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Abstract

In this paper, we consider a new extension of the Banach contraction principle, θ-Ω-contraction inspired by the concept
of θ-contraction in (α, η)-b-rectangular metric spaces to study the existence and uniqueness of fixed point theorems for
the mappings in metric spaces. Moreover, we discuss some illustrative examples to highlight the realized improvements.
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1 Introduction

In recent times, the Banach contraction principle [1] was attracted by many authors (see [2, 7, 8, 9, 11, 14, 20, 21,
22]). In 2014, Jleli et al. [7, 8] introduced the notion of θ-contraction. By using θ-contractions, Jleli et al. [7, 8]
proved a fixed point theorem which generalizes Banach contraction principle in a different way than in the known
results from the literature. Later, Kari et al. [10, 12, 13, 19] proved new type fixed point theorems in rectangular
metric space and generalized asymmetric metric space by using a modified generalized θ-contraction.

Many generalizations of the concept of metric spaces are defined and some fixed point theorems were proved in
these spaces. In particular, b-rectangular metric spaces were introduced by George et al. [3], in such a way that
triangle inequality is replaced by the b-triangle inequality: d(x, y) ≤ s(d(x, u)+d(u, v)+d(v, y)) for all pairwise distinct
points x, y, u, v. Any metric space is a b-rectangular metric space but in general, b-rectangular metric space might not
be a metric space. Various fixed point results were established on such spaces, the readers can refer to [12, 15, 17, 18].

In 2014, Hussain and Salimi [6] introduced the notion of an α-GF -contraction and stated fixed point theorems for
α-GF -contractions. On the other hand, Hussain et al. [4] established some new fixed point theorems for generalized
α-η-GF -contractions mappings in complete b-metric spaces.

In this paper, we introduce the notion of a generalized α-η-θ-Ω-contraction in b-rectangular metric space. Also,
examples are given to illustrate the obtained results we derive some useful corollaries of these results.
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2 Preliminaries

Definition 2.1. [3]. Let X be a nonempty set, s ≥ 1 be a given real number and d : X ×X → [0,+∞[ be a function
such that for all x, y ∈ X and all distinct points u, v ∈ X, each distinct from x and y,

(1) d (x, y) = 0 if only if x = y;

(2) d (x, y) = d (y, x) ;

(3) d (x, y) ≤ s [d (x, u) + d (u, v) + d (v, y)] (b-rectangular inequality).

Then (X, d) is called a b-rectangular metric space.

Example 2.2. [12]. Let X = A∪B, where A = { 1
n : n ∈ {2, 3, 4, 5, 6, 7}} and B = [1, 2]. Define d : X ×X → [0,+∞[

as follows: {
d(x, y) = d(y, x) for all x, y ∈ X;

d(x, y) = 0 ⇔ y = x

and 
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d (x, y) = (|x− y|)2 otherwise.

Then (X, d) is a b-rectangular metric space with coefficient s = 3.

Definition 2.3. [3] Let (X, d) is a b-rectangular metric space and {xn}n∈N be a sequence in X and x ∈ X.

(i) We say that {xn}n∈N converges to x if
lim

n→+∞
d (x, xn) = 0.

(ii) We say that {xn}n∈N is Cauchy if
lim

n,m→+∞
d (xn, xm) = 0.

Definition 2.4. [3]. Let (X, d) be a b-rectangular metric space. Then X is said to be complete if every Cauchy
sequence {xn}n in X converges to x ∈ X.

Lemma 2.5. [15] Let (X, d) be a b-rectangular metric space.

(a) Suppose that sequences {xn} and {yn} in X are such that xn → x and yn → y as n → ∞, with x ̸= y, xn ̸= x
and yn ̸= y for all n ∈ N. Then we have

1

s
d (x, y) ≤ lim

n→∞
inf d (xn, yn) ≤ lim

n→∞
sup d (xn, yn) ≤ sd (x, y) .

(b) If y ∈ X and {xn} is a Cauchy sequence in X with xn ̸= xm for any m,n ∈ N, m ̸= n, converging to x ̸= y, then

1

s
d (x, y) ≤ lim

n→∞
inf d (xn, y) ≤ lim

n→∞
sup d (xn, y) ≤ sd (x, y) ,

for all x ∈ X.
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Lemma 2.6. [12] Let (X, d) be a b-rectangular metric space and {xn} be a sequence in X such that

lim
n→∞

d (xn, xn+1) = lim
n→∞

d (xn, xn+2) = 0. (2.1)

If {xn} is not a Cauchy sequence, then there exist ε > 0 and two sequences {m(k)} and {n(k)} of positive integers
such that

ε ≤ lim
k→∞

inf d
(
xm(k)

, xn(k)

)
≤ lim

k→∞
sup d

(
xm(k)

, xn(k)

)
≤ sε,

ε ≤ lim
k→∞

inf d
(
xn(k)

, xm(k)+1

)
≤ lim

k→∞
sup d

(
xn(k)

, xm(k)+1

)
≤ sε,

ε ≤ lim
k→∞

inf d
(
xm(k)

, xn(k)+1

)
≤ lim

k→∞
sup d

(
xm(k)

, xn(k)+1

)
≤ sε,

ε

s
≤ lim

k→∞
inf d

(
xm(k)+1

, xn(k)+1

)
≤ lim

k→∞
sup d

(
xm(k)+1

, xn(k)+1

)
≤ s2ε.

In this section, we give basic definitions of concepts concerning a θ-ϕ-contraction in the setting of generalized
metric spaces. The following definition was given by Jleli et al. in [7].

Definition 2.7. [7] Let Θc be the family of all functions θ : ]0,+∞[ → ]1,+∞[ such that

(θ1) θ is increasing;

(θ2) for each sequence (xn) ⊂ ]0,+∞[,

lim
n→0

xn = 0 if and only if lim
n→∞

θ (xn) = 1;

(θ3) θ is continuous.

Definition 2.8. [7] Let ΘG be the family of all functions θ : ]0,+∞[ → ]1,+∞[ such that

(θ1) θ is increasing;

(θ2) for each sequence (xn) ⊂ ]0,+∞[,

lim
n→0

xn = 0 if and only if lim
n→∞

θ (xn) = 1;

(θ3) there exist r ∈ ]0, 1[ and l ∈ ]0,+∞[ such hat limt→0
θ(t)−1

tr = l.

Definition 2.9. [7] Let (X, d) be a metric space and T : X → X be a mapping. Then T is said to be a θ-contraction
if there exist θ ∈ Θ and k ∈ ]0, 1[ such that for any x, y ∈ X,

d (Tx, Ty) > 0 ⇒ θ [d (Tx, Ty)] ≤ [θ (d (x, y))]
k
.

Theorem 2.10. [7] Let (X, d) be a complete generalized metric space and T : X → X be a θ-ϕ-contraction. Then T
has a unique fixed point.

In 2014, Hussain et al. [4] proposed a weaker definition that completeness, which is called α-completeness for
generalized metric spaces.

Definition 2.11. [4] Let T : X → X and α, η :X ×X → [0,+∞[ . We say that T is a triangular (α, η)-admissible
mapping if
(T1) α (x, y) ≥ 1 ⇒ α (Tx, Ty) ≥ 1, x, y ∈ X;
(T2) η (x, y) ≤ 1 ⇒ η (Tx, Ty) ≤ 1, x, y ∈ X;

(T3)

{
α (x, y) ≥ 1
α (y, z) ≥ 1

⇒ α (x, z) ≥ 1 for all x, y, z ∈ X;

(T4)

{
η (x, y) ≤ 1
η (y, z) ≤ 1

⇒ η (x, z) ≤ 1 for all x, y, z ∈ X.
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Definition 2.12. [4] Let (X, d) be a b-rectangular metric space and α, η :X ×X → [0,+∞[ be two mappings.

(a) T is an α-continuous mapping on (X, d) if for a given point x ∈ X and a sequence (xn) in X, xn → x and
α (xn, xn+1) ≥ 1 for all n ∈ N, imply that Txn → Tx .

(b) T is an η sub-continuous mapping on (X, d) if for a given point x ∈ X and a sequence (xn) in X, xn → x and
η (xn, xn+1) ≤ 1 for all n ∈ N, imply that Txn → Tx.

(c) T is an (α, η)-continuous mapping on (X, d) if for a given point x ∈ X and a sequence (xn) in X, xn → x and
α (xn, xn+1) ≥ 1 or η (xn, xn+1) ≤ 1 for all n ∈ N, imply that Txn → Tx.

Hussain et al. [5] gave the following definition.

Definition 2.13. [5] Let (X, d) be a generalized metric space and α, η :X × X → [0,+∞[ be two mappings. The
space X is said to be

(a) α-complete, if every Cauchy sequence (xn) in X with α (xn, xn+1) ≥ 1 for all n ∈ N, converges in X;

(b) η-sup-complete if every Cauchy sequence (xn) in X with η (xn, xn+1) ≤ 1 for all n ∈ N, converges in X;

(c) (α, η)-complete if every Cauchy sequence (xn) in X with α (xn, xn+1) ≥ 1 or η (xn, xn+1) ≤ 1 for all n ∈ N,
converges in X.

Definition 2.14. [5] Let (X, d) be a generalized metric space and α, η :X ×X → [0,+∞[ be two mappings.

(a) (X, d) is α-regular if xn → x, where α (xn, xn+1) ≥ 1 for all n ∈ N, implies α (xn, x) ≥ 1 for all n ∈ N.

(b) (X, d) is η-sub-regular, if xn → x, where η (xn, xn+1) ≤ 1 for all n ∈ N, implies η (xn, x) ≤ 1 for all n ∈ N.

(c) (X, d) is (α, η)-regular if xn → x, where α (xn, xn+1) ≥ 1 or η (xn, xn+1) ≤ 1 for all n ∈ N, imply that α (xn, x) ≥ 1
or η (xn, x) ≤ 1 for all n ∈ N.

3 Main results

Definition 3.1. Let ∆ denote the set of all functions Ω : R5
+ → R+ satisfying: for all t1, t2, t3, t4, t5 ∈ R+ with

t1t2t3t4t5 = 0 there exists π ∈ ]0, 1[ such that Ω(t1, t2, t3, t4, t5) = π.

Example 3.2. If Ω(t1, t2, t3, t4, t5) = min{t1, t2, t3, t4, t5}+ π where π ∈ ]0, 1[ then ∆ ∈ Ω.

Example 3.3. If Ω(t1, t2, t3, t4, t5) =
min{t1,t2,t3,t4,t5}

max{t1,t2,t3,t4,t5+1} + π where π ∈ ]0, 1[ then ∆ ∈ Ω.

In this paper, we present the concept θ-Ω-contraction in generalize metric spaces and we prove some fixed point
results for such spaces.

Definition 3.4. Let d (X, d) be a (α, η)-b-rectangular metric space and T be a self mapping on X. Suppose that
α, η : X × X → [0,+∞[ are two functions. We say that T is an (α, η)-Ω-θC-contraction if for all x, y ∈ X with
(α (x, y) ≥ 1 or η (x, y) ≤ 1) and d (Tx, Ty) > 0 we have

θ
(
s2d (Tx, Ty)

)
≤ [θ (M (x, y))]

Ω(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx),d(T 2x,y)) (3.1)

where θ ∈ ΘC ,Ω ∈ ∆ and

M (x, y) = max
{
d (x, y) , d (x, Tx) , d (y, Ty) , d (Tx, y) , d

(
T 2x, y

)
, d

(
T 2x, Ty

)
, d

(
T 2x, Tx

)}
.

Theorem 3.5. Let (X, d) be an (α, η)-complete b-rectangular metric and let α, η : X×X → [0,+∞[ be two functions.
Let T : X ×X → X be a self mapping satisfying the following conditions:

(i) T is a triangular (α, η)-admissible mapping;
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(ii) T is an (α, η)-θ-Ω-contraction;

(iii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1 or η (x0, Tx0) ≤ 1;

(iv) T is (α, η)-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when α (x, y) ≥ 1 or η (x, y) ≤ 1 for all x, y ∈ X.

Proof . Let x0 ∈ X such that α (x0, Tx0) ≥ 1 or η (x0, Tx0) ≤ 1. Define a sequence {xn} by xn = Tnx0 = Txn−1.
Since T is a triangular (α, η)-admissible mapping, α (x0, x1) = α (x0, Tx0) ≥ 1 ⇒ α (Tx0, Tx1) ≥ 1 = α (x1, x2) or
η (x0, x1) = η (x0, Tx0) ≤ 1 ⇒ α (Tx0, Tx1) ≤ 1 = α (x1, x2).

Continuing this process, we have α (xn−1, xn) ≥ 1 or η (xn−1, xn) ≤ 1, for all n ∈ N. By (T3) and (T4) , one has

α (xm, xn) ≥ 1 or η (xm, xn) ≤ 1, ∀m,n ∈ N, m ̸= n. (3.2)

Suppose that there exists n0 ∈ N such that xn0
= Txn0

. Then xn0
is a fixed point of T and the proof is finished.

Hence we assume that xn ̸= Txn, i.e., d (xn−1, xn) > 0 for all n ∈ N. We have

xn ̸= xm, ∀m,n ∈ N,m ̸= n. (3.3)

Indeed, suppose that xn = xm for some m = n + k > n Then we have xn+1 = Txn = Txm = xm+1. Denote
dm = d (xm, xm+1) . Then (3.1) implies that

θ (dn) = θ (dm) = θ (d (Txm−1, Txm))

≤
(
s2Txm−1, Txm

)
≤ (θM (xm−1, xm))

Ω(dm−1,dm−1,dm,0,dm+1) ,

where

M (xm−1, xm) = {d (xm−1, xm) , d (xm−1, xm) , d (xm, xm+1) , d (xm, xm) , d (xm+1, xm) ,

d (xm+1, xm+1) , d (xm+1, xm) , d (xm+1, xm) , d (xm+1, xm+1)}.

ThenM (xm−1, xm) = max{, d (xm−1, xm) , , d (xm, xm+1)} and there exists π ∈ ]0, 1[ such that Ω(dm−1, dm, 0, dm+1) =
π. If M (xm−1, xm) = d (xm, xm+1) , then we have

θ (dm) ≤ [θ (dm)]
π
< θ (dm) .

This is a contradiction. So M (xm−1, xm) = d (xm−1, xm) and dn = dm < dm−1. Continuing this process, we can
prove that dn = dm < dm < dm−1 < dm−2 < .. < dn, which is a contradiction. Thus we can assume that (3.2) and
(3.3) hold. Letting x = xn−1 and y = xn in (3.1) for all n ∈ N, we have

θ (d (xn, xn+1)) ≤ θ
(
s2d (xn, xn+1)

)
≤ (θ (d (xn−1, xn)))

λ
.

Repeating this step, we conclude that

θ (d (xn, xn+1)) ≤ (θ (d (xn−1, xn)))
π ≤ (θ (d (xn−2, xn−1)))

λ2

≤ ... ≤ θ (d (x0, x1))
λn

.

By using (θ1) and (θ3), we get
d (xn, xn+1) < d (xn−1, xn) . (3.4)

Therefore, d (xn,xn+1)n∈N is a monotone strictly decreasing sequence of nonnegative real numbers. Consequently,
there exists α ≥ 0 such that limn→∞ d (xn+1,xn) = α. Now, we claim that α = 0. Arguing by contraction, we assume
that α > 0. Since d (xn,xn+1)n∈N is a nonnegative decreasing sequence, we have d (xn,xn+1) ≥ α, for all n ∈ N. By
the property of θ, we get

1 < θ (α) ≤ θ (d (x0, x1))
πn

. (3.5)
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By letting n → ∞ in (3.5) , we obtain 1 < θ (α) ≤ 1. This is a contradiction. Therefore,

lim
n→∞

d (xn,xn+1) = 0. (3.6)

Letting x = xn−1 and y = xn+1 in (3.1), for all n ∈ N, we have

θ (d (xn, xn+2)) ≤ θ
(
d
(
s2xn, xn+2

))
≤ (θM (xn−1, xn+1))

Ω(d(xn−1,xn+1),d(xn−1,xn),d(xn+1,xn+2),d(xn,xn+1),d(xn+1,xn+1))

= (θM (xn−1, xn+1))
Ω(d(xn−1,xn+1),d(xn−1,xn),d(xn+1,xn+2),d(xn,xn+1),0) ,

where

M (xn−1, xn+1) =max{d (xn−1, xn+1) , d (xn−1, xn) , d (xn+1, xn+2) , d (xn+1, xn) , d (xn+1, xn+1) ,

d (xn+1, xn) , d (xn+1, xn)}.

Since d (xn−1, xn) ≤ d (xn, xn+1) ,

M (xn−1, xn+1) = max{, d (xn−1, xn+1) , d (xn−1, xn)}

and there exists π ∈ ]0, 1[ such that

Ω(d(xn−1,xn+1),d(xn−1,xn),d(xn+1,xn+2),d(xn,xn+1),0) = π.

So we have
θ (d (xn, xn+2)) ≤ [θ (max{, d (xn−1, xn+1) , d (xn−1, xn)})]π . (3.7)

Take an = d (xn, xn+2) and bn = d (xn, xn+1) . Then one can write θ (an) ≤ [θ (max {, bn−1))]
π
. By (θ1) and (θ3),

we get an < max {an−1, bn−1} . By (3.4), we have bn ≤ bn−1 ≤ max {an−1, bn−1} , which implies that

max {an, bn} ≤ max {an−1, bn−1} , ∀n ∈ N.

Therefore, the sequence max {an−1, bn−1}n∈N is monotone non-increasing. Thus there exists λ ≥ 0 such that
limn→∞ max {an, bn} = λ. By (3.6), we assume that λ > 0 and then we get

lim
n→∞

sup an = lim
n→∞

supmax {an, bn} = lim
n→∞

max {an, bn} .

Taking the lim supn → ∞ in (3.7) , and using the properties of θ3, we obtain

θ
(
lim
n→∞

sup an

)
< θ

(
lim

n→∞
max {an−1, bn−1}

)
.

Therefore, θ (λ) < θ (λ) . By (θ1) and (θ3), we get λ < λ. This is a contradiction. Therefore,

lim
n→∞

d (xn, xn+2) = 0. (3.8)

Next, we shall prove that {xn}n∈N is a Cauchy sequence, i.e., limn→∞ d (xn,xm) = 0, for all n,m ∈ N. Suppose to

the contrary. By Lemma 2.6, there is an ε > 0 such that for an integer k there exist two sequences
{
n(k)

}
and

{
m(k)

}
m(k) >, n(k) > k, such that

I) ε ≤ lim
k→∞

inf d
(
xm(k)

, xn(k)

)
≤ lim

k→∞
sup d

(
xm(k)

, xn(k)

)
≤ sε,

II) ε ≤ lim
k→∞

inf d
(
xn(k)

, xm(k)+1

)
≤ lim

k→∞
sup d

(
xn(k)

, xm(k)+1

)
≤ sε,

III) ε ≤ lim
k→∞

inf d
(
xm(k)

, xn(k)+1

)
≤ lim

k→∞
sup d

(
xm(k)

, xn(k)+1

)
≤ sε,

IV )
ε

s
≤ lim

k→∞
inf d

(
xm(k)+1

, xn(k)+1

)
≤ lim

k→∞
sup d

(
xm(k)+1

, xn(k)+1

)
≤ s2ε.
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From (3.1) and by setting x = xm(k)
and y = xn(k)

we have

M
(
xm(k)

, xn(k)

)
=max{d

(
xm(k)

, xn(k)

)
, d

(
xm(k)

, xm(k)+1

)
, d

(
xn(k)

, xn(k)+1

)
, d

(
xm(k)+2

, xm(k)+1

)
, d

(
xm(k)+2

, xn(k)

)
, d

(
xm(k)+2

, xn(k)+1

)
, d

(
xm(k)+2

, xm(k)+1

)
}.

Taking the limit as k → ∞ and using Lemma 2.5, we have

lim
k→∞

M
(
xm(k)

, xn(k)

)
≤ max{sε, 0, 0, sε, sε, sε, sε)} = sε.

Now, letting x = xm(k)
and y = xn(k)

in (3.1), we obtain

θ
[
d
(
xm(k)+1

, xn(k)+1

)]
≤ θ

[
s2d

(
xm(k)+1

, xn(k)+1

)]
≤
[
θ
(
M

(
xm(k)

, xn(k)

))]Ω[
d
(
xm(k)

,xn(k)

)
,d
(
xm(k)

,Txm(k)

)
,d
(
xn(k)

,Txn(k)

)
,d
(
Txm(k)

,xn(k)

)
,d
(
T 2xm(k)

,xn(k)

)]

=
[
θ
(
M

(
xm(k)

, xn(k)

))]Ω[
d
(
xm(k)

,xn(k)

)
,d
(
xm(k)

,xm(k)+1

)
,d
(
xn(k)

,xn(k)+1

)
,d
(
xm(k)+1

,xn(k)

)
,d
(
xm(k)+2

,xn(k)

)]
.

Since Ω is a continuous function,

lim
k→∞

Ω
[
M

(
xm(k)

, xn(k)

)]
= lim

k→∞
Ω
[
d
(
xm(k)

, xn(k)

)
, d

(
xm(k)

, xm(k)+1

)
, d

(
xn(k)

, xn(k)+1

)
, d

(
xm(k)+1

, xn(k)

)
, d

(
xm(k)+2

, xn(k)

)]
=Ω

[
lim
k→∞

d
(
xm(k)

, xn(k)

)
, d

(
xm(k)

, xm(k)+1

)
, d

(
xn(k)

, xn(k)+1

)
, d

(
xm(k)+1

, xn(k)

)
, d

(
xm(k)+2

, xn(k)

)]
≤Ω [sε, 0, 0, sε, sε] .

So there exists π ∈ ]0, 1[ such that Ω [sε, 0, 0, sε, sε] = π. Then

θ
(
d
(
xm(k)+1

, xn(k)+1

)) [
θ
(
M

(
xm(k)

, xn(k)

))]π
.

Letting k → ∞ in the above inequality and applying the continuity of θ, we have

θ
(
d
(
xm(k)+1

, xn(k)+1

))
≤

[
θ

(
lim
k→∞

M
(
xm(k)

, xn(k)

))]π
.

Therefore, θ(ε) ≤ [θ(sε)]
π
< θ(ε), which is a contradiction. Thus limn,m→∞ d (xm, xn) = 0. Hence {xn} is a Cauchy

sequence in X. By completeness of (X, d) , there exists z ∈ X such that

lim
n→∞

d (xn, z) = 0.

Now, we show that d (Tz, z) = 0. Arguing by contradiction, we assume that d (Tz, z) > 0. Since xn → z as n → ∞
for all n ∈ N, from Lemma 2.5, we conclude that

1

s
d (z, Tz) ≤ lim

n→∞
sup d (Txn, T z) ≤ sd (z, Tz) . (3.9)

Hence

sd (z, Tz) = s2
1

s
d (z, Tz) ≤ lim

n→∞
sup s2d (Txn, T z) . (3.10)

Since T is (α, η)-continuous, we conclude that limn→∞ Txn = Tz. Then

lim
n→∞

d (Txn, T z) = d (z, Tz) . (3.11)

Letting x = xn and y = z in (3.1), we obtain

θ (sd (z, Tz)) ≤ θ
(
s2d (Txn, T z)

)
(3.12)

≤ [θ (M (xn, z))]
Ω(d(xn,Txn),d(z,Tz),d(xn,Tz),d(z,Txn),d(T 2xn,z)) ,
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M (xn, z) = max
{
d (xn, z) , d (xn, Txn) , d (z, Tz) , d (Txn, z) , d

(
T 2xn, z

)
, d

(
T 2xn, T z

)
, d

(
T 2xn, Txn

)}
= d (z, Tz)

and

lim
n→∞

Ω(d (xn, Txn) , d (z, Tz) , d (xn, T z) , d (z, Txn) , d
(
T 2xn, z

)
)

= Ω( lim
n→∞

d (xn, Txn) , d (z, Tz) , d (xn, T z) , d (z, Txn) , d
(
T 2xn, z

)
)

≤ Ω(0, d (z, Tz) , d (z, Tz) , d (z, Tz) , 0).

Then there exists π ∈ ]0, 1[ such that θ (sd (z, Tz)) ≤ θ (sd (z, Tz))
π
. This is a contradiction. So z = Tz. Now,

suppose that z, u ∈ X are two fixed points of T such that u ̸= z. Then we have

d (z, u) = d (Tz, Tu) > 0.

Letting x = z and y = u (3.1), we have

θ (d (z, u)) = θ (d (Tu, Tz))

≤ θ
(
s2d (Tz, Tu)

)
≤ [θ (M (z, u))]

Ω(d(z,u),d(z,Tz),d(u,Tu),d(u,Tz),d(T 2z,u))

= [θ (M (z, u))]
Ω(d(z,u),d(z,z),d(u,u),d(u,z),d(z,u))

= [θ (M (z, u))]
Ω(d(z,u),0,0,d(u,z),d(z,u))

= [θ (M (z, u))]
π
,

where

M (z, u) =max{d (z, u) , d (z, Tz) , d (u, Tu) , d (Tz, u) , d
(
T 2z, Tz

)
, d

(
T 2z, u

)
, d

(
T 2z, Tu

)
}

=max{d (z, u) , d (z, z) , d (u, u) , d (z, u) , d (z, z) , d (z, u) , d (z, u)}
=d(z, u).

Therefore, we have θ (d (z, u)) ≤ [θ (d (z, u))]
π

< θ (d (z, u)) , which implies that d (z, u) < d (z, u) . This is a
contradiction. Therefore, u = z. □

Corollary 3.6. Let (X, d) be an (α, η)-complete b-rectangular metric space and α, η : X × X → [0,+∞) be two
functions. Let T : X ×X → X be a self mapping satisfying the following:

(i) θ[s2d(Tx, Ty)] ≤ [θ(M(x, y))]k, k ∈ (0, 1), θ ∈ ΘC .

(ii) T is a triangular (α, η)-admissible mapping;

(iii) T is an (α, η)-θ-Ω-contraction;

(iv) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1 or η (x0, Tx0) ≤ 1;

(v) T is (α, η)-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when α (x, y) ≥ 1 or η (x, y) ≤ 1 for all x, y ∈ X.

Theorem 3.7. Let α, η : X×X → R+ be two functions and (X, d) be an (α, η)-b-rectangular complete metric space.
Let T : X → X be a mapping satisfying the following conditions:

(i) T is a triangular (α, η)-admissible mapping;

(ii) T is an (α, η)-Ω-θ-contraction;

(iii) α (z, Tz) ≥ 1 or η (z, Tz) ≤ 1, for all z ∈ Fix (T ).

Then T has the property P, (Tnx = Tx).
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Proof . Let z ∈ Fix (Tn) for some fixed n > 1. Since α (z, Tz) ≥ 1 or η (z, Tz) ≤ 1 and T is a triangular
(α, η)-admissible mapping,

α
(
Tz, T 2z

)
≥ 1 or η

(
T 2z, Tz

)
≤ 1.

Continuing this process, we have

α
(
Tnz, Tn+1z

)
≥ 1 or η

(
Tnz, Tn+1z

)
≤ 1

for all n ∈ N. By (T3) and (T4), we get

α (Tmz, Tnz) ≥ 1 or η (Tmz, Tnz) ≤ 1, ∀ m,n ∈ N, n ̸= m.

Assume that z /∈ Fix (T ), i.e., d (z, Tz) > 0. Letting x = Tn−1z and y = z in (3.1), we get

d (z, Tz) = d (Tnz, Tz) = d
(
TTn−1z, Tz

)
,

which implies that

θ(d
(
TTn−1z, Tz

)
≤

[
θ
(
M(Tn−1z, z)

)]Ω(d(Tn−1z,z),d(Tn−1z,TTn−1z),d(z,Tz),d(TTn−1z,z),d(z,T 2Tn−1z))

=
[
θ
(
M(Tn−1z, z)

)]Ω(d(Tn−1z,z),d(Tn−1z,Tnz),d(z,Tz),d(Tnz,z),d(z,Tn+1z))

=
[
θ
(
M(Tn−1z, z)

)]Ω(d(Tn−1z,z),d(Tn−1z,Tnz),d(z,Tz),d(Tnz,z),0)
.

Thus there exists π ∈ ]0, 1[ such that

Ω(d
(
Tn−1z, z

)
, d

(
Tn−1z, Tnz

)
, d (z, Tz) , d (Tnz, z) , 0) = π.

Then
d (z, Tz) = d (Tnz, Tz) = d

(
TTn−1z, Tz

)
≤

[
θ
(
M(Tn−1z, z)

)]π
,

where

M
(
z, Tn−1z

)
= max{d

(
Tn−1z, z

)
, d

(
Tn−1z, TTn−1z

)
, d (z, Tz) , d

(
Tn−1z, z

)
, d

(
T 2Tn−1z, z

)
,

d
(
T 2Tn−1z, Tz

)
, d

(
T 2Tn−1z, Tn−1z

)
}

= max{d
(
Tn−1z, z

)
, d

(
Tn−1z, Tnz

)
, d (z, Tz) , d

(
Tn−1z, z

)
, d (TTnz, z) , d (TTnz, Tz) ,

d
(
TTnz, Tn−1z

)
}

= max{d
(
Tn−1z, z

)
, d

(
Tn−1z, z

)
, d (z, Tz) , d

(
Tn−1z, z

)
, d (Tz, z) , d (Tz, Tz) , d

(
Tz, Tn−1z

)
}.

Since d
(
Tn−1z, Tnz

)
→ 0, taking the limit as n → ∞, we obtain lim

n→+∞
M

(
z, Tn−1z

)
= d(z, Tz). Since θ is an

increasing and contentious function,

θ(d (z, Tz)) ≤ [θ(d (z, Tz))]
π
< θ(d (z, Tz)),

which is a contradiction. So d (z, Tz) > 0. Thus Fix(Tn) = Fix(T ). Therefore, T has the property (P). □

Assuming the following conditions, we prove that Theorem 3.5 still holds for T not necessarily continuous.

Theorem 3.8. Let α, η : X ×X → R+ be two functions and (X, d) be an (α, η)-complete generalized metric space.
Let T : X → X be a mapping satisfying the following assertions:

(i) T is triangular (α, η)-admissible;

(ii) T is (α, η)-θ-Ω-contraction;

(iii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1 or η (x0, Tx0) ≤ 1;

(iv) (X, d) is (α, η)-regular.
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Then T has a fixed point. Moreover, T has a unique fixed point whenever α (z, u) ≥ 1 or η (z, u) ≤ 1 for all
z, u ∈ Fix (T ) .

Proof . Let x0 ∈ X such that α (x0, Tx0) ≥ 1 or η (x0, Tx0) ≤ 1. Similar to the proof of Theorem 3.5, we can
conclude that

(α (xn, xn+1) ≥ 1 or η (xn, xn+1) ≤ 1)

and
xn → z as n → ∞, (3.13)

where xn+1 = Txn. From (iv), α (xn+1, z) ≥ 1 or η (xn+1, z) ≤ 1, holds for n ∈ N. Suppose that Tz = xn0+1
= Txn0

for some n0 ∈ N. From Theorem 3.5, we know that the members of the sequence {xn} are distinct. Hence, we have
Tz ̸= Txn, i.e., d (Tz, Txn) > 0 for all n > n0. Thus we can apply (3.1) to xn and z for all n > n0 to get

θ (d (Txn, T z)) ≤ θ
(
s2d (Txn, T z)

)
≤ [θ (M(xn, z))]

Ω(d(xn,z),d(xn,Txn),d(z,Tz),d(xn,Tz),d(T 2xn,z))

=≤ [θ (M(xn, z))]
Ω(d(xn,z),d(xn,xn+1),d(z,Tz),d(xn,Tz),d(xn+2,z)) .

Thus

θ (d (Txn, T z)) ≤ [θ (M(xn, z))]
Ω(d(xn,z),d(xn,xn+1),d(z,Tz),d(xn,Tz),d(xn+2,z)) , (3.14)

where

M (xn, z) = max{d (xn, z) , d (xn, Txn) , d (z, Tz) , d (Txn, z) , d
(
T 2xn, T z

)
, d

(
T 2xn, z

)
, d

(
T 2xn, Txn

)
= max{d (xn, z) , d (xn, xn+1) , d (z, Tz) , d (xn+1, z) , d (xn+2, T z) , d (xn+2, z) , d (xn+2, xn+1) .

So

lim
n→∞

M (xn, z) =max{ lim
n→∞

d (xn, z) , d (xn, xn+1) , d (z, Tz) , d (xn+1, z) , d (xn+2, T z) , d (xn+2, z) , d (xn+2, xn+1)}

=max{0, 0, d (z, Tz) , 0, lim
n→∞

d (xn+2, T z) , 0, 0, }.

Since 0 ≤ d (xn+2, T z) ≤ s (d (xn+2, xn) + d (xn, z) + d (z, Tz)) ,

lim
n→∞

d (xn+2, T z) ≤ d (z, Tz) . (3.15)

If d(z, Tz) > 0, then by (3.15) and the fact that θ and Ω are continuous and by taking the limit as n → ∞ in
(3.14) we get a contradiction. Therefore, d(z, Tz) = 0, that is, z is a fixed point of T and so z = Tz. Thus, z is a fixed
point of T. The proof of the uniqueness is similar to that of Theorem 3.5. □

Definition 3.9. Let (X, d) be an (α, η)-generalized metric space and T be a self mapping on X. Suppose that
α, η : X × X → [0,+∞[ are two functions. We say that T is an (α, η)-Ω-θG-contraction if for all x, y ∈ X with
(α (x, y) ≥ 1 or η (x, y) ≤ 1) and d (Tx, Ty) > 0 we have

θ
(
s2d (Tx, Ty)

)
≤ [θ (M (x, y))]

Ω(d(x,y),d(x,Tx),d(y,Ty),d(Tx,y),d(T 2x,y)) , (3.16)

where θ ∈ ΘG,Ω ∈ ∆ and

M (x, y) = max
{
d (x, y) , d (x, Tx) , d (y, Ty) , d (Tx, y) , d

(
T 2x, y

)
, d

(
T 2x, Ty

)
, d

(
T 2x, Tx

)}
.

Theorem 3.10. Let (X, d) be an (α, η)-complete b-rectangular metric space and let α, η : X ×X → [0,+∞[ be two
functions. Let T : X ×X → X be a self mapping satisfying the following conditions:

(i) T is a triangular (α, η)-admissible mapping;

(ii) T is an (α, η)-θ-Ω-contraction;
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(iii) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1 or η (x0, Tx0) ≤ 1;

(iv) T is (α, η)-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when α (x, y) ≥ 1 or η (x, y) ≤ 1 for all x, y ∈ X.

Proof . Let x0 ∈ X such that α (x0, Tx0) ≥ 1 or η (x0, Tx0) ≤ 1. Similar to the proof of Theorem 3.5, we can
conclude that (α (xn, xn+1) ≥ 1 or η (xn, xn+1) ≤ 1) and limn→∞ d(xn, xn+1) = 0, limn→∞ d(xn, xn+2) = 0. By (θ3),

there exist r ∈ ]0, 1[ and l ∈ ]0,+∞[ such that limn→∞
θ(d(xn,xn+1))−1

d(xn,xn+1)r
= l. Suppose that l < ∞. Then there exists

n1 ∈ N such that ∣∣∣∣θ(d(xn, xn+1))− 1

d(xn, xn+1)r

∣∣∣∣ < l

2
,∀n ≥ n1.

By taking M = 2
l , we have n [d(xn, xn+1)

r] < Mn [θ(d(xn, xn+1))− 1], for all n ≥ n1. Suppose now that l = ∞.
Let N > 0 be an arbitrary positive number. Then there exists n2 ∈ N such that∣∣∣∣θ(d(xn, xn+1))− 1

d(xn, xn+1)r

∣∣∣∣ > N, ∀n ≥ n2.

By taking M = 1
N , we have n [d(xn, xn+1)

r] < Mn [θ(d(xn, xn+1))− 1], for all n ≥ n2. Thus, in all cases, there
exist M > 0 and q ∈ N (q = max(n1, n2) such that

n [d(xn, xn+1)
r] < Mn [θ(d(xn, xn+1))− 1] , ∀n ≥ nq.

By induction, we obtain

n [d(xn, xn+1)
r] < Mn [θ(d(xn, xn+1))− 1] < · · · < Mn

[
(θ(d(x0, x1)))

kn

− 1
]
.

Letting n → ∞ in the above inequality, we obtain limn→∞ n [d(xn, xn+1)
r] = 0. So there exists n3 ∈ N such that

d(xn, xn+1) ≤ 1

n
1
r
, for all n ≥ n3. By (θ3), there exist r ∈ ]0, 1[ and h ∈ ]0,+∞[ such that limn→∞

θ(d(xn,xn+2))−1
d(xn,xn+2)r

= h.

Suppose that h < ∞. Then there exists n4 ∈ N such that∣∣∣∣θ(d(xn, xn+2))− 1

d(xn, xn+2)r

∣∣∣∣ < h

2
, ∀n ≥ n1.

By taking p = 2
h , we have n [d(xn, xn+2)

r] < Pn [θ(d(xn, xn+2))− 1], for all n ≥ n4. Suppose now that h = ∞. Let
Q > 0 be an arbitrary positive number. Then there exists n5 ∈ N such that∣∣∣∣θ(d(xn, xn+2))− 1

d(xn, xn+2)r

∣∣∣∣ > Q, ∀n ≥ n5.

By taking P = 1
Q , we have n [d(xn, xn+2)

r] < Pn [θ(d(xn, xn+2))− 1], for all n ≥ n5. Thus, in all cases, there

exist P > 0 and w ∈ N (w = max(n5, n4)) such that n [d(xn, xn+2)
r] < Pn [θ(d(xn, xn+2))− 1], for all n ≥ w. By

induction, we obtain

n [d(xn, xn+2)
r] < Pn [θ(d(xn, xn+2))− 1] < · · · < Pn

[
(θ(d(x0, x2)))

kn

− 1
]
.

Letting n → ∞ in the above inequality, we obtain limn→∞ n [d(xn, xn+2)
r] = 0. So there exists n6 ∈ N such that

d(xn, xn+2) ≤ 1

n
1
r
, for all n ≥ n6. If m > n and m = n+ 2k + 1 with k ∈ N, then we have

d(xn, xm) ≤sd(xn, xn+1) + sd(xn+1, xn+2) + sd(xn+2, xn+2k+1)

≤sd(xn, xn+1) + sd(xn+1, xn+2) + sd(xn+2, xn+3) + s2d(xn+3, xn+4) + s2d(xn+4, xn+5) + s2d(xn+5, xn+2k+1)

≤sd(xn, xn+1) + d(xn+1, xn+2) + d(xn+2, xn+3) + s2d(xn+3, xn+4) + s2d(xn+4, xn+5)

+ s3d(xn+5, xn+6) + ...+ s2kd(xn+2k, xn+2k+1)

=

n+2k∑
i=n

s2k−n 1

i
1
r

.
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If m > n and m = n+ 2k with k ∈ N, then we have

d(xn, xm) ≤sd(xn, xn+2) + sd(xn+2, xn+3) + sd(xn+2, xn+2k)

≤sd(xn, xn+2) + sd(xn+2, xn+3) + sd(xn+3, xn+4) + s2d(xn+4, xn+5) + s2d(xn+5, xn+5) + s2d(xn+6, xn+2k1)

≤sd(xn, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + s2d(xn+4, xn+5) + s2d(xn+5, xn+6)

+ s3d(xn+6, xn+7) + ...+ s2k−1d(xn+2k−1, xn+2k)

=

n+2k−1∑
i=n

s2k−n 1

i
1
r

.

So

d(xn, xm) ≤
∞∑
i=n

sm−1 1

i
1
r

. (3.17)

Since 0 < r < 1, the series
∑∞

i=n s
m−1 1

i
1
r

converges. Therefore, by taking the limit as n,m → ∞ in (3.17),

we get limn→∞ d(xn, xm) = 0. Hence xn is a Cauchy sequence. Since X is complete, there exists z ∈ X such that
limn→∞ d(xn, z) = 0. and since T is (α, η)-continuous, limn→∞ d(Txn, T z) = 0. Then

z = lim
n→∞

xn+1 = lim
n→∞

Txn = Tz.

This proves that z is a fixed point of T . □

Corollary 3.11. Let (X, d) be an (α, η)-complete b-rectangular metric space. Let α, η : X × X → [0,+∞[ be two
functions. Let T : X ×X → X be a self mapping satisfying the following:

(i) θ[s2d(Tx, Ty)] ≤ [θ(M(x, y))]k, k ∈ (0, 1), θ ∈ ΘG;

(ii) T is a triangular (α, η)-admissible mapping;

(iii) T is an (α, η)-θ-Ω-contraction;

(iv) there exists x0 ∈ X such that α (x0, Tx0) ≥ 1 or η (x0, Tx0) ≤ 1;

(v) T is a(α, η)-continuous.

Then T has a fixed point. Moreover, T has a unique fixed point when α (x, y) ≥ 1 or η (x, y) ≤ 1 for all x, y ∈ X.

Example 3.12. Let X = [1,+∞[, a ∈ ]0, 1[. Define d : X ×X → [0,+∞[ by d (x, y) = (|x− y|)2 . Then (X, d) is a
b-rectangular metric space. Define a mapping T : X → X by T (t) = a

√
t, for all t ∈ [1,+∞[ , and

α(x, y) =
max{x, y}+ a

min{x, y}+ a
, η(x, y) =

min{x, y}+ a

max{x, y}+ a
, Ω(t1, t2, t3, t4, t5) =

√
a, for all x, y, t1, t2, t3, t4, t5 ∈ R+.

Then T is an (α, η)-continuous triangular and(α, η)− admissible mapping.

Case 1: 0 ≤ x ≤ y. d(Tx, Ty) =
(
a
√
y − a

√
x
)2

and

M(d(x, y)) =max

{
d (x, y) , d

(
x, a

√
x
)
, d (y, a

√
y) , d

(
y, a

√
x
)
, d

(
a2

√√
x, y

√
y

)
, d

(
a2

√√
x, a

√
y

)
, d

(
a2

√√
x, a

√
x

)}
.

Since x ≤ y and a ∈ ]0, 1[,

M(d(x, y)) =max

{
(y − x)2 ,

(
x− a

√
x
)2

, (y − a
√
y)2 ,

(
y − a

√
x
)2

,

(
y
√
y − a2

√√
x

)2

,

(
a
√
y − a2

√√
x
2)

,(
a
√
x− a2

√√
x
2

,

)}
.
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Thus M(d(x, y)) ≥ (y − x)2 ≥ a(y − x)2. On the other hand, a(y − x) =
√
a
√
a(y − x)2, which implies that

θ (M(x, y)) ≥ θ (d(x, y)) = e(y−x)2 .

Thus
θ (d(x, y))Ω(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx),d(T2x,y)) = e

√
a(y−x)2 = e

√
a(

√
y−

√
x)(

√
y+

√
x)2

and θ (d(Tx, Ty)) = ea(
√
y−

√
x)2 . Since x, y ∈ [1,∞[, we have ea(

√
y−

√
x) ≤ e

√
a(

√
y−

√
x)2(

√
y+

√
x)2 . Thus

θ (d(Tx, Ty)) ≤ θ (d(x, y))Ω(d(x,y),d(x,Tx),d(y,Ty),d(y,Tx),d(T2x,y) .

Case 2: x > y > 0. d(Tx, Ty) =
(
a
√
x− a

√
y
)2

and

M(d(x, y)) =max

{
d (x, y) , d

(
x, a

√
x
)
, d (y, a

√
y) , d

(
y, a

√
x
)
, d

(
a2

√√
x, y

√
y

)
, d

(
a2

√√
x, a

√
y

)
, d

(
a2

√√
x, a

√
x

)}
.

Since x > y and a ∈ ]0, 1[,

M(d(x, y)) =max

{
(x− y)2 ,

(
x− a

√
x
)2

, (y − a
√
y)2 ,

(
|y − a

√
x|
)2

,

(
|y√y − a2

√√
x|
)2

,

(
a|√y − a2

√√
x|
)2

,

(
a
√
x− a2

√√
x,

)2
}
.

Thus M(d(x, y)) ≥ (y − x)2 ≥ a(x− y)2. On the other hand, a(y − x) =
√
a
√
a(x− y)2, which implies that

θ (M(x, y)) ≥ θ (d(x, y)) = e(x−y)2 .

Thus
θ (d(x, y))Ω(d(x,Tx),d(y,Ty),d(x,Ty),d(y,Tx),d(T2x,y)) = e

√
a(x−y)2 = e

√
a(

√
x−√

y)(
√
y+

√
x)2

and
θ (d(Tx, Ty)) = ea(

√
x−√

y)2 .

Since x, y ∈ [1,∞[, we have ea(
√

x−√
y)2 ≤ e

√
a(

√
x−√

y)2(
√

y+
√
x)2 . Thus

θ (d(Tx, Ty)) ≤ θ (d(x, y))Ω(d(x,y),d(x,Tx),d(y,Ty),d(y,Tx),d(T2x,y) ,

where θ ∈ ΘC ∩ΘG. Hence (3.12) and (3.16) are satisfied. Therefore, T has a unique fixed point z = 1.
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