mathfrak{A}$.

Consider the generalized functional equation

$$f(\frac{x+y}{2}+z) + f(\frac{x+z}{2}+y) + f(\frac{y+z}{2}+x) - 2f(x) - 2f(y) - 2f(z)$$

$$= \rho(f(x+y+z) + f(x) - f(x+z) - f(x+y)),$$
(1.1)

where $\rho \neq 0, \pm 1$ is a complex number. In this paper, we solve (1.1) and show that a function which satisfies (1.1) is additive. We also prove its Hyers-Ulam stability by using the fixed point method. To do this, we use the Diaz-Margolis fixed point theorem [15].

Theorem 1.3. [15] Let (\mathfrak{A}, d) be a complete generalized metric space and let $\Gamma : \mathfrak{A} \to \mathfrak{B}$ be a strictly contractive mapping with Lipschitz constant 0 < L < 1. Then for each given element $x \in \mathfrak{A}$, either

$$d(\Gamma^i(x), \Gamma^{i+1}(x)) = \infty$$

for all nonnegative integers i or there exists a positive integer i_0 such that

- (1) $d(\Gamma^i(x), \Gamma^{i+1}(x)) < \infty, \quad \forall i \ge i_0;$
- (2) the sequence $\{F^i(x)\}$ converges to a unique fixed point y^* of Γ in the set $\mathfrak{B} = \{y \in \mathfrak{A} \mid d(\Gamma^{i_0}x, y) < \infty\};$
- (3) $d(y, y^*) \leq \frac{1}{1-L}d(y, \Gamma(y))$ for all $y \in \mathfrak{B}$.

2 Main results

Throughout the section, let \mathbb{T}^1_{1/n_0} be the set of all complex numbers $e^{i\theta}$, where $0 \leq \theta \leq \frac{2\pi}{n_0}$. To prove the main theorems, we need the following lemmas. Firstly, in the next lemma, we prove that f is a additive mapping.

Lemma 2.1. Let $\mathfrak A$ and $\mathfrak B$ are two vector spaces. Let mapping $f:\mathfrak A\to\mathfrak B$ satisfies

$$f(\frac{x+y}{2}+z) + f(\frac{x+z}{2}+y) + f(\frac{y+z}{2}+x) - 2f(x) - 2f(y) - 2f(z)$$

$$= \rho(f(x+y+z) + f(x) - f(x+z) - f(x+y)),$$
(2.1)

for all $x, y, z \in \mathfrak{A}$. Then $f : \mathfrak{A} \to \mathfrak{B}$ is a additive.

Proof. First of all, let x = y = z = 0 in (2.1), we get f(0) = 0. Putting y = z = 0 in (2.1), we have

$$f(\frac{x}{2}) = \frac{1}{2}f(x). \tag{2.2}$$

Again putting x = -y, z = 0 in (2.1), we have

$$\frac{1}{2}f(y) + \frac{1}{2}f(-y) - 2f(-y) - 2f(y) = 0.$$
(2.3)

Now by (2.3) and using (2.2), we get

$$f(-y) = -f(y).$$

Let z = -y in (2.1), we have

$$f(\frac{x-y}{2}) + f(\frac{x+y}{2}) - f(x) = 0, (2.4)$$

replacing x and y by x + y and x - y respectively in (2.4), we have

$$f(x+y) = f(x) + f(y).$$

Hence, f is a additive mapping. \square

Lemma 2.2. Let \mathfrak{A} and \mathfrak{B} are two linear spaces. Let mapping $f: \mathfrak{A} \to \mathfrak{B}$ satisfies

$$f(\frac{\lambda x + \lambda y}{2} + \lambda z) + f(\frac{\lambda x + \lambda z}{2} + \lambda y) + f(\frac{\lambda y + \lambda z}{2} + \lambda x) - 2\lambda f(x) - 2\lambda f(y) - 2\lambda f(z)$$

$$= \rho(f(\lambda x + \lambda y + \lambda z) + \lambda f(x) - \lambda f(x + z) - \lambda f(x + y)),$$
(2.5)

for all $\lambda \in \mathbb{T}^1_{1/n_0}$ and $x, y, z \in \mathfrak{A}$. Then f is a \mathbb{C} -linear.

Proof. By lemma 2.1 f is additive. letting y=z=0 in (2.5), we have $\lambda f(x)=f(\lambda x)$ for all $\lambda\in\mathbb{T}^1_{1/n_0}$ and $x,y,z\in\mathfrak{A}$. By the same reasoning as in proof [[17], Theorem 2.1] the mapping f is \mathbb{C} -linear. \square

Lemma 2.3. [3] Let $f: \mathfrak{A} \to \mathfrak{A}$ be an linear mapping. As a result, are equivalent the following relations:

$$f([x, x, x]) = [f(x), x, x] + [x, f(x), x] + [x, x, f(x)],$$

and

$$\begin{split} f([x_1,x_2,x_3]+[x_2,x_3,x_1]+[x_3,x_1,x_2]) &= [f(x_1),x_2,x_3]+[x_1,f(x_2),x_3]+[x_1,x_2,f(x_3)]\\ &+ [f(x_2),x_3,x_1]+[x_2,f(x_3),x_1]+[x_2,x_3,f(x_1)]\\ &+ [f(x_3),x_1,x_2]+[x_3,f(x_1),x_2]+[x_3,x_1,f(x_2)]. \end{split}$$

In the following lemma, we investigate equality ternary hom-Jordan derivation by non-same components.

Lemma 2.4. Let $d: \mathfrak{A} \to \mathfrak{A}$ be an linear mapping. As a result, are equivalent the following relations:

$$d([x, x, x]) = [d(x), h(x), h(x)] + [h(x), d(x), h(x)] + [h(x), h(x), d(x)]$$
(2.6)

and

$$d([x_{1}, x_{2}, x_{3}] + [x_{2}, x_{3}, x_{1}] + [x_{3}, x_{1}, x_{2}]) = [d(x_{1}), h(x_{2}), h(x_{3})] + [h(x_{1}), d(x_{2}), h(x_{3})] + [h(x_{1}), h(x_{2}), d(x_{3})] + [d(x_{2}), h(x_{3}), h(x_{1}) + [h(x_{2}), d(x_{3}), h(x_{1})] + [h(x_{2}), h(x_{3}), d(x_{1})] + [d(x_{3}), h(x_{1}), h(x_{2})] + [h(x_{3}), h(x_{1}), h(x_{2})],$$

$$(2.7)$$

where $h: \mathfrak{A} \to \mathfrak{A}$ is a ternary homomorphism.

Proof. In the first equation, we replace x by $x_1 + x_2 + x_3$, then we have

$$d([(x_1 + x_2 + x_3), (x_1 + x_2 + x_3), (x_1 + x_2 + x_3)]) = [d(x_1 + x_2 + x_3), h(x_1 + x_2 + x_3), h(x_1 + x_2 + x_3)] + [h(x_1 + x_2 + x_3), d(x_1 + x_2 + x_3), h(x_1 + x_2 + x_3)] + [h(x_1 + x_2 + x_3), h(x_1 + x_2 + x_3), d(x_1 + x_2 + x_3)]$$

for all $x_1, x_2, x_3 \in \mathfrak{A}$. We determine as follows

$$\begin{split} &d([(x_1+x_2+x_3),(x_1+x_2+x_3),(x_1+x_2+x_3)]) = d([x_1,x_1,x_1] + [x_1,x_2,x_1] \\ &+ [x_1,x_3,x_1] + [x_2,x_1,x_1] + [x_2,x_2,x_1] + [x_2,x_3,x_1] + [x_3,x_1,x_1] + [x_3,x_2,x_1] \\ &+ [x_3,x_3,x_1] + [x_1,x_1,x_2] + [x_1,x_2,x_2] + [x_1,x_3,x_2] + [x_2,x_1,x_2] + [x_2,x_2,x_2] \\ &+ [x_2,x_3,x_2] + [x_3,x_1,x_2] + [x_3,x_2,x_2] + [x_3,x_3,x_2] + [x_1,x_1,x_3] + [x_1,x_2,x_3] \\ &+ [x_1,x_3,x_3] + [x_2,x_1,x_3] + [x_2,x_2,x_3] + [x_2,x_3,x_3] + [x_3,x_1,x_3] + [x_3,x_2,x_3] + [x_3,x_3,x_3]) = \\ &d([x_1,x_1,x_1]) + d([x_1,x_2,x_1]) + d([x_1,x_3,x_1]) + d([x_2,x_1,x_1]) + d([x_2,x_2,x_1]) + d([x_2,x_3,x_1]) \\ &+ d([x_3,x_1,x_1]) + d([x_2,x_2,x_2]) + d([x_3,x_3,x_1]) + d([x_1,x_1,x_2]) + d([x_3,x_2,x_2]) + d([x_3,x_2,x_2]) + d([x_3,x_2,x_2]) + d([x_3,x_2,x_3]) \\ &+ d([x_1,x_1,x_3]) + d([x_1,x_2,x_3]) + d([x_1,x_3,x_3]), \\ &+ d([x_3,x_1,x_3]) + d([x_3,x_2,x_3]) + d([x_3,x_3,x_3]), \end{split}$$

for all $x_1, x_2, x_3 \in \mathfrak{A}$. One the other hand, we have

```
[d(x_1 + x_2 + x_3), h(x_1 + x_2 + x_3), h(x_1 + x_2 + x_3)] + [h(x_1 + x_2 + x_3), d(x_1 + x_2 + x_3)]
h(x_1 + x_2 + x_3) + [h(x_1 + x_2 + x_3), h(x_1 + x_2 + x_3), d(x_1 + x_2 + x_3)] =
[d(x_1), h(x_1), h(x_1)] + [d(x_1), h(x_1), h(x_2)] + [d(x_1), h(x_1), h(x_3)] + [d(x_1), h(x_2), h(x_1)]
+ [d(x_1), h(x_2), h(x_2)] + [d(x_1), h(x_2), h(x_3)] + [d(x_1), h(x_3), h(x_1)] + [d(x_1), h(x_3), h(x_2)]
+ [d(x_1), h(x_3), h(x_3)] + [d(x_2), h(x_1), h(x_1)] + [d(x_2), h(x_1), h(x_2)] + [d(x_2), h(x_1), h(x_3)]
+ [d(x_2), h(x_2), h(x_1)] + [d(x_2), h(x_2), h(x_2)] + [d(x_2), h(x_2), h(x_3)] + [d(x_2), h(x_3), h(x_1)]
+ [d(x_2), h(x_3), h(x_2)] + [d(x_2), h(x_3), h(x_3)] + [d(x_3), h(x_1), h(x_1)] + [d(x_3), h(x_1), h(x_2)]
+ [d(x_3), h(x_1), h(x_3)] + [d(x_3), h(x_2), h(x_1)] + [d(x_3), h(x_2), h(x_2)] + [d(x_3), h(x_2), h(x_3)]
+ [d(x_3), h(x_3), h(x_1)] + [d(x_3), h(x_3), h(x_2)] + [d(x_3), h(x_3), h(x_3)] + [h(x_1), d(x_1), h(x_1)]
+[h(x_1),d(x_1),h(x_2)]+[h(x_1),d(x_1),h(x_3)]+[h(x_1),d(x_2),h(x_1)]+[h(x_1),d(x_2),h(x_2)]
+[h(x_1),d(x_2),h(x_3)]+[h(x_1),d(x_3),h(x_1)]+[h(x_1),d(x_3),h(x_2)]+[h(x_1),d(x_3),h(x_3)]
+[h(x_2),d(x_1),d(x_1)]+[h(x_2),d(x_1),h(x_2)]+[h(x_2),d(x_1),h(x_3)]+[h(x_2),d(x_2),h(x_1)]
+[h(x_2),d(x_2),h(x_2)]+[h(x_2),d(x_2),h(x_3)]+[h(x_2),d(x_3),h(x_1)]+[h(x_2),d(x_3),h(x_2)]
+[h(x_2),d(x_3),h(x_3)]+[h(x_3),d(x_1),h(x_1)]+[h(x_3),d(x_1),h(x_2)]+[h(x_3),d(x_1),h(x_3)]
+[h(x_3),d(x_2),h(x_1)]+[h(x_3),d(x_2),h(x_2)]+[h(x_3),d(x_2),h(x_3)]+[h(x_3),d(x_3),h(x_1)]
+[h(x_3),d(x_3),h(x_2)]+[h(x_3),d(x_3),h(x_3)]+[h(x_1),h(x_1),d(x_1)]+[h(x_1),h(x_1),d(x_2)]
+[h(x_1),h(x_1),d(x_3)]+[h(x_1),h(x_2),d(x_1)]+[h(x_1),h(x_2),d(x_2)]+[h(x_1),h(x_2),d(x_3)]
+[h(x_1),h(x_3),d(x_1)]+[h(x_1),h(x_3),d(x_2)]+[h(x_1),h(x_3),d(x_3)]+[h(x_2),h(x_1),d(x_1)]
+[h(x_2),h(x_1),d(x_2)]+[h(x_2),h(x_1),d(x_3)]+[h(x_2),h(x_2),d(x_1)]+[h(x_2),h(x_2),d(x_2)]
+[h(x_2),h(x_2),d(x_3)]+[h(x_2),h(x_3),d(x_1)]+[h(x_2),h(x_3),d(x_2)]+[h(x_2),h(x_3),d(x_3)]
+[h(x_3),h(x_1),d(x_1)]+[h(x_3),h(x_1),d(x_2)]+[h(x_3),h(x_1),d(x_3)]+[h(x_3),h(x_2),d(x_1)]
+[h(x_3),h(x_2),d(x_2)]+[h(x_3),h(x_2),d(x_3)]+[h(x_3),h(x_3),d(x_1)]+[h(x_3),h(x_3),d(x_2)]+[h(x_3),h(x_3),d(x_3)]
```

for all $x_1, x_2, x_3 \in \mathfrak{A}$. We have the above two relations

$$\begin{split} &d([x_1,x_2,x_3]+[x_2,x_3,x_1]+[x_3,x_1,x_2])=[d(x_1),h(x_2),h(x_3)]+[h(x_1),d(x_2),h(x_3)]+[h(x_1),h(x_2),d(x_3)]\\ &+[d(x_2),h(x_3),h(x_1)]+[h(x_2),d(x_3),h(x_1)]+[h(x_2),h(x_3),d(x_1)]\\ &+[d(x_3),h(x_1),h(x_2)]+[h(x_3),d(x_1),h(x_2)]+[h(x_3),h(x_1),d(x_2)], \end{split}$$

for all $x_1, x_2, x_3 \in \mathfrak{A}$. Now, for the converse proof, putting $x_1 = x_2 = x_3 = x$ in (2.7), we get

$$d([x,x,x]) = [d(x),h(x),h(x)] + [h(x),d(x),h(x)] + [h(x),h(x),d(x)],$$

for all $x_1, x_2, x_3, x \in \mathfrak{A}$. According to the above proof, we proved that (2.6) and (2.7) are equivalent, which completes this proof. \square

In the following, we give Hyers-Ulam stability of 3D-Jensen ρ -functional equations on ternary Banach algebras. Assume that $\varphi, \psi : \mathfrak{A}^3 \to [0, \infty)$ be a function satisfies condition

$$\varphi(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}) \le \frac{L}{2}\varphi(x, y, z), \quad \forall x, y, z \in \mathfrak{A}$$
(2.8)

$$\psi(\frac{x}{2}, \frac{y}{2}, \frac{z}{2}) \le \frac{L}{2^3} \psi(x, y, z), \quad \forall x, y, z \in \mathfrak{A}, \tag{2.9}$$

some 0 < L < 1. Therefore $\varphi(0,0,0) = 0$. Clearly, by induction one can obtain that

$$2^{n}\varphi(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}) \le L^{n}\varphi(x, y, z), \quad \forall n \in \mathbb{N},$$
(2.10)

$$2^{3n}\psi(\frac{x}{2^n},\frac{y}{2^n},\frac{z}{2^n}) \le L^n\psi(x,y,z), \quad \forall n \in \mathbb{N}. \tag{2.11}$$

Theorem 2.5. Let $f: \mathfrak{A} \to \mathfrak{A}$ be a mapping satisfies

$$||f(\frac{x+y}{2}+z) + f(\frac{x+z}{2}+y) + f(\frac{y+z}{2}+x) - 2f(x) - 2f(y) - 2f(z) - \rho(f(x+y+z) + f(x) - f(x+z) - f(x+y))|| \le \varphi(x,y,z),$$
(2.12)

where φ fulfills (2.8). Then there exists a unique additive $T:\mathfrak{A}\to\mathfrak{A}$, such that

$$||f(x) - T(x)|| \le \frac{1}{1 - L} \varphi(x, 0, 0).$$

Proof. Let x = y = z = 0 in (2.12), we have f(0) = 0 and putting y = z = 0 in (2.12), we get

$$||2f(\frac{x}{2}) - f(x)|| \le \varphi(x, 0, 0),$$
 (2.13)

for all $x \in \mathfrak{A}$. Let Ω be the set of all functions $h: \mathfrak{A} \to \mathfrak{A}$ with h(0) = 0. Define the mapping $\Lambda: \Omega \to \Omega$ by $\Lambda(h)(x) = 2h(\frac{x}{2})$ and for every $h, k \in \Omega$ and $x \in \mathfrak{A}$ define

$$d(h, k) = \inf\{\beta > 0 : \|h(x) - k(x)\| \le \beta \varphi(x, 0, 0)\},\$$

where inf $\emptyset = +\infty$. It is easy to show that d is a generalized metric on Ω and (Ω, d) is a complete generalized metric space. It follows from (2.13) that $d(f, \Lambda f) \leq 1$.

By theorem Diaz, there exists a mapping $T: \mathfrak{A} \to \mathfrak{A}$ such that mapping T is the unique fixed point of Λ in the set $\Gamma = \{h \in \Omega: d(f,h) < \infty\}$ and $\lim_{n \to \infty} \Lambda^n T(x) = T(x)$. This implies that T is a unique mapping such that there exists a $\beta \in (0,\infty)$ satisfying

$$||f(x) - T(x)|| \le \beta \varphi(x, 0, 0).$$

Also we have $d(f,h) \leq \frac{1}{1-L}$, which implies that

$$||f(x) - T(x)|| \le \frac{1}{1 - L} \varphi(x, 0, 0).$$

It follows (2.10) and (2.12) that

$$\begin{split} &\|T(\frac{x+y}{2}+z)+T(\frac{x+z}{2}+y)+T(\frac{y+z}{2}+x)-2T(x)-2T(y)-2T(z)\\ &-\rho(T(x+y+z)+T(x)-T(x+z)-T(x+y))\|\\ &=\lim_{n\to\infty}2^n\|f(\frac{x+y}{2^{n+1}}+\frac{z}{2^n})+f(\frac{x+z}{2^{n+1}}+\frac{y}{2^n})+f(\frac{y+z}{2^{n+1}}+\frac{x}{2^n})\\ &-2f(\frac{x}{2^n})-2f(\frac{y}{2^n})-2f(\frac{z}{2^n})-\rho(f(\frac{x+y+z}{2^n})+f(\frac{x}{2^n})-f(\frac{x+z}{2^n})-f(\frac{x+y}{2^n}))\|\\ &\leq \lim_{n\to\infty}2^n\varphi(\frac{x}{2^n},\frac{y}{2^n},\frac{z}{2^n})=0, \end{split}$$

for all $x, y, z \in \mathfrak{A}$. By lemma 2.1 T is additive mapping and the proof is complete. \square

Corollary 2.6. Let $r \neq 1$ and θ be nonnegative real numbers, and let $f: \mathfrak{A} \to \mathfrak{A}$ be a mapping satisfying

$$||f(\frac{x+y}{2}+z) + f(\frac{x+z}{2}+y) + f(\frac{y+z}{2}+x) - 2f(x) - 2f(y) - 2f(z) - \rho(f(x+y+z) + f(x) - f(x+z) - f(x+y))|| \le \theta(||x||^r + ||y||^r + ||z||^r),$$

for all $x, y, z \in \mathfrak{A}$. Then there exists a unique additive mapping $T: \mathfrak{A} \to \mathfrak{A}$ such that

$$||f(x) - T(x)|| \le \frac{2^r \theta}{2^r - 2} ||x||^r \text{ for } r < 1,$$

$$||f(x) - T(x)|| \le \frac{2^r \theta}{2 - 2^r} ||x||^r \text{ for } r > 1.$$

Proof. The proof follows from previous theorem by taking

$$\varphi(x, y, z) = \theta(\|x\|^r + \|y\|^r + \|z\|^r).$$

Then we can choose $L=2^{1-r}$ or $L=2^{r-1}$ and we get the desired result. \square For simplicity, denote

$$\Delta_{\rho} f_{\lambda}(x, y, z) = f(\frac{\lambda x + \lambda y}{2} + \lambda z) + f(\frac{\lambda x + \lambda z}{2} + \lambda y) + f(\frac{\lambda y + \lambda z}{2} + \lambda x) - 2\lambda f(x) - 2\lambda f(y) - 2\lambda f(z) - \rho(f(\lambda x + \lambda y + \lambda z) + \lambda f(x) - \lambda f(x + z) - \lambda f(x + y)),$$

and

$$\mathcal{D}_h f([x_1, x_2, x_3] + [x_2, x_3, x_1] + [x_3, x_1, x_2]) := f([x_1, x_2, x_3] + [x_2, x_3, x_1] + [x_3, x_1, x_2]) - [f(x_1), h(x_2), h(x_3)] - [h(x_1), f(x_2), h(x_3)] - [h(x_1), h(x_2), f(x_3)] - [f(x_2), h(x_3), h(x_1)] - [h(x_2), f(x_3), h(x_1)] - [h(x_2), h(x_3), f(x_1)] - [h(x_3), h(x_1), h(x_2)] - [h(x_3), h(x_1), h(x_2)],$$

for all $x, y, z, x_1, x_2, x_3 \in \mathfrak{A}$. In the following, we prove the Hyers-Ulam stability of ternary Hom-Jordan derivations on ternary Banach algebras for the functional equation (1.1).

Theorem 2.7. Let $f, h : \mathfrak{A} \to \mathfrak{A}$ are two mappings satisfying

$$\|\Delta_{\rho} f_{\lambda}(x, y, z)\| \le \varphi(x, y, z),\tag{2.14}$$

$$\|\Delta_{\rho}h(x,y,z)\| \le \varphi(x,y,z),\tag{2.15}$$

$$||h([x_1, x_2, x_3]) - [h(x_1), h(x_2), h(x_3)]|| \le \psi(x_1, x_2, x_3), \tag{2.16}$$

$$\|\mathcal{D}_h f([x_1, x_2, x_3] + [x_2, x_3, x_1] + [x_3, x_1, x_2])\| \le \psi(x_1, x_2, x_3), \tag{2.17}$$

where φ and ψ satisfying conditions (2.8) and (2.9) for some constant 0 < L < 1. Then there exists a unique ternary homomorphism $H: \mathfrak{A} \to \mathfrak{A}$ and unique ternary Hom-Jordan derivation $D: \mathfrak{A} \to \mathfrak{A}$, such that

$$||h(x) - H(x)|| \le \frac{1}{1 - L} \varphi(x, 0, 0), \quad ||f(x) - D(x)|| \le \frac{1}{1 - L} \varphi(x, 0, 0).$$

Proof. First of all, let $\lambda = 1$ in (2.14) and let Ω , d and Λ be those as defined in the proof of theorem 2.5, as a result, there exist unique mappings $H, D: \mathfrak{A} \to \mathfrak{A}$ such that

$$H(x) = \lim_{n \to \infty} 2^n h(\frac{x}{2^n}),$$
 (2.18)

$$D(x) = \lim_{n \to \infty} 2^n f(\frac{x}{2^n}), \tag{2.19}$$

and satisfying (2.14), (2.15), (2.16) and (2.17) as desired. By attention to (2.16) and (2.18) we have

$$||H([x_1, x_2, x_3] - [H(x_1), H(x_2), H(x_3)])|| = \lim_{n \to \infty} 2^{3n} ||f([\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}] - [f(\frac{x_1}{2^n}), f(\frac{x_2}{2^n}), f(\frac{x_3}{2^n})])||$$

$$\leq \lim_{n \to \infty} 2^{3n} \psi(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n})$$

$$\leq L^n \psi(x_1, x_2, x_3)$$

$$= 0,$$

as a result, H is a ternary homomorphism. It follows (2.17) and (2.19), imply that $\mathcal{D}_h D$ is a ternary Hom-Jordan derivation

$$\begin{split} \|\mathcal{D}_h D([x_1, x_2, x_3] + [x_2, x_3, x_1] + [x_3, x_1, x_2])\| &= \lim_{n \to \infty} 2^{3n} \|\mathcal{D}_h f([\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}] + [\frac{x_2}{2^n}, \frac{x_3}{2^n}, \frac{x_1}{2^n}] + [\frac{x_3}{2^n}, \frac{x_1}{2^n}, \frac{x_2}{2^n}])\| \\ &\leq \lim_{n \to \infty} 2^{3n} \psi(\frac{x_1}{2^n}, \frac{x_2}{2^n}, \frac{x_3}{2^n}) \\ &\leq L^n \psi(x_1, x_2, x_3) \\ &= 0. \end{split}$$

Now, the proof is complete. \square

Corollary 2.8. Let r < 1 and θ be two elements of \mathbb{R}^+ . and θ be nonnegative real numbers, and let $f, h : \mathfrak{A} \to \mathfrak{A}$ are two mappings satisfying

$$\|\Delta_{\rho} f_{\lambda}(x, y, z)\| \leq \theta(\|x\|^{r} + \|y\|^{r} + \|z\|^{r})$$

$$\|\Delta_{\rho} h(x, y, z)\| \leq \theta(\|x\|^{r} + \|y\|^{r} + \|z\|^{r})$$

$$\|h([x_{1}, x_{2}, x_{3}]) - [h(x_{1}), h(x_{2}), h(x_{3})]\| \leq \theta(\|x_{1}\|^{r} + \|x_{2}\|^{r} + \|x_{3}\|^{r}),$$

$$\|\mathcal{D}_{h} f([x_{1}, x_{2}, x_{3}] + [x_{2}, x_{3}, x_{1}] + [x_{3}, x_{1}, x_{2}])\| \leq \theta(\|x_{1}\|^{r} + \|x_{2}\|^{r} + \|x_{3}\|^{r}),$$

for all $x, y, z \in \mathfrak{A}$. Then there exists unique ternary homomorphism H and unique ternary Hom-Jordan derivation D such that

$$||h(x) - H(x)|| \le \frac{2^r \theta}{2^r - 2} ||x||^r,$$

 $||f(x) - D(x)|| \le \frac{2^r \theta}{2^r - 2} ||x||^r.$

Proof. The proof follows from previous theorem by taking

$$\varphi(x, y, z) = \theta(\|x\|^r + \|y\|^r + \|z\|^r) \qquad \psi(x_1, x_2, x_3) = \theta(\|x_1\|^r + \|x_2\|^r + \|x_3\|^r).$$

Then we can choose $L=2^{1-r}$ and we get the desired result. \square

References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64–66.
- [2] M. Eshaghi Gordji, Z. Alizadeh, H. Khodaei, and C. Park, On approximate homomorphisms: a fixed point approach, Math. Sci. 6 (2012), doi.org/10.1186/2251-7456-6-59.
- [3] M. Eshaghi Gordji, S. Bazeghi, C. Park, and S. Jang, Ternary Jordan ring derivations on Banach ternary algebras: A fixed point approach, J. Comput. Anal. Appl. 21 (2016), 829–834.
- [4] M. Eshaghi Gordji, A. Jabbari, A. Ebadian, and S. Ostadbashi, *Automatic continuity of 3-homomorphisms on ternary Banach algebras*, Int. J. Geometric Meth. Modern Phys. **10** (2013), 1320013.
- [5] M. Eshaghi Gordji, A. Jabbari, and G.H. Kim, Bounded approximate identities in ternary Banach algebras, Abstr. Appl. Anal. 2012 (2012), 1–6.
- [6] M. Eshaghi Gordji, H. Khodaei, and Th. M. Rassias, Fixed points and generalized stability for quadratic and quartic mappings in C*-algebras, J. Fixed Point Theory Appl. 17 (2018), 703–715.
- [7] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. **184** (1994), 431–436.
- [8] I. Hwang and C. Park, Bihom derivations in Banach algebras, J. Fixed Point Theory Appl. 21 (2019), doi.org/10.1007/s11784-019-0722-y.
- [9] D.H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. United States Amer. 27 (1941), 222–224.
- [10] A. Jabbari, Cohen's factorization theorem for ternary Banach algebras, Math. Anal. Contemp. Appl. 1 (2019), no. 1, 62–66.
- [11] S. Jahedi and V. Keshavarz, Approximate generalized additive-quadratic functional equations on ternary Banach algebras, J. Math. Exten. 16 (2022), no.10, 1–11.
- [12] S. Jahedi, V. Keshavarz, C. Park, and S. Yun, Stability of ternary Jordan bi-derivations on C*-ternary algebras for bi-Jensen functional equation, J. Comput. Anal. Appl. 26 (2019), 140–145.
- [13] R. Kerner, Ternary algebraic structures and their applications in physics, Pierre Marie Curie University, Paris, Proc. BTLP, 23rd Int. Conf. Group Theor. Meth. Phys., Dubna, Russia, 2000.
- [14] V. Keshavarz, S. Jahedi, and M. Eshaghi Gordji, *Ulam-Hyers stability of C*-ternary 3-Jordan derivations*, South East Asian Bull. Math. **45** (2021), 55–64.

- [15] B. Margolis and J.B. Diaz, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305–309.
- [16] Y. Nambu, Generalized Hamiltonian mechanics, Phys. Rev. 7 (1973), 2405–2412.
- [17] C. Park, Homomorphisms between Poisson JC*-algebras, Bull. Braz. Math. Soc. 36 (2005), 79–97.
- [18] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297–300.
- [19] F. Skof, Proprietá locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983), 113–129.
- [20] S.M. Ulam, Problems in Modern Mathematics, Chapter VI, Science ed. Wiley, New York, 1940.
- [21] H. Zettl, A characterization of ternary rings of operators, Adv. Math. 48 (1983), 117–143.