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Abstract

In this paper, we introduce the concept of ternary Hom-Jordan derivation and solve the new 3D-Jensen ρ-functional
equations in the sense of ternary Banach algebras. Moreover, we prove its Hyers-Ulam stability using the fixed point
method.
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1 Introduction and preliminaries

The Hyers-Ulam stability problem which arises from Ulam’s question says that for two given fixed functions φ and
ψ, the functional equation F1(G) = F2(G) is stable if for a function g for which d(F1(g),F2(g)) ≤ φ holds, there is
a function h such that F1(h) = F2(h) and d(g, h) ≤ ψ [7, 9, 18, 20]. In 1941 [9], Hyers solved the approximately
additive mappings on the setting of Banach spaces. First, Th. M. Rassias [18] and Aoki [1] and then a number of
authors extended this result by considering the unbounded Cauchy differences in different spaces. For example see
[6, 8, 11, 12, 14]. F. Skof in 1983 [19], proved the stability problem of quadratic functional equation between normed
and Banach spaces.

A ternary Banach algebra A with ∥.∥ is a complex Banach algebra equipped with a ternary product (a, b, c) → [a, b, c]
of A3 into A. This product is C-linear in the outer variable, conjugate C−linear in the middle variable associative in
the sense that [a, b, [c, v, u]] = [a, [b, c, v], u] = [[a, b, c], v, u] and satisfies ∥[a, b, c]∥ ≤ ∥a∥.∥b∥.∥c∥ and ∥[a, a, a]∥ = ∥a∥3
(see [21]). Ternary structures and their extensions, known as n-ary algebras have many applications in mathematical
physics and photonics, such as the quark model and Nambu mechanics [4, 5, 10, 13, 16]. Today, many physical
systems can be modeled as a linear system. The principle of additivity has various applications in physics especially
in calculating the internal energy in thermodynamic and also the meaning of the superposition principle. Throughout
this paper, A is a ternary Banach algebra.

Definition 1.1. A mapping h : A → A is called a ternary homomorphism, if h is a C-linear and

h([x1, x2, x3]) = [h(x1), h(x2), h(x3)] ∀ x1, x2, x3 ∈ A.
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Definition 1.2. Let h : A → A be a ternary homomorphism. A C-linearD : A → A is called a ternary hom-derivation
if D satisfies

D([x1, x2, x3]) = [D(x1), h(x2), h(x3)] + [h(x1), D(x2), h(x3)] + [h(x1), h(x2), D(x3)]

for all x1, x2, x3 ∈ A.

Consider the generalized functional equation

f(
x+ y

2
+ z) + f(

x+ z

2
+ y) + f(

y + z

2
+ x)− 2f(x)− 2f(y)− 2f(z)

= ρ(f(x+ y + z) + f(x)− f(x+ z)− f(x+ y)),
(1.1)

where ρ ̸= 0,±1 is a complex number. In this paper, we solve (1.1) and show that a function which satisfies (1.1) is
additive. We also prove its Hyers-Ulam stability by using the fixed point method. To do this, we use the Diaz-Margolis
fixed point theorem [15].

Theorem 1.3. [15] Let (A, d) be a complete generalized metric space and let Γ : A → B be a strictly contractive
mapping with Lipschitz constant 0 < L < 1. Then for each given element x ∈ A, either

d(Γi(x),Γi+1(x)) = ∞

for all nonnegative integers i or there exists a positive integer i0 such that

(1) d(Γi(x),Γi+1(x)) <∞, ∀i ≥ i0;

(2) the sequence {F i(x)} converges to a unique fixed point y∗ of Γ in the set B = {y ∈ A | d(Γi0x, y) <∞};
(3) d(y, y∗) ≤ 1

1−Ld(y,Γ(y)) for all y ∈ B.

2 Main results

Throughout the section, let T1
1/n0

be the set of all complex numbers eiθ, where 0 ≤ θ ≤ 2π
n0

. To prove the main
theorems, we need the following lemmas. Firstly, in the next lemma, we prove that f is a additive mapping.

Lemma 2.1. Let A and B are two vector spaces. Let mapping f : A → B satisfies

f(
x+ y

2
+ z) + f(

x+ z

2
+ y) + f(

y + z

2
+ x)− 2f(x)− 2f(y)− 2f(z)

= ρ(f(x+ y + z) + f(x)− f(x+ z)− f(x+ y)),
(2.1)

for all x, y, z ∈ A. Then f : A → B is a additive.

Proof . First of all, let x = y = z = 0 in (2.1), we get f(0) = 0. Putting y = z = 0 in (2.1), we have

f(
x

2
) =

1

2
f(x). (2.2)

Again putting x = −y, z = 0 in (2.1), we have

1

2
f(y) +

1

2
f(−y)− 2f(−y)− 2f(y) = 0. (2.3)

Now by (2.3) and using (2.2), we get
f(−y) = −f(y).

Let z = −y in (2.1), we have

f(
x− y

2
) + f(

x+ y

2
)− f(x) = 0, (2.4)

replacing x and y by x+ y and x− y respectively in (2.4), we have

f(x+ y) = f(x) + f(y).

Hence, f is a additive mapping. □
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Lemma 2.2. Let A and B are two linear spaces. Let mapping f : A → B satisfies

f(
λx+ λy

2
+ λz) + f(

λx+ λz

2
+ λy) + f(

λy + λz

2
+ λx)− 2λf(x)− 2λf(y)− 2λf(z)

= ρ(f(λx+ λy + λz) + λf(x)− λf(x+ z)− λf(x+ y)),
(2.5)

for all λ ∈ T1
1/n0

and x, y, z ∈ A. Then f is a C−linear.

Proof . By lemma 2.1 f is additive. letting y = z = 0 in (2.5), we have λf(x) = f(λx) for all λ ∈ T1
1/n0

and

x, y, z ∈ A. By the same reasoning as in proof [[17], Theorem 2.1] the mapping f is C−linear. □

Lemma 2.3. [3] Let f : A → A be an linear mapping. As a result, are equivalent the following relations:

f([x, x, x]) = [f(x), x, x] + [x, f(x), x] + [x, x, f(x)],

and

f([x1, x2, x3] + [x2, x3, x1] + [x3, x1, x2]) = [f(x1), x2, x3] + [x1, f(x2), x3] + [x1, x2, f(x3)]

+ [f(x2), x3, x1] + [x2, f(x3), x1] + [x2, x3, f(x1)]

+ [f(x3), x1, x2] + [x3, f(x1), x2] + [x3, x1, f(x2)].

In the following lemma, we investigate equality ternary hom-Jordan derivation by non-same components.

Lemma 2.4. Let d : A → A be an linear mapping. As a result, are equivalent the following relations:

d([x, x, x]) = [d(x), h(x), h(x)] + [h(x), d(x), h(x)] + [h(x), h(x), d(x)] (2.6)

and

d([x1, x2, x3] + [x2, x3, x1] + [x3, x1, x2]) =[d(x1), h(x2), h(x3)] + [h(x1), d(x2), h(x3)]

+ [h(x1), h(x2), d(x3)] + [d(x2), h(x3), h(x1)

+ [h(x2), d(x3), h(x1)] + [h(x2), h(x3), d(x1)]

+ [d(x3), h(x1), h(x2)] + [h(x3), d(x1), h(x2)]

+ [h(x3), h(x1), d(x2)],

(2.7)

where h : A → A is a ternary homomorphism.

Proof . In the first equation, we replace x by x1 + x2 + x3, then we have

d([(x1 + x2 + x3), (x1 + x2 + x3), (x1 + x2 + x3)]) = [d(x1 + x2 + x3), h(x1 + x2 + x3), h(x1 + x2 + x3)]

+ [h(x1 + x2 + x3), d(x1 + x2 + x3), h(x1 + x2 + x3)] + [h(x1 + x2 + x3), h(x1 + x2 + x3), d(x1 + x2 + x3)],

for all x1, x2, x3 ∈ A. We determine as follows

d([(x1 + x2 + x3), (x1 + x2 + x3), (x1 + x2 + x3)]) = d([x1, x1, x1] + [x1, x2, x1]

+ [x1, x3, x1] + [x2, x1, x1] + [x2, x2, x1] + [x2, x3, x1] + [x3, x1, x1] + [x3, x2, x1]

+ [x3, x3, x1] + [x1, x1, x2] + [x1, x2, x2] + [x1, x3, x2] + [x2, x1, x2] + [x2, x2, x2]

+ [x2, x3, x2] + [x3, x1, x2] + [x3, x2, x2] + [x3, x3, x2] + [x1, x1, x3] + [x1, x2, x3]

+ [x1, x3, x3] + [x2, x1, x3] + [x2, x2, x3] + [x2, x3, x3] + [x3, x1, x3] + [x3, x2, x3] + [x3, x3, x3]) =

d([x1, x1, x1]) + d([x1, x2, x1]) + d([x1, x3, x1]) + d([x2, x1, x1]) + d([x2, x2, x1]) + d([x2, x3, x1])

+ d([x3, x1, x1]) + d([x3, x2, x1]) + d([x3, x3, x1]) + d([x1, x1, x2]) + d([x1, x2, x2]) + d([x1, x3, x2])

+ d([x2, x1, x2]) + d([x2, x2, x2]) + d([x2, x3, x2]) + d([x3, x1, x2]) + d([x3, x2, x2]) + d([x3, x3, x2])

+ d([x1, x1, x3]) + d([x1, x2, x3]) + d([x1, x3, x3]) + d([x2, x1, x3]) + d([x2, x2, x3]) + d([x2, x3, x3])

+ d([x3, x1, x3]) + d([x3, x2, x3]) + d([x3, x3, x3]),
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for all x1, x2, x3 ∈ A. One the other hand, we have

[d(x1 + x2 + x3), h(x1 + x2 + x3), h(x1 + x2 + x3)] + [h(x1 + x2 + x3), d(x1 + x2 + x3),

h(x1 + x2 + x3)] + [h(x1 + x2 + x3), h(x1 + x2 + x3), d(x1 + x2 + x3)] =

[d(x1), h(x1), h(x1)] + [d(x1), h(x1), h(x2)] + [d(x1), h(x1), h(x3)] + [d(x1), h(x2), h(x1)]

+ [d(x1), h(x2), h(x2)] + [d(x1), h(x2), h(x3)] + [d(x1), h(x3), h(x1)] + [d(x1), h(x3), h(x2)]

+ [d(x1), h(x3), h(x3)] + [d(x2), h(x1), h(x1)] + [d(x2), h(x1), h(x2)] + [d(x2), h(x1), h(x3)]

+ [d(x2), h(x2), h(x1)] + [d(x2), h(x2), h(x2)] + [d(x2), h(x2), h(x3)] + [d(x2), h(x3), h(x1)]

+ [d(x2), h(x3), h(x2)] + [d(x2), h(x3), h(x3)] + [d(x3), h(x1), h(x1)] + [d(x3), h(x1), h(x2)]

+ [d(x3), h(x1), h(x3)] + [d(x3), h(x2), h(x1)] + [d(x3), h(x2), h(x2)] + [d(x3), h(x2), h(x3)]

+ [d(x3), h(x3), h(x1)] + [d(x3), h(x3), h(x2)] + [d(x3), h(x3), h(x3)] + [h(x1), d(x1), h(x1)]

+ [h(x1), d(x1), h(x2)] + [h(x1), d(x1), h(x3)] + [h(x1), d(x2), h(x1)] + [h(x1), d(x2), h(x2)]

+ [h(x1), d(x2), h(x3)] + [h(x1), d(x3), h(x1)] + [h(x1), d(x3), h(x2)] + [h(x1), d(x3), h(x3)]

+ [h(x2), d(x1), d(x1)] + [h(x2), d(x1), h(x2)] + [h(x2), d(x1), h(x3)] + [h(x2), d(x2), h(x1)]

+ [h(x2), d(x2), h(x2)] + [h(x2), d(x2), h(x3)] + [h(x2), d(x3), h(x1)] + [h(x2), d(x3), h(x2)]

+ [h(x2), d(x3), h(x3)] + [h(x3), d(x1), h(x1)] + [h(x3), d(x1), h(x2)] + [h(x3), d(x1), h(x3)]

+ [h(x3), d(x2), h(x1)] + [h(x3), d(x2), h(x2)] + [h(x3), d(x2), h(x3)] + [h(x3), d(x3), h(x1)]

+ [h(x3), d(x3), h(x2)] + [h(x3), d(x3), h(x3)] + [h(x1), h(x1), d(x1)] + [h(x1), h(x1), d(x2)]

+ [h(x1), h(x1), d(x3)] + [h(x1), h(x2), d(x1)] + [h(x1), h(x2), d(x2)] + [h(x1), h(x2), d(x3)]

+ [h(x1), h(x3), d(x1)] + [h(x1), h(x3), d(x2)] + [h(x1), h(x3), d(x3)] + [h(x2), h(x1), d(x1)]

+ [h(x2), h(x1), d(x2)] + [h(x2), h(x1), d(x3)] + [h(x2), h(x2), d(x1)] + [h(x2), h(x2), d(x2)]

+ [h(x2), h(x2), d(x3)] + [h(x2), h(x3), d(x1)] + [h(x2), h(x3), d(x2)] + [h(x2), h(x3), d(x3)]

+ [h(x3), h(x1), d(x1)] + [h(x3), h(x1), d(x2)] + [h(x3), h(x1), d(x3)] + [h(x3), h(x2), d(x1)]

+ [h(x3), h(x2), d(x2)] + [h(x3), h(x2), d(x3)] + [h(x3), h(x3), d(x1)] + [h(x3), h(x3), d(x2)] + [h(x3), h(x3), d(x3)],

for all x1, x2, x3 ∈ A. We have the above two relations

d([x1, x2, x3] + [x2, x3, x1] + [x3, x1, x2]) = [d(x1), h(x2), h(x3)] + [h(x1), d(x2), h(x3)] + [h(x1), h(x2), d(x3)]

+ [d(x2), h(x3), h(x1)] + [h(x2), d(x3), h(x1)] + [h(x2), h(x3), d(x1)]

+ [d(x3), h(x1), h(x2)] + [h(x3), d(x1), h(x2)] + [h(x3), h(x1), d(x2)],

for all x1, x2, x3 ∈ A. Now, for the converse proof, putting x1 = x2 = x3 = x in (2.7), we get

d([x, x, x]) = [d(x), h(x), h(x)] + [h(x), d(x), h(x)] + [h(x), h(x), d(x)],

for all x1, x2, x3, x ∈ A. According to the above proof, we proved that (2.6) and (2.7) are equivalent, which completes
this proof. □

In the following, we give Hyers-Ulam stability of 3D-Jensen ρ-functional equations on ternary Banach algebras.
Assume that φ,ψ : A3 → [0,∞) be a function satisfies condition

φ(
x

2
,
y

2
,
z

2
) ≤ L

2
φ(x, y, z), ∀x, y, z ∈ A (2.8)

ψ(
x

2
,
y

2
,
z

2
) ≤ L

23
ψ(x, y, z), ∀x, y, z ∈ A, (2.9)

some 0 < L < 1. Therefore φ(0, 0, 0) = 0. Clearly, by induction one can obtain that

2nφ(
x

2n
,
y

2n
,
z

2n
) ≤ Lnφ(x, y, z), ∀n ∈ N, (2.10)

23nψ(
x

2n
,
y

2n
,
z

2n
) ≤ Lnψ(x, y, z), ∀n ∈ N. (2.11)



General 3D-Jensen ρ-functional equation and ternary Hom-Jordan derivation 5

Theorem 2.5. Let f : A → A be a mapping satisfies

∥f(x+ y

2
+ z) + f(

x+ z

2
+ y) + f(

y + z

2
+ x)− 2f(x)− 2f(y)− 2f(z)−

ρ(f(x+ y + z) + f(x)− f(x+ z)− f(x+ y))∥ ≤ φ(x, y, z),
(2.12)

where φ fulfills (2.8). Then there exists a unique additive T : A → A, such that

∥f(x)− T (x)∥ ≤ 1

1− L
φ(x, 0, 0).

Proof . Let x = y = z = 0 in (2.12), we have f(0) = 0 and putting y = z = 0 in (2.12), we get

∥2f(x
2
)− f(x)∥ ≤ φ(x, 0, 0), (2.13)

for all x ∈ A. Let Ω be the set of all functions h : A → A with h(0) = 0. Define the mapping Λ : Ω → Ω by
Λ(h)(x) = 2h(x2 ) and for every h, k ∈ Ω and x ∈ A define

d(h, k) = inf{β > 0 : ∥h(x)− k(x)∥ ≤ βφ(x, 0, 0)},

where inf ∅ = +∞. It is easy to show that d is a generalized metric on Ω and (Ω, d) is a complete generalized metric
space. It follows from (2.13) that d(f,Λf) ≤ 1.

By theorem Diaz, there exists a mapping T : A → A such that mapping T is the unique fixed point of Λ in the set
Γ = {h ∈ Ω : d(f, h) < ∞} and limn→∞ ΛnT (x) = T (x). This implies that T is a unique mapping such that there
exists a β ∈ (0,∞) satisfying

∥f(x)− T (x)∥ ≤ βφ(x, 0, 0).

Also we have d(f, h) ≤ 1
1−L , which implies that

∥f(x)− T (x)∥ ≤ 1

1− L
φ(x, 0, 0).

It follows (2.10) and (2.12) that

∥T (x+ y

2
+ z) + T (

x+ z

2
+ y) + T (

y + z

2
+ x)− 2T (x)− 2T (y)− 2T (z)

− ρ(T (x+ y + z) + T (x)− T (x+ z)− T (x+ y))∥

= lim
n→∞

2n∥f(x+ y

2n+1
+

z

2n
) + f(

x+ z

2n+1
+

y

2n
) + f(

y + z

2n+1
+

x

2n
)

− 2f(
x

2n
)− 2f(

y

2n
)− 2f(

z

2n
)− ρ(f(

x+ y + z

2n
) + f(

x

2n
)− f(

x+ z

2n
)− f(

x+ y

2n
))∥

≤ lim
n→∞

2nφ(
x

2n
,
y

2n
,
z

2n
) = 0,

for all x, y, z ∈ A. By lemma 2.1 T is additive mapping and the proof is complete. □

Corollary 2.6. Let r ̸= 1 and θ be nonnegative real numbers, and let f : A → A be a mapping satisfying

∥f(x+ y

2
+ z) + f(

x+ z

2
+ y) + f(

y + z

2
+ x)− 2f(x)− 2f(y)− 2f(z)

− ρ(f(x+ y + z) + f(x)− f(x+ z)− f(x+ y))∥ ≤ θ(∥x∥r + ∥y∥r + ∥z∥r),

for all x, y, z ∈ A. Then there exists a unique additive mapping T : A → A such that

∥f(x)− T (x)∥ ≤ 2rθ

2r − 2
∥x∥r for r < 1,

∥f(x)− T (x)∥ ≤ 2rθ

2− 2r
∥x∥r for r > 1.
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Proof . The proof follows from previous theorem by taking

φ(x, y, z) = θ(∥x∥r + ∥y∥r + ∥z∥r).

Then we can choose L = 21−r or L = 2r−1 and we get the desired result. □ For simplicity, denote

∆ρfλ(x, y, z) = f(
λx+ λy

2
+ λz) + f(

λx+ λz

2
+ λy) + f(

λy + λz

2
+ λx)− 2λf(x)− 2λf(y)− 2λf(z)

− ρ(f(λx+ λy + λz) + λf(x)− λf(x+ z)− λf(x+ y)),

and

Dhf([x1, x2, x3] + [x2, x3, x1] + [x3, x1, x2]) :=

f([x1, x2, x3] + [x2, x3, x1] + [x3, x1, x2])− [f(x1), h(x2), h(x3)]− [h(x1), f(x2), h(x3)]

− [h(x1), h(x2), f(x3)]− [f(x2), h(x3), h(x1)]− [h(x2), f(x3), h(x1)]− [h(x2), h(x3), f(x1)]

− [f(x3), h(x1), h(x2)]− [h(x3), f(x1), h(x2)]− [h(x3), h(x1), f(x2)],

for all x, y, z, x1, x2, x3 ∈ A. In the following, we prove the Hyers-Ulam stability of ternary Hom-Jordan derivations
on ternary Banach algebras for the functional equation (1.1).

Theorem 2.7. Let f, h : A → A are two mappings satisfying

∥∆ρfλ(x, y, z)∥ ≤ φ(x, y, z), (2.14)

∥∆ρh(x, y, z)∥ ≤ φ(x, y, z), (2.15)

∥h([x1, x2, x3])− [h(x1), h(x2), h(x3)]∥ ≤ ψ(x1, x2, x3), (2.16)

∥Dhf([x1, x2, x3] + [x2, x3, x1] + [x3, x1, x2])∥ ≤ ψ(x1, x2, x3), (2.17)

where φ and ψ satisfying conditions (2.8) and (2.9) for some constant 0 < L < 1. Then there exists a unique ternary
homomorphism H : A → A and unique ternary Hom-Jordan derivation D : A → A, such that

∥h(x)−H(x)∥ ≤ 1

1− L
φ(x, 0, 0), ∥f(x)−D(x)∥ ≤ 1

1− L
φ(x, 0, 0).

Proof . First of all, let λ = 1 in (2.14) and let Ω, d and Λ be those as defined in the proof of theorem 2.5, as a result,
there exist unique mappings H,D : A → A such that

H(x) = lim
n→∞

2nh(
x

2n
), (2.18)

D(x) = lim
n→∞

2nf(
x

2n
), (2.19)

and satisfying (2.14), (2.15), (2.16) and (2.17) as desired. By attention to (2.16) and (2.18) we have

∥H([x1, x2, x3]− [H(x1), H(x2), H(x3)])∥ = lim
n→∞

23n∥f([x1
2n
,
x2
2n
,
x3
2n

]− [f(
x1
2n

), f(
x2
2n

), f(
x3
2n

)])∥

≤ lim
n→∞

23nψ(
x1
2n
,
x2
2n
,
x3
2n

)

≤ Lnψ(x1, x2, x3)

= 0,

as a result, H is a ternary homomorphism. It follows (2.17) and (2.19), imply that DhD is a ternary Hom-Jordan
derivation

∥DhD([x1, x2, x3] + [x2, x3, x1] + [x3, x1, x2])∥ = lim
n→∞

23n∥Dhf([
x1
2n
,
x2
2n
,
x3
2n

] + [
x2
2n
,
x3
2n
,
x1
2n

] + [
x3
2n
,
x1
2n
,
x2
2n

])∥

≤ lim
n→∞

23nψ(
x1
2n
,
x2
2n
,
x3
2n

)

≤ Lnψ(x1, x2, x3)

= 0.

Now, the proof is complete. □
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Corollary 2.8. Let r < 1 and θ be two elements of R+. and θ be nonnegative real numbers, and let f, h : A → A are
two mappings satisfying

∥∆ρfλ(x, y, z)∥ ≤ θ(∥x∥r + ∥y∥r + ∥z∥r)

∥∆ρh(x, y, z)∥ ≤ θ(∥x∥r + ∥y∥r + ∥z∥r)

∥h([x1, x2, x3])− [h(x1), h(x2), h(x3)]∥ ≤ θ(∥x1∥r + ∥x2∥r + ∥x3∥r),

∥Dhf([x1, x2, x3] + [x2, x3, x1] + [x3, x1, x2])∥ ≤ θ(∥x1∥r + ∥x2∥r + ∥x3∥r),

for all x, y, z ∈ A. Then there exists unique ternary homomorphism H and unique ternary Hom-Jordan derivation D
such that

∥h(x)−H(x)∥ ≤ 2rθ

2r − 2
∥x∥r,

∥f(x)−D(x)∥ ≤ 2rθ

2r − 2
∥x∥r.

Proof . The proof follows from previous theorem by taking

φ(x, y, z) = θ(∥x∥r + ∥y∥r + ∥z∥r) ψ(x1, x2, x3) = θ(∥x1∥r + ∥x2∥r + ∥x3∥r).

Then we can choose L = 21−r and we get the desired result. □
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