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Abstract

In this paper, a new class of nonconvex optimization problem is considered, namely (h, φ)-(b, F, ρ)-convexity is defined
for (h, φ)-differentiable mathematical programming problem. The sufficiency of the so-called Karush-Kuhn-Tucker
optimality conditions are established for the considered (h, φ)-differentiable mathematical programming problem under
(generalized) (h, φ)-(b, F, ρ)-convexity hypotheses. Further, the so-called Mond-Weir (h, φ)-dual problem is defined
for the considered (h, φ)-differentiable mathematical programming problem and several duality theorems in the sense
of Mond-Weir are derived under appropriate (generalized) (h, φ)-(b, F, ρ)-convex assumptions.
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1 Introduction

Convexity is unequivocally a pivotal concept influencing virtually every facet of mathematical programming. Many
nonlinear programming problems feature nonconvex objective and constraint functions, prompting numerous authors
to undertake defining diverse nonconvex function classes. The exploration of optimality criteria for addressing such
problems has become a focal point in recent years. The literature has witnessed various generalizations of convexity,
with extensive studies dedicated to deriving necessary optimality conditions for differentiable and nondifferentiable
programming problems across diverse classes. This signifies an ongoing and dynamic effort to address the challenges
posed by nonconvexity in mathematical programming, reflecting a comprehensive exploration of optimality concepts
in the realm of nonlinear programming (see, for example, [7, 11, 13, 14, 15, 17, 18, 21, 23, 24, 25, 26, 27, 28, 29, 33,
35], and others). Generalized convex functions have received significant attention in the last few decades. Various
generalizations of convex functions have appeared in the literature (see, for example, [1, 2, 3, 4, 5, 6, 9, 10, 11, 16, 19,
22, 34], and others).
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Ben-Tal [10] introduced generalized operations of addition and multiplication. Under Ben-Tal’s generalized alge-
braic operations, (h, φ)-convex functions are introduced as generalization of convex functions. Further, some basic
properties of (h, φ)-convex functions are discussed by Ben-tal [10]. Xu and Liu [32], [31] established necessary opti-
mality conditions for (h, φ)-optimization programming problem. The concept of (F, ρ)-convexity was introduced by
Preda [27] as extension of F -convexity [12] and ρ-convexity [30]. Aghezzaf and Hachimi [7] derived some sufficient
optimality conditions and mixed type duality results involving generalized (F, ρ)-convexity. Antczak et al. [8] proved
the optimality and duality results for (h, φ)-nondifferentiable multiobjective programming problem under (generalized)
(h, φ)-(b, F, ρ)-convex assumptions.

In this paper, a new class of generalized convexity is considered. The functions constituting it are not necessarily dif-
ferentiable, but they are (h, φ)-differentiable. The concept of (h, φ)-(b, F, ρ)-convexity is defined for (h, φ)-differentiable
mathematical programming problem. The sufficient optimality conditions are derived for (h, φ)-differentiable optimiza-
tion problem under (generalized) (h, φ)-(b, F, ρ)-convexity. Further, for (h, φ)-differentiable optimization problem, its
dual problem in the sense of Mond-Weir (h, φ)-dual problem is defined. Then various duality theorems between (h, φ)-
differentiable optimization problem and its Mond-Weir (h, φ)-dual problem are established also under (generalized)
(h, φ)-(b, F, ρ)-convexity hypotheses.

2 Preliminaries and (generalized) (h, φ)-(b, F, ρ)-convexity

Now, let us recall generalized operations of addition and multiplication introduced by Ben-Tal [10].

a) Let h be an n-dimensional vector-valued continuous function defined on Rn possessing an inverse function h−1.
Then, the h-vector addition of x, y ∈ Rn is defined as follows:

x⊕ y = h−1(h(x) + h(y)) (2.1)

and the h-scalar multiplication of x ∈ Rn and δ ∈ R is defined as follows:

δ ⊗ x = h−1(δh(x)). (2.2)

b) Let φ be a real-valued continuous function defined on R possessing the inverse function φ−1. Then the φ-scalar
addition of two numbers δ and ϑ is defined as follows:

δ[+]ϑ = φ−1(φ(δ) + φ(ϑ)) (2.3)

and the φ-scalar multiplication is defined as follows:

λ[·]δ = φ−1(λφ(δ)). (2.4)

c) The (h, φ)-inner product of x ∈ Rn and y ∈ Rn is defined by

(xT y)(h,φ) = φ−1(h(x)Th(y)). (2.5)

Denote
m⊕
i=1

xi = x1 ⊕ x2 ⊕ ...⊕ xm, xi ∈ Rn. (2.6)

[
m∑
i=1

]
δi = δ1[+]δ2[+]...[+]δm, δi ∈ R. (2.7)

δ[−]ϑ = δ[+]((−1)[·]ϑ). (2.8)

Definition 2.1. Let X be a nonempty subset of Rn. A functional F : X ×X × Rn → R is called sublinear if, for
any x, z ∈ X,

F (x, z; a1
⊕

a2) ≤ F (x, z; a1)[+]F (x, z; a2),∀a1, a2 ∈ Rn, (2.9)

F (x, z; δ
⊗

a) = δ[·]F (x, z; a),∀a ∈ Rn, δ ≥ 0. (2.10)

By (2.10), it is clear that
F (x, z; 0) = 0,∀x, z ∈ X. (2.11)
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Now, we give the definition of a (h, φ)-differentiable function.

Definition 2.2. [10] Let f be a real-valued function defined on Rn, denote f̂(t) = φ(f(h−1(t))), t ∈ Rn. For

simplicity, write f̂(t) = φfh−1(t). The function f is said to be (h, φ)-differentiable at x ∈ Rn, if f̂(t) is differentiable

at t = h(x), and denoted by ∇∗f(x) = h−1(∇f̂(t) |t=h(x)). In addition, it is said that f is (h, φ)-differentiable on
X ⊂ Rn if it is (h, φ)-differentiable at each x ∈ X. A vector-valued function is called (h, φ)-differentiable on X ⊂ Rn

if each of its components is (h, φ)-differentiable at each x ∈ X.

It is clear that every differentiable function f is (h, φ)-differentiable function (if h and φ are the identity functions,
respectively), but the converse is not true.

Example 2.3. Let f(x) = |x| be a nondifferentiable function at x = 0 and let h(t) = t, t ∈ R and φ(δ) = δ2, δ ∈ R,
then the function f is (h, φ)-differentiable at x = 0.

Let h be a n-dimensional vector-valued continuous function defined on Rn and φ be such a real-valued continuous
function defined on R that it has the inverse function φ−1. The following results are proposed by Ben-Tal [10].

Lemma 2.4. [10] Assume that f is a real-valued function defined on Rn and (h, φ)-differentiable at x̄ ∈ Rn. Then,
the following statements hold:

a) Let xi ∈ Rn, λi ∈ R, i = 1, ...,m. Then

m⊗
i=1

(λi ⊗ xi) = h−1

(
m∑
i=1

λih(x
i)

)
,

m⊗
i=1

xi = h−1

(
m∑
i=1

h(xi)

)
.

b) Let µi, δi ∈ R, i=1,...,m. Then [
m∑
i=1

]
(µi[·]δi) = φ−1

(
m∑
i=1

µiφ(δi)

)
,[

m∑
i=1

]
δi = φ−1

(
m∑
i=1

φ(δi)

)
.

Lemma 2.5. [10] The following statements hold:

a) δ[·](ϑ[·]σ) = ϑ[·](δ[·]σ) = (δ[·]ϑ)[·]σ for δ, ϑ, σ ∈ R,

b) ϑ[·] [
∑m

i=1] (δi) = [
∑m

i=1] (ϑ[·]δi), δi, ϑ,∈ R,

c) σ[·](δ[−]ϑ) = (σ[·]δ)[−](σ[·]ϑ) for δ, ϑ, σ ∈ R,

d) [
∑m

i=1] (δ[+]ϑ) = [
∑m

i=1] (δi)[+] [
∑m

i=1] (ϑi), δi, ϑi ∈ R,

d) [
∑m

i=1] (δ[−]ϑ) = [
∑m

i=1] (δi)[−] [
∑m

i=1] (ϑi), δi, ϑi ∈ R.

Now we introduce the definitions of (h, φ)-(b, F, ρ)-convex functions and generalized (h, φ)− (b, F, ρ)-convex func-
tions for (h, φ)-differentiable mathematical programming.

Definition 2.6. Let f : X −→ R be a (h, φ)-differentiable function at x̄ on X. It is said that f is a (h, φ)-(b, F, ρ)-
convex function at x̄ on X if, there exist a sublinear functional F : X ×X ×R → R, b : X ×X → R, d : X ×X → R,
and a real number ρ such that, the following inequality

b(x, x̄)[·](f(x)[−]f(x̄)) ≥ F (x, x̄;∇∗f(x̄))[+](ρf [·]d2(x, x̄)) (2.12)

holds for all x ∈ X. If (2.12) is satisfied for each x̄ ∈ X, then f is a (h, φ)-(b, F, ρ)-convex function on X.

Remark 2.7. Note that the Definition 2.6 generalizes and extends several generalized convexity notions. Indeed,
there are the following special cases:
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a) In the case when b(x, x̄) = 1 and F (x, x̄;∇∗f(x̄))[+](ρf [·]d2(x, x̄)) = ⟨x[−]x̄,∇∗f(x̄)⟩, then the definition of a
(h, φ)-(b, F, ρ)-convex function reduces to the definition of a h− φ-convex function introduced by Ben-Tal [10].

b) If b(x, x̄) = 1, then the definition of a (h, φ)-(b, F, ρ)-convex function reduces to the definition of a (h, φ)-(F, ρ)-
convex function.

c) If b(x, x̄) = 1 and F (x, x̄;∇∗f(x̄))[+](ρf [·]d2(x, x̄)) = ⟨η(x, x̄),∇∗f(x̄)⟩, then the definition of a (h, φ)-(b, F, ρ)-
convex function reduces to the definition of a (h, φ)-invex function introduced by Yu and Liu [31].

d) If f is a Lipschitz function and f is (h, φ)-nondifferentiable, then we get the definition of a (h, φ)-(b, F, ρ)-convex
function introduced by Antczak et al. [8].

e) If b(x, x̄) = 1 and F (x, x̄;∇∗f(x̄))[+](ρf [·]d2(x, x̄)) = F (x, x̄;∇∗f(x̄)), then the definition of a (h, φ)-(b, F, ρ)-
convex function reduces to the definition of a (h, φ)-F -convex function.

Definition 2.8. Let f : X −→ R be a (h, φ)-differentiable function at x̄ on X. It is said that f is a (h, φ)-(b, F, ρ)-
quasi-convex function at x̄ on X if, there exist a sublinear functional F : X × X × R → R, b : X × X → R,
d : X ×X → R, and a real number ρ such that, the following relation

b(x, x̄)[·]f(x) ≤ b(x, x̄)[·]f(x̄) =⇒ F (x, x̄;∇∗f(x̄)) [+]
(
ρf [·]d2(x, x̄)

)
≤ 0 (2.13)

holds for all x ∈ X. If (2.13) is satisfied for each x̄ ∈ X, then f is a (h, φ)-(b, F, ρ)-quasi-convex function on X.

Definition 2.9. Let f : X −→ R be a (h, φ)-differentiable function at x̄ on X. It is said that f is a (h, φ)-(b, F, ρ)-
pseudo-convex function at x̄ on X if, there exist a sublinear functional F : X × X × R → R, b : X × X → R,
d : X ×X → R, and a real number ρ such that, the following relation

b(x, x̄)[·]f(x) < b(x, x̄)[·]f(x̄) =⇒ F (x, x̄;∇∗f(x̄)) [+]
(
ρf [·]d2(x, x̄)

)
< 0 (2.14)

holds for all x ∈ X. If (2.14) is satisfied for each x̄ ∈ X, then f is a (h, φ)-(b, F, ρ)-pseudo-convex function on X.

Definition 2.10. Let f : X −→ R be a (h, φ)-differentiable function at x̄ on X. It is said that f is a strictly (h, φ)-
(b, F, ρ)-pseudo-convex function at x̄ on X if, there exist a sublinear functional F : X ×X ×R → R, b : X ×X → R,
d : X ×X → R, and a real number ρ such that, the following relation

F (x, x̄;∇∗f(x̄)) [+]
(
ρf [·]d2(x, x̄)

)
≥ 0 =⇒ b(x, x̄)[·]f(x) > b(x, x̄)[·]f(x̄) (2.15)

holds for all x ∈ X. If (2.15) is satisfied for each x̄ ∈ X, then f is a strictly (h, φ)-(b, F, ρ)-pseudo-convex function on
X.

Definition 2.11. x ∈ X is called a global minimizer of f if the following inequalityf (x̄) ≤ f (x) holds for all x ∈ X.

Proposition 2.12. Let function f be (h, φ)-differentiable on X. If x̄ ∈ X is a global minimizer of the function f ,
then ∇∗f (x̄) = 0.

Proposition 2.13. Let φ be a continuous function with φ(0) = 0, F be a sublinear function and f be a (h, φ)-
differentiable (h, φ)-(b, F, ρ)-convex function on X. If ∇∗f (x̄) = 0, then x̄ is a minimizer of f .

Proof . Assume that f is a (h, φ)-differentiable (h, φ)-(b, F, ρ)-convex function on X. Hence, by Definition 2.6, the
inequality

b(x, x̄)[·](f(x)[−]f(x̄)) ≥ F (x, x̄;∇∗f(x̄))[+](ρf [·]d2(x, x̄)) (2.16)

holds for all x ∈ X. Since φ is a continuous function with φ(0) = 0, F is a sublinear function, ∇∗f (x̄) = 0 and (2.16),
we obtain

b(x, x̄)[·](f(x)[−]f(x̄)) ≥ 0 (2.17)

where b(x, x̄) > 0, the following inequality
f (x̄) ≤ f (x)

holds for all x ∈ X. Thus, by Definition 2.11, x̄ is a minimizer of f .□

Proposition 2.14. Let φ be a continuous function with φ(0) = 0, F be a sublinear function and f be a (h, φ)-
differentiable (h, φ)-(b, F, ρ)-pseudo-convex function on X. If ∇∗f (x̄) = 0, then x̄ is a minimizer of f .

Proof . The proof of this proposition follows from Definitions 2.9 and 2.11.□
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3 (h, φ)-differentiable mathematical programming problem

In this paper, we consider the following (h, φ)-differentiable programming problem:

P(h,φ)

{
min f(x)
subject to gj(x) ≤ 0, j ∈ J = {1, ...,m}

where f : X → R, gj : X → R, j ∈ J are (h, φ)-differentiable functions defined on X. Let D denote the set of all
feasible solutions of P(h,φ), that is,

D = {x ∈ X : gj(x) ≤ 0, j ∈ J}.

Further, by J(x̄), we denote the set of inequality constraint indices that are active at a feasible solution x̄, that is,
J(x̄) = {j ∈ J : gj(x̄) = 0}.

Definition 3.1. A point x̄ ∈ D is said to be an optimal solution of P(h,φ) if and only if there exists no other feasible
point x ∈ D such that f(x) < f(x̄).

Definition 3.2. (x̄, µ̄) ∈ D × Rm is said to be a Karush-Kuhn-Tucker point for P(h,φ) if the Karush-Kuhn-Tucker
necessary optimality conditions

∇∗f(x̄)⊕

 m⊕
j=1

(µj ⊗∇∗gj(x̄))

 = 0, (3.1)

µj [·]gj(x̄) = 0, j ∈ J(x̄), (3.2)

µ ≥ 0. (3.3)

are satisfied at x̄ with Lagrange multiplier µ.

Now we prove the sufficient optimality conditions for the considered (h, φ)-differentiable programming problem
P(h,φ).

Theorem 3.3. Let (x̄, µ̄) ∈ D × Rm be a Karush-Kuhn-Tucker point of P(h,φ). Further, assume the following
hypotheses are fulfilled:

a) the objective function f is (h, φ)-(bf , F, ρf )-convex at x̄ on D,

b) each inequality constraint function gj , j ∈ J (x̄), is (h, φ)-(bgj , F, ρgj )-convex at x̄ on D,

c) ρf [·]d2(x, x̄)[+]
(∑m

j=1 µ̄j [·](ρgj [·]d2(x, x̄))
)
≥ 0.

Then x is an optimal solution of P(h,φ).

Proof . By assumption, (x̄, µ̄) ∈ D × Rm is a Karush-Kuhn-Tucker point of P(h,φ). Then, by Definition 3.2, the
Karush-Kuhn-Tucker necessary optimality conditions (3.1)-(3.3) are satisfied at x̄ with Lagrange multiplier µ̄ ∈ Rm.
We proceed by contradiction. Suppose, contrary to the result, that x̄ is not an optimal solution of the problem P(h,φ).
Hence, by Definition 3.1, there exists another x̂ ∈ D, such that

f(x̂) < f(x̄). (3.4)

that is
f(x̂)[−]f(x̄) < 0. (3.5)

Since bf (x̂, x̄) > 0, we have
bf (x̂, x̄)[·](f(x̂)[−]f(x̄)) < 0. (3.6)

Using hypotheses a)-c), by Definition 2.6, the following inequalities hold

bf (x̂, x̄)[·](f(x̂)[−]f(x̄)) ≥ F (x̂, x̄;∇∗f(x̄))[+](ρf [·]d2(x̂, x̄)), (3.7)

bgj (x̂, x̄)[·](gj(x̂)[−]gj(x̄)) ≥ F (x̂, x̄;∇∗gj(x̄))[+](ρgj [·]d2(x̂, x̄)), j ∈ J(x̄). (3.8)
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Combining (3.6) and (3.7), we get

F (x̂, x̄;∇∗f(x̄))[+](ρf [·]d2(x̂, x̄)) < 0. (3.9)

Multiplying inequalities (3.8) by the corresponding Lagrange multiplier, and then adding both sides, we get, for
all x ∈ X,

m∑
j=1

bgj (x̂, x̄)[·](µj [·]gj(x̂)[−]µj [·]gj(x̄)) ≥
m∑
j=1

µj [·]F (x̂, x̄;∇∗gj(x̄))[+]

m∑
j=1

µj [·](ρgj [·]d2(x̂, x̄)). (3.10)

Since gj(x̄) = 0, x̂, x̄ ∈ D, with above inequalities, we obtain

m∑
j=1

µj [·]F (x̂, x̄;∇∗gj(x̄))[+]

m∑
j=1

µj [·](ρgj [·]d2(x̂, x̄)) ≤ 0. (3.11)

Thus,

F (x̂, x̄;

m⊕
j=1

µj ⊗∇∗gj(x̄))[+]

m∑
j=1

µj [·](ρgj [·]d2(x̂, x̄)) ≤ 0. (3.12)

Combining (3.9) and (3.12), by the sublinearity of the functional F, we get

F

x̂, x̄;∇∗f(x̄)⊕

 m⊕
j=1

(µj ⊗∇∗gj(x̄))

 [+](ρf [·]d2(x̂, x̄))[+]

m∑
j=1

µj [·](ρgj [·]d2(x̂, x̄)) < 0. (3.13)

By Karush-Kuhn-Tucker condition (3.1) together with (2.11) and hypotheses c), we get that the following inequal-
ities

F

x̂, x̄;∇∗f(x̄)⊕

 m⊕
j=1

(µj ⊗∇∗gj(x̄))

 [+](ρf [·]d2(x̂, x̄))[+]

m∑
j=1

µj [·](ρgj [·]d2(x̂, x̄)) ≥ 0 (3.14)

which is a contradiction to (3.13). Thus, the proof of this theorem is completed. □

Theorem 3.4. Let (x̄, µ̄) ∈ D × Rm be a Karush-Kuhn-Tucker point of P(h,φ). Further, assume the following
hypotheses are fulfilled:

a) the objective function f is strictly (h, φ)-(bf , F, ρf )-convex at x̄ on D,

b) each inequality constraint function gj , j ∈ J (x̄), is (h, φ)-(bgj , F, ρgj )-convex at x̄ on D,

c) ρf [·]d2(x, x̄)[+]
(∑m

j=1 µ̄j [·](ρgj [·]d2(x, x̄))
)
≥ 0.

Then x is an optimal solution of P(h,φ).

Theorem 3.5. Let (x̄, µ̄) ∈ D × Rm be a Karush-Kuhn-Tucker point of P(h,φ). Further, assume the following
hypotheses are fulfilled:

a) the objective function f is (h, φ)-(bf , F, ρf )-pseudo-convex at x̄ on D,

b) µj [·]gj , j ∈ J (x̄), is (h, φ)-(bgj , F, ρgj )-quasi-convex at x̄ on D,

c) ρf [·]d2(x, x̄)[+]
(∑m

j=1 µ̄j [·](ρgj [·]d2(x, x̄))
)
≥ 0.

Then x is an optimal solution of P(h,φ).

Proof . By assumption, (x̄, µ̄) ∈ D × Rm is a Karush-Kuhn-Tucker point of P(h,φ). Then, by Definition 3.2, the
Karush-Kuhn-Tucker necessary optimality conditions (3.1)-(3.3) are satisfied at x̄ with Lagrange multiplier µ̄ ∈ Rm.
We proceed by contradiction. Suppose, contrary to the result, that x̄ is not an optimal solution of the problem P(h,φ).
Hence, by Definition 3.1, there exists another x̂ ∈ D, such that

f(x̂) < f(x̄). (3.15)
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Since bf (x̂, x̄) > 0, we have
bf (x̂, x̄)[·]f(x̂) < bf (x̂, x̄)[·]f(x̄). (3.16)

Since f is (h, φ)-(bf , F, ρf )-pseudo-convex at x̄ on D, by Definition 2.9, the inequality

F (x̂, x̄;∇∗f(x̄)) [+]
(
ρf [·]d2(x̂, x̄)

)
< 0 (3.17)

holds. Since x̂ ∈ D, the Karush-Kuhn-Tucker necessary optimality conditions (3.2)-(3.3) imply

gj(x̂)[−]gj(x̄) ≤ 0, j ∈ J(x̄). (3.18)

Using bgj (x̂, x̄) > 0, j ∈ J(x̄), we get

m∑
j=1

bgj (x̂, x̄)[·]gj(x̂) ≤
m∑
j=1

bgj (x̂, x̄)[·]gj(x̄). (3.19)

Since µj [·]gj , j ∈ J (x̄), is (h, φ)-(bgj , F, ρgj )-quasi-convex at x̄ on D, by Definition 2.8, we get

m∑
j=1

F (x̂, x̄;µj [·]∇∗gj(x̄)) [+]

m∑
j=1

µj [·](ρgj [·]d2(x̂, x̄)) ≤ 0. (3.20)

Thus,

F (x̂, x̄;

m⊕
j=1

(µj ⊗∇∗gj(x̄)))[+]

m∑
j=1

µj [·](ρgj [·]d2(x̂, x̄)) ≤ 0. (3.21)

Combining (3.17) and (3.21), by the sublinear of the functional F, we get that the following inequalities

F

x̂, x̄;∇∗f(x̄)⊕

 m⊕
j=1

(µj ⊗∇∗gj(x̄))

 [+](ρf [·]d2(x̂, x̄))[+]

m∑
j=1

µj [·](ρgj [·]d2(x̂, x̄)) < 0. (3.22)

By Karush-Kuhn-Tucker condition (3.1) together with (2.11) and hypotheses c), we get that the following inequal-
ities

F

x̂, x̄;∇∗f(x̄)⊕

 m⊕
j=1

(µj ⊗∇∗gj(x̄))

 [+](ρf [·]d2(x̂, x̄))[+]

m∑
j=1

µj [·](ρgj [·]d2(x̂, x̄)) ≥ 0 (3.23)

which is a contradiction to (4.15). Thus, the proof of this theorem is completed. □

Theorem 3.6. Let (x̄, µ̄) ∈ D × Rm be a Karush-Kuhn-Tucker point of P(h,φ). Further, assume the following
hypotheses are fulfilled:

a) the objective function f is strictly (h, φ)-(bf , F, ρf )-pseudo-convex at x̄ on D,
b) µj [·]gj , j ∈ J (x̄), is (h, φ)-(bgj , F, ρgj )-quasi-convex at x̄ on D,

c) ρf [·]d2(x, x̄)[+]
(∑m

j=1 µ̄j [·](ρgj [·]d2(x, x̄))
)
≥ 0.

Then x is an optimal solution of P(h,φ).

Example 3.7. Consider the following nonconvex optimization problem

minimize f(x) = |x|

s.t. g(x) = −x ≤ 0.
(P1)

Note that D = {x ∈ R : x ≥ 0} is the set of all feasible solutions of (P1). Let F : R × R × R → R defined by
F (x, x; ζ) = ζ|x|, h(t) = t, φ(u) = u2, bf = bg = 1, ρf = 0, ρg = −1, and d(x, x) = |x−x|. Note that x = 0 is a feasible

solution of the problem (P1). Since f̂(t) = φ(f(h−1(t))) = t2 and ĝ(t) = φ(g(h−1(t))) = t2 are differentiable, we

conclude that f , g are (h, φ)-differentiable at x = 0, and we obtain∇∗f(x) = h−1(∇f̂(t) |t=h(x)) = h−1(∇(t2) |t=0) = 0
and ∇∗g(x) = h−1(∇ĝ(t) |t=h(x)) = h−1(∇(t2) |t=0) = 0. Further, by the definition of a (h, φ)-(b, F, ρ)-convex function
2.6, f is (h, φ)-(bf , F, ρf )-convex at x on D, and g is (h, φ)-(bg, F, ρg)-convex at x on D. Then, it can also be shown
that the Karush-Kuhn-Tucker optimality conditions (3.1)-(3.3) are fulfilled at x = 0 with Lagrange multiplier µ = 0.
Hence, by Theorem 3.3, x is an optimal solution of (P1) (see Figure 1).
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Figure 1: Graphical view of problem (P1) in Example 3.7.

4 Mond-Weir duality

In this section, for the considered (h, φ)-differentiable optimization problem (P(h,φ)), we give the definition of its
Mond-Weir (h, φ)-dual problem (D(h,φ)). Then, we prove several duality results between (P(h,φ)) and (D(h,φ)) under
appropriate (h, φ)-(b, F, ρ)-convexity and/or generalized (h, φ)-(b, F, ρ)-convexity hypotheses. We define the following
(h, φ)-dual problem in the sense of Mond-Weir related for the (h, φ)-differentiable optimization problem (P(h,φ)) as
follows:

f(y) → max

s.t. ∇∗f(y)⊕

 m⊕
j=1

(µj ⊗∇∗gj(y))

 = 0

[

m∑
j=1

] (µj [·]gj(y)) ≥ 0, j ∈ J D(h,φ)

y ∈ Rn, µj ≥ 0, j ∈ J.

Further, let Ψ(h,φ) = {(y, µ) ∈ Rn ×Rm : ∇∗f(y)⊕
(⊕m

j=1 (µj ⊗∇∗gj(y))
)
= 0, [

∑m
j=1] (µj [·]gj(y)) ≥ 0, µj ≥ 0}

be the feasible solution set of the problem (D(h,φ)). Let us denote, Y(h,φ) = {y ∈ Rn : (y, µ) ∈ Ψ(h,φ)}.

Theorem 4.1. (Mond-Weir weak duality). Let x and (y, λ, µ) be any feasible solutions of the problems (P(h,φ)) and
(D(h,φ)), respectively. Further, assume that at least one of the following hypotheses is fulfilled:

a) objective function f is (h, φ)-(bf , F, ρf )-convex at y on D ∪ Y(h,φ), each constraint function gj , j ∈ J is (h, φ)-

(bgj , F, ρgj )-convex at y on D ∪ Y(h,φ), with ρf [·]d2(x, x̄)[+]
(∑m

j=1 µ̄j [·](ρgj [·]d2(x, x̄))
)
≥ 0.

b) f is a (h, φ)-(bf , F, ρf )-pseudo-convex function at y on D ∪ Y(h,φ) and µj [·]gj , j ∈ J is a (h, φ)-(bg, F, ρg)-quasi-

convex function at y on D ∪ Y(h,φ), with ρf [·]d2(x, x̄)[+]
(∑m

j=1 µ̄j [·](ρgj [·]d2(x, x̄))
)
≥ 0.

Then f(x) ≮ f(y).

Proof . Let x and (y, µ) be any feasible solutions of the problems (P(h,φ)) and (D(h,φ)), respectively. The proof of
this theorem under hypothesis a). If x = y, then the weak duality trivially holds. Now, we prove the weak duality
theorem when x ̸= y. We proceed by contradiction. Suppose, contrary to the result, that the inequality

f(x) < f(y) (4.1)
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holds. That is
f(x)[−]f(y) < 0. (4.2)

Since bf (x, y) > 0, therefore, we have

bf (x, y)[·](f(x)[−]f(y)) < 0. (4.3)

Since f is (h, φ)-(bf , F, ρf )-convex at y on D∪Y(h,φ), each constraint function gj , j ∈ J is (h, φ)-(bgj , F, ρgj )-convex
at y on D ∪ Y(h,φ), by Definition 2.6, the following inequalities

bf (x, y)[·](f(x)[−]f(y)) ≥ F (x, y;∇∗f(y))[+](ρf [·]d2(x, y)), (4.4)

bgj (x, y)[·](gj(x)[−]gj(y)) ≥ F (x, y;∇∗gj(x))[+](ρgj [·]d2(x, y)), j ∈ J(y) (4.5)

hold. Combining (4.3) and (4.4), we get

F (x, y;∇∗f(y))[+](ρf [·]d2(x, y)) < 0. (4.6)

Multiplying inequalities (4.5) by the corresponding Lagrange multiplier

bgj (x, y)[·](µj [·]gj(x)[−]µj [·]gj(y)) ≥ µj [·]F (x, y;∇∗gj(y))[+]µj [·](ρgj [·]d2(x, y)) j ∈ J. (4.7)

Using second condition in D(h,φ) together with x ∈ D and y ∈ D, we get

µj [·]F (x, y;∇∗gj(y))[+]µj [·](ρgj [·]d2(x, y)) ≤ 0, j ∈ J. (4.8)

Thus,

F (x, y;

m⊕
j=1

µj ⊗∇∗gj(y))[+]

m∑
j=1

µj [·](ρgj [·]d2(x, y)) ≤ 0. (4.9)

Adding both sides of (4.6) and (4.9), we obtain that the following inequality

F

x, y;∇∗f(y)⊕

 m⊕
j=1

(µj ⊗∇∗gj(y))

 [+](ρf [·]d2(x, y))[+]

m∑
j=1

µj [·](ρgj [·]d2(x, y)) < 0. (4.10)

Using first condition in D(h,φ) together with (2.11) and (ρf [·]d2(x, y))[+]
∑m

j=1 µj [·](ρgj [·]d2(x, y)) ≥ 0, we get that
the following inequalities

F

x, y;∇∗f(y)⊕

 m⊕
j=1

(µj ⊗∇∗gj(y))

 [+](ρf [·]d2(x, y))[+]

m∑
j=1

µj [·](ρgj [·]d2(x, y)) ≥ 0 (4.11)

which is a contradiction to (4.10). Thus, the proof of the Mond-Weir weak duality theorem between the optimization
problems (P(h,φ)) and (D(h,φ)) is completed under hypothesis a).

The proof of this theorem under hypothesis b). We proceed by contradiction. Suppose, contrary to the result, that
(4.3) holds. Since the function f is a (h, φ)-(bf , F, ρf )-pseudo-convex function at y on D ∪ Y(h,φ), by Definition 2.9,
the inequality

F (x, y;∇∗f(y)) [+]
(
ρf [·]d2(x, y)

)
< 0 (4.12)

holds. Since µj [·]gj , j ∈ J is a (h, φ)-(bg, F, ρg)-quasi-convex function at y on D ∪ Y(h,φ), by the foregoing above
relations, Definition 2.8, we get

m∑
j=1

F (x, y;µj [·]∇∗gj(y)) [+]

m∑
j=1

µj [·](ρgj [·]d2(x, y)) ≤ 0. (4.13)

Thus,

F (x, y;

m⊕
j=1

(µj ⊗∇∗gj(y)))[+]

m∑
j=1

µj [·](ρgj [·]d2(x, y)) ≤ 0. (4.14)
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Combining (4.12) and (4.14), we get that the following inequalities

F

x, y;∇∗f(y)⊕

 m⊕
j=1

(µj ⊗∇∗gj(y))

 [+](ρf [·]d2(x, y))[+]

m∑
j=1

µj [·](ρgj [·]d2(x, y)) < 0 (4.15)

which is a contradiction to (4.11). This means that the proof of the Mond-Weir weak duality theorem between
optimization problems (P(h,φ)) and (D(h,φ)) is completed under hypothesis b). □

If stronger (generalized) (h, φ)-(F, ρ)-convexity hypotheses are imposed on the functions constituting the considered
(h, φ)-differentiable programming problem, then the stronger result is true.

Theorem 4.2. (Mond-Weir weak duality). Let x and (y, λ, µ) be any feasible solutions of the problems (P(h,φ)) and
(D(h,φ)), respectively. Further, assume that at least one of the following hypotheses is fulfilled:

a) objective function f is strictly (h, φ)-(bf , F, ρf )-convex at y on D ∪ Y(h,φ), each constraint function gj , j ∈ J is
(h, φ)-(bgj , F, ρgj )-convex at y on D ∪ Y(h,φ), with

ρf [·]d2(x, x̄)[+]
(∑m

j=1 µ̄j [·](ρgj [·]d2(x, x̄))
)
≥ 0.

b) f is a (h, φ)-(bf , F, ρf )-pseudo-convex function at y on D ∪ Y(h,φ), and µj [·]gj , j ∈ J is a (h, φ)-(bg, F, ρg)-quasi-
convex function at y on D ∪ Y(h,φ), with

ρf [·]d2(x, x̄)[+]
(∑m

j=1 µ̄j [·](ρgj [·]d2(x, x̄))
)
≥ 0.

Then f(x) ≮ f(y).

Theorem 4.3. (Mond-Weir strong duality). Let x ∈ D be an optimal solution of the optimization problem (P(h,φ)).
Further, assume that the Kuhn-Tucker constraint qualification [32] be satisfied at x. Then there exist µ ∈ Rm, µ ≧ 0
such that (x, µ) is feasible for the problem (D(h,φ)) and the objective functions of (P(h,φ)) and (D(h,φ)) are equal at
these points. If also all hypotheses of the Mond-Weir weak duality (Theorem 4.1) Theorem 4.2 are satisfied, then
(x, µ) is an optimal solution of a maximum type in the problem (D(h,φ)).

Proof . Since x ∈ D is an optimal solution of the optimization problem (P(h,φ)) and the Kuhn-Tucker constraint
qualification [32] is satisfied at x, by Definition3.2, there exist µ ∈ Rm, µ ≥ 0 such that (x, µ) is an optimal solution
of the problem (D(h,φ)). This means that the optimal value of (P(h,φ)) and (D(h,φ)) are equal. If we assume that all
hypotheses of the Mond-Weir weak duality (Theorem 4.1) Theorem 4.2 are fulfilled, (x, µ) is an optimal solution of a
maximum type in the dual problem (D(h,φ)) in the sense of Mond-Weir. □

5 Conclusion

In this paper, a nonlinear programming problem has been considered in which the involved functions are not nec-
essarily differentiable, but they are (h, φ)-differentiable. The concept of (h, φ)-(b, F, ρ)-convexity has been defined for
(h, φ)-differentiable mathematical programming problem. Several sufficient optimality conditions have been derived for
such nonlinear optimization problems with (h, φ)-differentiable functions under (generalized) (h, φ)-(b, F, ρ)-convexity
hypotheses. Further, the so-called Mond-Weir duality theory has been investigated for (h, φ)-differentiable optimiza-
tion problem. Various duality theorems between the (h, φ)-differentiable optimization problem and its Mond-Weir
(h, φ)-dual problem have been proved also under (generalized) (h, φ)-convexity hypotheses.

However, some interesting topics for further research remain. It would be of interest to investigate whether it is
possible to prove similar optimality results for other classes of (h, φ)-differentiable optimization problems. We shall
investigate these questions in subsequent papers.
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