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Abstract

In this present paper, inspired by the concept of weakly contractive mapping in metric spaces, we introduce the concept
of weakly contractive mapping in generalized asymmetric metric spaces and we establish various fixed point theorems
for such mappings in complete generalized metric spaces.
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1 Introduction

Fixed point theory is one of the important research topics of functional analysis. In 1922, Banach [2] had estab-
lished a remarkable fixed point theorem, known as “Banach Contraction Principle.” Due to its importance, Many
mathematician studied a lot of interesting extensions and generalizations, (see [1, 4, 7, 9, 8, 13, 15, 16, 17, 18]).

In 2000, for the first time generalized metric spaces were introduced by Branciari [3], in such a way that triangle
inequality is replaced by the “quadrilateral inequality”

d(x, y) ≤ d(x, z) + d(z, u) + d(u, y)

for all pairwise distinct points x, y, z and u. As such, any metric space is a generalized metric space but the converse
is not true. Various fixed point results were established on such spaces (see [5, 6, 12]) and references therein.

Combining conditions used for definitions of asymmetric metric and generalized metric spaces, Piri et al. [14]
announced the notions of generalized asymmetric metric space, and formulated some first fixed point theorems for
θ−contraction mapping in generalized asymmetric metric space.

In this paper, we introduce a new notion of weakly contractive mapping and establish various fixed point theorems
for such mappings in complete generalized metric spaces.
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2 Preliminaries

Definition 2.1. [14] Let X be a non-empty set and d : X ×X → R+ be a mapping such that for all x, y ∈ X and
for all distinct points u, v ∈ X, each of them different from x and y, one has

1. d(x, y) = 0 if and only if x = y,

2. d(x, y) ≤ d(x, u) + d(u, v) + d(v, y) (quadrilateral inequality).

Then (X, d) is called a generalized asymmetric metric space.

Definition 2.2. [14]. Let (X, d) be a generalized asymmetric metric space and {xn}n∈N be a sequence in X and
x ∈ X.

1. We say that {xn}n∈N forward (backward) converges to x if

lim
n→+∞

d (x, xn) = lim
n→+∞

d (xn, x) = 0.

2. We say that {xn}n∈N forward (backward) Cauchy if

lim
n,m→+∞

d (xn, xm) = lim
n,m→+∞

d (xm, xn) = 0.

Example 2.3. [10] Let X = A ∪B, where A = {0, 2} and B = { 1
n , n ∈ N∗} and d : X ×X → [0,+∞[ be defined by

d (0, 2) = d (2, 0) = 1
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for all n,m ∈ N∗ with n ̸= m. Then (X, d) is a generalized asymmetric metric space. However we have the following:

1. (X, d) is not a metric space, since d
(
1
n , 0

)
̸= d

(
0, 1

n

)
for all n > 1.

2. (X, d) is not a asymmetric metric space, since d (2, 0) = 1 > 1
2 = d

(
2, 14

)
+ d

(
1
4 , 0

)
.

3. (X, d) is not a rectangular metric space, since d
(
1
n , 2

)
̸= d

(
2, 1

n

)
, for all n > 1.

Remark 2.4. [10] Let (X, d) be as in Example 2.3, { 1
n}n∈N∗ be a sequence in X. However, we have the following:

1. lim
n→+∞

d
(
1
n , 0

)
= 0, lim

n→+∞
d
(
1
n , 2

)
= 1 and lim

n→+∞
d
(
0, 1

n

)
= 1, lim

n→+∞
d
(
2, 1

n

)
= 0. Then the sequence { 1

n}
forward converges to 2 and backward converges to 0. So the limit is not unique.

2. lim
n→+∞

d
(

1
m ,

1
n

)
= lim

n→+∞
d
(

1
m ,

1
n

)
= 1. So forward (backward) convergence does not imply forward (backward)

Cauchy.

Lemma 2.5. [14]. Let (X, d) be a generalized asymmetric metric space and {xn}n be a forward (or backward) Cauchy
sequence with pairwise disjoint elements in X. If {xn}n forward converges to x ∈ X and backward converges to y ∈ X,
then x = y.

Definition 2.6. [14]. Let (X, d) be a generalized asymmetric metric space. Then X is said to be forward (backward)
complete if every forward (backward) Cauchy sequence {xn}n in X forward (backward) converges to x ∈ X.

Definition 2.7. [11] A function ψ : [0,∞[ → [0,∞[ is said to be an altering distance function if it satisfies thefollowing
conditions:



Fixed point theorems for weakly contractive mapping 3

(a) is continuous and nondecreasing;

(b) ψ(t) = 0 if and only if t = 0.

Example 2.8. Define ψ1, ψ2, ψ3: [0,∞[ → [0,+∞[ by ψ1(t) = t, ψt(t) = 3t and ψ3(t) = t3. Then they are altering
distance functions.

Definition 2.9. A function f : X → R+, where X is generalized asymmetric metric space is called lower semicon-
tinuous if for all x ∈ X and xn ∈ X with limn→∞xn = x, we have

f (x) ≤ lim inf
n→∞

f (xn) .

Example 2.10.

ϕ(t) =


t

18
if t ∈ [0, 1]

t

9
if t > 1.

Then ϕ is a lower semicontinuous function.

Definition 2.11. Let ∆ be the family of function ϕ : [0,∞[→ [0,∞[ which satisfy the following:

1. ϕ is lower semicontinous;

2. ϕn(t)n∈N converges to 0 as n→ ∞ for all t > 0;

3. ϕ(t) < t for any t > 0.

3 Main results

Theorem 3.1. Let (X, d) be a generalized asymmetric metric space and T : X → X be a mapping. Assume that for
all x, y ∈ X,

d(Tx, Ty) > 0 ⇒ ψ[d(Tx, Ty)] ≤ ψ[M(x, y)]− ϕ[M(x, y)] (3.1)

where

M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)},

d(y, x) ≤ d(T 2y, x).

Here ψ is an altering distance function and ϕ is a lower semicontinuous function with ϕ(t) = 0 if and only if t = 0.
Then T has a unique fixed point.

Proof . Let x0 ∈ X be an arbitrary point in X. Then we define the sequence {xn} by xn+1 = Txn for all n ∈ N. If
there exists n0 ∈ N such that d(xn0 , xn0+1) = 0 or d(xn0+1, xn0) = 0, then xn0 is a fixed point of T . Then we assume
that d(xn, xn+1) > 0 and d(xn+1, xn) > 0.

Step 1. We prove that
lim
n→∞

d(xn, xn+1) = lim
n→∞

d(xn+1, xn) = 0.

Applying (3.1) with x = xn and y = xn+1, we obtain

ψ(d(Txn−1, Txn)) = ψ(d(xn, xn+1)) ≤ ψ(M(xn−1, xn))− ϕ(M(xn−1, xn)), (3.2)

where

M(xn−1, xn) = max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}
= max{d(xn−1, xn), d(xn, xn+1)}.

If M(xn−1, xn) = d(xn, xn+1), then we have
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ψ(d(xn, xn+1)) ≤ ψ(d(xn, xn+1))− ϕ(d(xn, xn+1)).

That is, ϕ(d(xn, xn+1)) = 0, i.e., xn = xn+1, which is a contradiction. Hence M(x, xn−1, xn) = d(xn−1, xn). Thus

ψ(d(xn, xn+1)) ≤ ψ(d(xn−1, xn))− ϕ(d(xn−1, xn)). (3.3)

So
ψ(d(xn, xn+1)) < ψ(d(xn−1, xn)).

Since ψ is a nonincreasing and continuous function, we deduced that

d(xn, xn+1) < d(xn−1, xn). (3.4)

Now, applying (3.1) with x = xn and y = xn−1, we obtain

ψ(d(Txn, Txn−1)) = ψ(d(xn+1, xn)) ≤ ψ(M(xn, xn−1))− ϕ(M(xn, xn−1)),

where

M(xn, xn−1) = max{d(xn, xn−1), d(xn, xn+1), d(xn−1, xn)}
= max{d(xn−1, xn), d(xn, xn−1)}.

Suppose that d(xn, xn−1) ≤ d(xn+1, xn) for some n ∈ N.
Case 1. If d(xn, xn−1) ≥ d(xn−1, xn), then we get

ψ(d(xn, xn−1)) ≤ ψ(d(xn, xn−1))− ϕ(d(xn, xn−1)).

Then
ϕ(d(xn, xn−1)) = 0.

This is a contradiction. Hence
M(xn, xn−1) = d(xn, xn−1).

Thus
ψ(d(xn+1, xn)) ≤ ψ(d(xn, xn−1)− ϕ(d(xn, xn−1))).

Case 2. If d(xn, xn−1) < d(xn−1, xn), then we get

ψ(d(xn+1, xn)) ≤ ψ(d(xn−1, xn))− ϕ(d(xn−1, xn)).

Since d(x, y) ≤ d(T 2y, x), d(xn−1, xn) ≤ d(xn+1, xn), which implies that

ψ(d(xn, xn−1)) ≤ ψ(d(xn, xn−1))− ϕ(d(xn, xn−1)).

Thus
ϕ(d(xn, xn−1)) = 0

and so d(xn, xn−1) = 0. This is a contradiction. Hence

ψ(d(xn+1, xn)) ≤ ψ(d(xn, xn−1))− ϕ(d(xn, xn−1)). (3.5)

Since ψ is a nonincreasing and continuous function, we deduced that

d(xn+1, xn) < d(xn, xn−1). (3.6)

From (3.4), the sequence d(xn, xn+1)n∈N is monotone nonincreasing and so bounded below. So there exists α ≥ 0
such that

lim
n→∞

d(xn, xn+1) = α. (3.7)
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Taking lim supn→∞ in (3.5) and using the above limits with the continuity of ψ and the lower semicontinuity of ϕ,
we get

ψ( lim
n→∞

sup d(xn+1, xn)) ≤ ψ( lim
n→∞

sup d(xn, xn−1))− lim sup
n→∞

ϕ(d(xn, xn−1))

≤ ψ( lim
n→∞

sup d(xn, xn−1))− lim
n→∞

inf ϕ( lim
n→∞

d(xn, xn−1).

Thus ψ(α) ≤ ψ(α)− ϕ(α), which implies that ϕ(α) = 0. So α = 0 by the proprety of ϕ. Then

lim
n→∞

d(xn, xn+1) = 0. (3.8)

From (3.6), the sequence d(xn+1, xn)n∈N is monotone nonincreasing and so bounded below. So there exists λ ≥ 0
such that

lim
n→∞

d(xn, xn+1) = λ. (3.9)

Taking lim supn→∞ in (3.3) and using the above limits with the continuity of ψ and the lower semicontinuity of ϕ,
we get

ψ( lim
n→∞

sup d(xn, xn+1)) ≤ ψ( lim
n→∞

sup d(xn−1, xn))− lim sup
n→∞

ϕ(d(xn−1, xn))

≤ ψ( lim
n→∞

sup d(xn−1, xn))− lim
n→∞

inf ϕ( lim
n→∞

d(xn−1, xn).

Thus ψ(λ) ≤ ψ(α)− ϕ(λ), which implies that ϕ(λ) = 0. So λ = 0 by the property of ϕ. Then

lim
n→∞

d(xn+1, xn) = 0. (3.10)

We shall prove that
lim
n→∞

d (xn, xn+2) = 0 and lim
n→∞

d (xn+2, xn) = 0.

We assume that xn ̸= xm for all n,m ∈ N with n ̸= m. Indeed, suppose that xn = xm for some n = m + k with
k > 0. By (3.4), we have

d (xm, xm+1) = d (xn, xn+1) < d (xn−1, xn) . (3.11)

Continuing this process, we can get that

d (xm, xn+1) = d (xn, xn+1) < d (xm, xm+1) .

This is a contradiction. Therefore, d (xn, xm) > 0 for all n,m ∈ N with n ̸= m. Letting x = xn−1 and y = xn+1 in
(3.1), we obtain

ψ(d(xn, xn+2)) ≤ ψ(M(xn−1, xn+1))− ϕ(M(xn−1, xn+1)),

where

M(xn−1, xn+1) = max{d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)}
= bmax{d(xn−1, xn+1), d(xn−1, xn)}.

Thus

ψ(d(xn, xn+2)) ≤ ψ(max{d(xn−1, xn+1), d(xn−1, xn)})− ϕ(max{d(xn−1, xn+1), d(xn−1, xn)}). (3.12)

Take an = d(xn, xn+2) and bn = d(xn, xn+1). Thus, from (3.12)

ψ(an) ≤ ψ(max{an−1, bn−1})− ϕ(max{an−1, bn−1}), (3.13)

which implies that

an ≤ max{an−1, bn−1}.
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Again, by (3.3) bn ≤ bn−1. Therefore, max{an, bn} ≤ max{an−1, bn−1} for all n ∈ N. Then the sequence
max{an, bn}n∈N is monotone nonincreasing and so it converges to some t ≥ 0. By (3.8), for t > 0, we have

lim
n→∞

sup an = lim
n→∞

supmax{an, bn} = lim
n→∞

supmax{an−1, bn−1} = t. (3.14)

Taking limn→∞ sup in (3.13) and using the properties of ψ and ϕ, we obtain

ψ(t) = ψ( lim
n→∞

sup an) = lim
n→∞

sup ψ(an)

≤ lim
n→∞

sup ψ(max{an−1, bn−1})− lim
n→∞

sup ψ(max{an−1, bn−1})

≤ lim
n→∞

sup ψ(max{an−1, bn−1})− lim
n→∞

inf ϕ(max{an−1, bn−1})

≤ ψ( lim
n→∞

supmax{an−1, bn−1})− ϕ(t)

= ψ(t)− ϕ(t),

which implies that ϕ(t) = 0 and so t = 0, which is a contradiction. Thus

lim
n→∞

d(xn, xn+2) = 0.

Letting x = xn and y = xn−1 in (3.1), we obtain

ψ(d(xn+2, xn)) ≤ ψ(M(xn+1, xn−1))− ϕ(M(xn+1, xn−1)),

where

M(xn+1, xn−1) =max{d(xn+1, xn−1), d(xn−1, xn), d(xn+1, xn+2)})
=max{d(xn+1, xn−1), d(xn−1, xn)}
≤max{d(xn+1, xn−1), d(xn+1, xn)}.

Then

ψ(d(xn+2, xn)) ≤ ψ(max{d(xn+1, xn−1), d(xn+1, xn)})− ϕ(max{d(xn+1, xn−1), d(xn−1, xn)}). (3.15)

Take λn = d(xn+2, xn) and βn = d(xn+1, xn). Thus, from (3.15), we have

ψ(λn) = ψ(max(λn−1, βn−1))− ϕ(max(λn−1, βn−1)), (3.16)

which implies that
λn ≤ max(λn−1, βn−1). (3.17)

Again, by (3.6) βn ≤ βn−1. Therefore, max(λn, βn) ≤ max(λn−1, βn−1) for all n ∈ N. Then the sequence
{max(λn, βn)}n∈N is monotone nonincreasing, and so it converges to some r ≥ 0. By (3.10), for r > 0, we have

lim
n→∞

sup λn = limn→∞ supmax(λn−1, βn−1) = r. (3.18)

Taking limn→∞ sup in (3.15) and using the properties of ψ and ϕ, we obtain

ψ(r) = ψ( lim
n→∞

sup λn)

= lim
n→∞

ψ(λn)

≤ lim
n→∞

supψ(max(λn−1, βn−1))− lim
n→∞

sup ϕ(max(λn−1, βn−1))

= lim
n→∞

sup ψ(max(λn−1, βn−1))− lim
n→∞

inf ϕ(max(λn−1, βn−1))

≤ ψ( lim
n→∞

supmax(λn−1, βn−1))− ϕ(r)

= ψ(r)− ϕ(r),
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which implies that ϕ(r) = 0 and so r = 0, which is a contradiction. Thus

lim
n→∞

d(xn+2, xn) = 0. (3.19)

Step 3. We prove that {xn}n∈N is a Cauchy sequence. Firstly, we show {xn}n∈N is a right-Cauchy sequence.
Otherwise, there exist an ε > 0 and sequences {n(k)} and {m(k)} such that, for all positive integers k, (n(k)) >
(m(k)) > k,

d(m(k), n(k)) ≤ ε and d(m(k), n(k−1)) < ε. (3.20)

By quadrilateral inequality, we obtain

ε ≤ d(xm(k)
, xn(k)

) + d(xn(k)
, xn(k)+1) + d(xn(k)+1, xn(k)

)

< ε+ d(xn(k)
, xn(k)+1) + d(xn(k)+1, xn(k)

).

Taking the limit as k → ∞, we obtain
lim
k→∞

d(xm(k),xn(k)
) = ε. (3.21)

Now, by quadrilateral inequality, we have

d(xm(k)+1,xnk+1) ≤ d(xm(k)+1,xmk
) + d(xm(k),xnk

) + d(xn(k),xn(k)+1), (3.22)

d(xm(k),xnk
) ≤ d(xm(k),xmk+1

) + d(xm(k)+1,xnk+1
) + d(xn(k)+1,xn(k)

). (3.23)

Letting k → ∞ in the above inequalities and using (3.20), we obtain

lim
k→∞

d(xm(k)+1,xnk+1
) = ε. (3.24)

Let B =
ε

2
> 0. By (3.24), from the definition of the limit, there exists n0 ∈ N such that

|d(xm(k)+1,xnk+1
)− ε| ≤ B, ∀n ≥ n0.

This implies that
d(xm(k)+1,xnk+1

) ≥ B ∀n ≥ n0.

Letting x = xn(k)
and y = xm(k)

in (3.1), we have

ψ(d(xm(k)
, xm(k)

)) ≤ ψ(M(xm(k)
, xn(k)

))− ϕ(M(xm(k)
, xn(k)

)), (3.25)

where
M(xn(k)

, xm(k)
) = max{d(xn(k)

, xm(k)
, d(xn(k)

, xn(k)+1), d(xm(k)
, xm(k)+1)}.

Therefore by (3.8) and (3.21), we get that

lim
k→∞

M(xm(k)
, xm(k)

) = ε.

Letting k → ∞ in (3.25), we obtain
ψ(ε) ≤ ψ(ε)− ϕ(ε),

which is a contradiction by virtue of a property of ϕ. Consequently, {xn}n∈N is a right-Cauchy sequence in (X, d).

Secondly, we prove that {xn}n∈N is a left-Cauchy sequence. Otherwise, there exist an ε > 0 and sequences (nk)k
and (m(k))k such that for all positive integers k, (nk) > (mk) > k,

d(nk,mk) ≤ ε and d(n(k)−1,m(k)) < ε (3.26)
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By quadrilateral inequality, we obtain

ε ≤ d(xn(k)
, xn(k)

) ≤ d(xn(k)
, xn(k)+1) + d(xn(k)+1, xn(k)−1) + d(xn(k)−1, xm(k)

)

< ε+ d(xn(k)+1, xn(k)−11) + d(xn(k)−1, xm(k)
).

Taking the limit as k → ∞, we obtain
lim
k→∞

d(xn(k)
, xm(k)

) = ε. (3.27)

Now, by quadrilateral inequality, we have

d((xn(k)+1, xm(k)+1) ≤ d((xn(k)+1, xn(k)
) + d((xn(k)

, xm(k)
) + d((xm(k)

, xm(k)+1). (3.28)

d((xn(k)
, xm(k)

) ≤ d((xn(k)
, xn(k)+1) + d((xn(k)+1, xn(k)+1) + d((xm(k)+1, xm(k)

). (3.29)

Letting k → ∞ in the above inequalities, we obtain

lim
k→∞

d(xn(k)+1,xmk+1
) = ε. (3.30)

Let A =
ε

2
> 0. By (3.30), from the definition of the limit, there exists n1 ∈ N such that

|d(xn(k)+1,xmk+1)− ε| ≤ A, ∀n ≥ n1.

This implies that
d(xn(k)+1,xmk+1

) ≥ A, ∀n ≥ n1.

Letting x = xm(k)
and y = xn(k)

in (3.1), we have

ψ(d(xm(k)
, xn(k)

)) ≤ ψ(M(xm(k)
, xn(k)

))− ϕ(M(xn(k)
, xm(k)

)), (3.31)

where
M(xm(k)

, xn(k)
) = max{d(xm(k)

, xn(k)
, d(xm(k)

, xm(k)+1), d(xn(k)
, xn(k)+1)}. (3.32)

Therefore, by (3.8) and (3.30), we get that

lim
k→∞

M(xm(k)
, xm(k)

) = ε. (3.33)

Letting k → ∞ in (3.31) and using (3.33), we obtain

ψ(ε) ≤ ψ(ε)− ϕ(ε), (3.34)

which is a contradiction by virtue of the property of ϕ. Consequently, {xn}n∈N is a left-Cauchy sequence in (X, d).
Hence, by completeness of (X, d), there exist z, u ∈ X such that

lim
n→∞

d(xn, z) = lim
n→∞

d(u, xn) = 0. (3.35)

So, from Lemma 2.5, we get z = u and hence

lim
n→∞

d(xn, z) = lim
n→∞

d(z, xn) = 0. (3.36)

Step 4. We prove that z = Tz, i.e., d(Tz, z) = 0 and d(z, Tz) = 0. Arguing by contradiction, we assume that

d(Tz, z) > 0 or d(z, Tz) > 0.

First assume that d(Tz, z) > 0. By quadrilateral inequality, we get

d(Txn, T z) ≤ d(Txn, xn) + d(xn, z) + d(z, Tz) (3.37)
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and
d(z, Tz) ≤ d(z, xn) + d(xn, Txn) + d(Txn, T z). (3.38)

It follows from (3.37) and (3.38) that

lim
n→∞

d(Txn, T z) = d(z, Tz). (3.39)

So there exists n0 ∈ N such that

d(Txn, T z) ≥ d(z, Tz) > 0, ∀n ≥ n0.

Letting x = Txn and y = Tz in (3.1), we obtain

ψ(d(Txn, T z)) ≤ ψ(M(xn, z))− ϕ(M(xn, z)), (3.40)

where
M(xn, z) = max{d(xn, Txn), d(z, Tz), d(xn, z)}.

Since limn→∞ d(xn, xn+1) = d(xn, z) = 0, we obtain that

limn→∞M(xn, z) = d(z, Tz).

Taking the limit as n→ ∞ in (3.40) and using the properties of ψ and ϕ, we obtain

ψ(d(Txn, T z)) ≤ ψ( lim
n→∞

M(xn, z))− lim
n→∞

sup ϕ(M(xn, z))

≤ ψ( lim
n→∞

M(xn, z))− lim
n→∞

inf ϕ(M(xn, z))

≤ ψ(d(z, Tz))− ϕ(d(z, Tz)),

which implies that ϕ(d(z, Tz)) = 0, so and d(z, Tz) = 0, This is contradiction. If d(Tz, z) > 0, by similar method, we
get d(Tz, z) = 0. Therefore, d(z, Tz) = 0 and d(Tz, z) = 0 and hence z = Tz.

Step 5. (Uniqueness) Suppose that there are two distinct points z, u ∈ X such that Tz = z and Tu = u. Then
d(z, u) = d(Tz, Tu) = d(Tz, Tu) > 0. Letting x = z and y = u in (3.1), we obtain

ψ(d(z, u)) ≤ ψ(M(z, u))− ϕ(M(z, u)), (3.41)

where
M(z, u) = max{d(z, u), d(z, Tz), d(u, Tu)} = d(z, u). (3.42)

This implies that ϕ(d(z, u)) = 0, and so z = u. □

Theorem 3.2. Let (X, d) be a generalized asymmetric metric space and T : X → X be a mapping. If there exists
ϕ ∈ ∆ such that for all x, y ∈ X

d(Tx, Ty) > 0 ⇒ d(Tx, Ty) ≤ ϕ[M(x, y)], (3.43)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)} and d(y, x) ≤ d(T 2y, x). Then T has a unique fixed point.

Proof . Let x0 ∈ X be an arbitrary point in X. Then we define the sequence {xn} by xn+1 = Txn, for all n ∈ N. If
there exists n0 ∈ N such that d(xn0

, xn0+1) = 0 or d(xn0+1, xn0
) = 0, then xn0

is a fixed point of T . Then we assume
that d(xn, xn+1) > 0 and d(xn+1, xn) > 0.

Step 1. We prove that
lim
n→∞

d(xn, xn+1) = lim
n→∞

d(xn+1, xn) = 0.

Letting x = xn and y = xn+1 in (3.43), we obtain

d(Txn−1, Txn) = d(xn, xn+1) ≤ ϕ(M(xn−1, xn)) < M(xn−1, xn),

where

M(x, x) = max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1)}
= max{d(xn−1, xn), d(xn, xn+1)}.

If M(xn−1, xn) = d(xn, xn+1), then we have
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d(xn, xn+1) ≤ ϕ(d(xn, xn+1)) < d(xn, xn+1).

This is a contradiction. Hence M(x, xn−1, xn) = d(xn−1, xn). Thus

d(xn, xn+1) ≤ ϕ(d(xn−1, xn)). (3.44)

So
d(xn, xn+1) < d(xn−1, xn). (3.45)

Letting x = xn+1 and y = xn in (3.43), we obtain

d(xn+1, xm) = d(xn+1, xn) ≤ ϕ(M(xn, xn−1)),

where

M(xn, xn−1) = max{d(xn, xn−1), d(xn, xn+1), d(xn−1, xn)}
= max{d(xn−1, xn), d(xn, xn−1)}.

Suppose that d(xn, xn−1) ≤ d(xn+1, xn) for some n ∈ N.
Case 1. If d(xn, xn−1) ≥ d(xn−1, xn), then we get

d(xn, xn−1) ≤ ϕ(d(xn, xn−1)) < d(xn, xn−1).

This is a contradiction.

Case 2. If d(xn, xn−1) < d(xn−1, xn), then we get

d(xn+1, xn)) ≤ ϕ(d(xn−1, xn)) < d(xn−1, xn).

Since d(y, x) ≤ d(T 2y, x), d(xn−1, xn) ≤ d(xn+1, xn), which implies that

d(xn, xn−1) ≤ ϕ(d(xn, xn−1)) < d(xn, xn−1),

which is a contradiction. Therefore,

d(xn+1, xn) ≤ ϕ(d(xn−1, xn)) < d(xn−1, xn). (3.46)

From (3.45), the sequence d(xn, xn+1)n∈N is monotone nonincreasing and so bounded below. So there exists µ ≥ 0
such that

lim
n→∞

d(xn, xn+1) = µ.

By induction, (3.44) yields

d(xn, xn+1) ≤ ϕnd(x0, x1), ∀n ∈ N.

By the property of ϕ, it is evident that
lim
n→∞

d(xn, xn+1) = 0. (3.47)

From (3.46), the sequence {d(xn+1, xn)}n∈N is monotone nonincreasing and so bounded below. So there exists
δ ≥ 0 such that limn→∞ d(xn, xn+1) = δ. By induction, (3.46) yields

d(xn+1, xn) ≤ ϕnd(x1, x0), ∀n ∈ N.

By the property of ϕ, it is evident that
lim

n→∞
d(xn+1, xn) = 0. (3.48)



Fixed point theorems for weakly contractive mapping 11

Step 2. We prove that limn→∞ d(xn, xn+2) = limn→∞ d(xn, xn+2) = 0. Letting x = xn and y = xn+2 in (3.43), we
obtain

d(xn, xn+2) ≤ ϕ(M(xn−1, xn+1)), (3.49)

where

M(xn−1, xn+1) = max{d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2)}
= max{d(xn−1, xn+1), d(xn−1, xn)}.

Thus
d(xn, xn+2) ≤ ϕ(max{d(xn−1, xn+1), d(xn−1, xn)}). (3.50)

Take γn = d(xn, xn+2) and δn = d(xn, xn+1). Then, from (3.49), we have

γn) ≤ ϕ(max{γn−1, δn−1}), (3.51)

which implies that
γn ≤ max{γn−1, δn−1}. (3.52)

Again, by (3.47), δn ≤ δn−1. Therefore, max{γn, δn} ≤ max{γn−1, δn−1} for all n ∈ N. Then the sequence
{max{γn, δn}}n∈N is monotone nonincreasing, and so it converges to some l ≥ 0. By (3.46), for l > 0, we have

lim
n→∞

sup γn = lim sup
n→∞

max{γn, δn} = lim sup
n→∞

max{γn−1, δn−1} = l. (3.53)

Taking lim supn→∞ in (3.49) and the properties of ϕ, we obtain

l = lim
n→∞

sup γn ≤ lim
n→∞

supmax{γn−1, δn−1} ≤ ϕ( lim
n→∞

max{γn−1, δn−1}) = ϕ(l) < l,

which is a contradiction. Thus
lim

n→∞
d(xn, xn+2) = 0. (3.54)

Letting x = xn and y = xn+2 (3.43), we obtain

d(xn+2, xn) ≤ ϕ(M(xn+1, xn−1)), (3.55)

where

M(xn+1, xn−1) = max{d(xn+1, xn−1), d(xn+1, xn), d(xn+2, xn+1)}
= max{d(xn+1, xn−1), d(xn, xn−1)}.

Thus
d(xn+2, xn) ≤ ϕ(max{d(xn+1, xn−1), d(xn, xn−1)}). (3.56)

Take κ = d(xn+2, xn) and πn = d(xn+1, xn). Then, from (3.55), we have

κn ≤ ϕ(max{κn−1, πn−1}), (3.57)

which implies that
κn ≤ max{κn−1, πn−1}. (3.58)

So we have πn ≤ πn−1. Therefore, max{κn, πn} ≤ max{κn−1, πn−1} for all n ∈ N. Then the sequence
{max{κn, πn}}n∈N is monotone nonincreasing, and so it converges to some l ≥ 0. By (3.46), for h > 0, we have

lim
n→∞

sup κn = lim sup
n→∞

max{κn, πn} = lim sup
n→∞

max{κn−1, πn−1} = l.

Taking the lim supn→∞ in (3.58) and the properties of ϕ, we obtain

l = lim
n→∞

sup κn

≤ lim
n→∞

supmax{κn−1, δn−1}

≤ ϕ( lim
n→∞

max{κn−1, πn−1})

= ϕ(h) < h,
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which is a contradiction. Thus
lim

n→∞
d(xn+2, xn) = 0. (3.59)

Step 3. We prove that {xn}n∈N is a Cauchy sequence. Firstly, we show {xn}n∈N is a right-Cauchy sequence, that
is,

lim
n→∞

d(xn, xn+k) = 0, ∀k ∈ N.

The cases k = 1 and k = 2, are proved, respectively by (3.47) and (3.54). Now, we take k ≥ 3 arbitrary. It is
sufficient to show two cases.

Case I. Suppose that k = 2m+ 1, where m ≥ 1. Then by the quadrilateral inequality, we obtain

d(xn, xn+k) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xn+2m, xn+2m+1)

≤
n+2m∑
p=n

ϕp(d(x0, x1))

≤
∞∑

p=n

ϕp(d(x0, x1)) → 0 as n→ ∞.

Case II. Suppose that k = 2m, where m ≥ 2. Then by using (3.52) and the quadrilateral inequality, we obtain

d(xn, xn+k) ≤ d(xn, xn+2m)

≤ d(xn, xn+2) + d(xn+2, xn+3) + · · ·+ d(xn+2m−1, xn+2m)

≤
n+2m−1∑
p=n+2

ϕp(d(x0, x1))

≤
∞∑

p=n+2

ϕp(d(x0, x1)) → 0 as n→ ∞

By combining the expressions, we have lim supn→∞ d(xn, xn+k) = 0, for all k ∈ N. We conclude that {xn} is a
right-Cauchy sequence in (X, d). Secondly, we show {xn}n∈N is a left-Cauchy sequence, that is,

lim
n→∞

d(xn+k, xn) = 0, ∀k ∈ N.

The cases k = 1 and k = 2, are proved, respectively by (3.48) and (3.59). Now, we take k ≥ 3 arbitrary. It is
sufficient to show two cases.

Case I. Suppose that k = 2m+ 1, where m ≥ 1. Then by the quadrilateral inequality, we obtain

d(xn+k, xn) ≤ d(xn+2m+1, xn)

≤ d(xn+2m+1, xn+2m) + d(xn+2m, xn+2m−1) + · · ·+ d(xn+1, xn)

≤
n+2m∑
p=n

ϕp(d(x1, x0))

≤
∞∑

p=n+2

ϕp(d(x1, x0)) → 0 as n→ ∞

Case II. Suppose that k = 2m, where m ≥ 2. Then by the quadrilateral inequality, we obtain

d(xn+k, xn) ≤ d(xn+2m, xn)

≤ d(xn+2m, xn+2m−1) + d(xn+2m−1, xn+2m−2) + · · ·+ d(xn+2, xn)

≤
n+2m−1∑
p=n+2

ϕp(d(x1, x0))

≤
∞∑

p=n+2

ϕp(d(x1, x0)) → 0 as n→ ∞.
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By combining the expressions, we have

lim
n→∞

d(xn, xn+k) = 0, ∀k ∈ N.

We conclude that {xn} is a left-Cauchy sequence in (X, d). Hence, by completeness of (X, d), there exist z, u ∈ X
such that

lim
n→∞

d(xn, z) = lim
n→∞

d(u, xn) = 0.

So, from Lemma 2.5, we get z = u and hence

lim
n→∞

d(xn, z) = lim
n→∞

d(z, xn) = 0.

Step 4. We prove that z = Tz, i.e., d(Tz, z) = 0 and d(z, Tz) = 0. Arguing by contradiction, we assume that
d(Tz, z) > 0 or d(z, Tz) > 0. First, assume that d(Tz, z) > 0. As in the proof of Theorem 3.1, we conclude that

lim
n→+∞

d(Txn, T z) = d(z, Tz) (3.60)

and so there exists n2 ∈ N such that d(Txn, T z) ≥ d(z, Tz) > 0, for all n ≥ n2. Letting x = Txn and y = Tz in
(3.43), we obtain

d(Txn, T z)) ≤ ϕ(M(xn, z)),

where limn→∞M(xn, z) = d(z, Tz). Taking lim sup as n→ ∞ in (3.60) and using the properties of ϕ, we obtain

d(z, Tz) = lim
n→∞

d(Txn, T z))

≤ lim
n→+∞

sup ϕ(M(xn, z))

≤ ϕ( lim
n→∞

M(xn, z)),

which is a contradiction. If d(Tz, z) > 0, then by similar method, we get a contradiction. Therefore d(z, Tz) = 0 and
d(Tz, z) = 0,and hence z = Tz.

Step 5. (Uniqueness)

Suppose that there are two distinct points z, u ∈ X such that Tz = z and Tu = u. Then d(z, u) = d(Tz, Tu) =
d(Tz, Tu) > 0. Letting x = z and y = u in (3.1), we obtain

d(z, u) ≤ ϕ(M(z, u)) = ϕ(d(z, u)) < d(z, u),

where M(z, u) = max{d(z, u), d(z, Tz), d(u, Tu)} = d(z, u). This is a contradiction. So z = u. □

Example 3.3. Let X = R+. Define d : X × X → [0,+∞[ by d(x, y) = max{y − x, 0}. Then (X, d) is a complete
generalized metric space. Define a mapping T : X → X by

T (x) = ln(
x

3
+ 1),∀x ∈ X.

Consider the functions ϕ, ψ : [0,+∞[ → [0,+∞[ defined by ψ(t) = 2t, for all t ∈ [0,+∞[, ϕ(t) = t
3 , for all

t ∈ [0,+∞[. For all (x, y) ∈ X2, we have d(T 2y, x) = max{x− T 2y, 0} and

T 2y = ln(
1

3
ln(

y

3
+ 1) + 1),

and hence max{x− y, 0} ≤ max
{
x− ln( 13 ln(

y
3 + 1) + 1), 0

}
. Thus d(y, x) ≤ d(T 2y, x). On the other hand,

d(Tx, Ty) = max{ln(y
3
+ 1)− ln(

x

3
+ 1), 0},

M(x, y) = max{max{y − x, 0},max{ln(x
3
+ 1)− x, 0},max{ln(y

3
+ 1)− y, 0}}.

1. If x ≥ y, then we have d(Tx, Ty) = 0,M(x, y) = 0. So

ψ(d(Tx, Ty)) = ψ(M(x, y))− ϕ(M(x, y)).
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2. If y > x, then we have

d(Tx, Ty) = ln(
y

3
+ 1)− ln(

x

3
+ 1), M(x, y) = max{y − x, 0, 0} = y − x.

So

ψ(d(Tx, Ty)) = 2 ln(
y

3
+ 1)− 2 ln(

x

3
+ 1), ψ(M(x, y)) = 2(y − x), ϕ(M(x, y)) =

y − x

3
.

Thus
ψ(d(Tx, Ty)) ≤ ψ(m(x, y))− ϕ(max(d(x, y), d(y, Ty))).

So 0 is a unique fixed point of T .
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