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Abstract

In this paper, we use the (k,)-Hilfer fractional integral of functions with respect to another function to generalize
Chebyshev-type fractional integral inequalities. Some inequalities involving (k,)-Hilfer fractional integrals are also
to be proved.
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1 Introduction

In applied sciences, integral inequalities are incredibly important. Furthermore, the study of integral inequalities
using fractional integration theory has become extremely important; for specific applications, see ([6], [11]). In this
paper, we will examine the Chebyshev inequality.

T(f, 9)(z) >0, (1.1)

introduced in [3] for the following so-called Chebyshev functional
1 h 1 h 1 h
- — 1.2
= |t de— = [ @ = [ g@ya. (12)
where f and g are two integrable functions and synchronous on [a, b], that is, for all z,y € [a, ]

(f (@) = f(y)(g(z) —g(y)) = 0. (1.3)

Over the previous decade, several authors established different new integral inequalities of type using various
fractional integral operators, See ([10, Bl 8, 4], [l 12, [13]). In particular, Belarbi and Dahmani [2] developed the
following results about Chebyshev inequality using the Riemann-Liouville fractional integral operator defined by

f0) = iy [ @02 0

T(f, 9)(x) =
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Theorem 1.1. Let f and g be two synchronous functions on [0, 4+o0[, then for all z > 0, a > 0.
Fa+1)

F(f9)2) 2 ——17f(2) *g(x). (1.4)

Theorem 1.2. Let f and g be two synchronous functions on [0, 4+o00[, then for all z > 0, @ > 0 and «a > 0, we have
P %

TB+1) I*(fg9)(z) + Tla+1) 1°(f 9)(z) > 1% f(2) o+ 1P g(z) + 1° f(2) I7g(z). (1.5)

Theorem 1.3. Let i =1,2,...,m and f; be n positive and increasing on [a, b], then for all integer m > 1 we have

1 (H ﬁ-) (2) > (”T”) ) @) (1.6)
i=1 i=1

On the other hand, the (k,v)-Hilfer integral fractional operators are defined as follows [7]:

Definition 1.4. Let k > 0 and ¢ be an increasing positive monotone function on [a;b] such that 1)’ is continuous on
(a,b). The left and right-sided (k,v)-Hilfer fractional integral operators of a function f with respect to the function
¥ on [a,b] are defined respectively as:

AT = 1 [ WO - ) a<ase, (1.7
o,y 1 ’ / a_q
I3 @) = e | P OWE —v@) O a<a <,

Our aim in this study is to establish Chebyshev fractional inequalities involving the (k,v)-Hilfer integral fractional
operator defined in with two parameters. Chebyshev fractional inequalities will be derived according to specific
choices of the function ¢. This paper is organized as follows: in Section 2, we present some preliminary results; in
Section 3, the main results are stated and proved; and in Section 4, some derived Chebyshev fractional inequalities
are given.

2 Preliminaries

The space L, [a,b] of all real-valued Lebesgue measurable functions f # 0 on [a,b] with norm condition :

1
b P
I £ 1= ( [ 1@ W(m)dx) <o p 1,
a
is known as weighted Lebesgue space, where W is a weighted function (positive and measurable ).

1. Put p=1and W = 1, the space L} [a, b] reduces to the classical Lebesgue space L ([a,b]).
2. Choose p =1 and W(x) = ¢'(x), we get

b
Lx, ([a,0]) = {ft I f wa,z/ | f(@) [¢'(z)de < OO}- (2.1)

In the next theorem, we show that the (k,1))-Hilfer integral fractional operators are well defined on Lx , ([a,8]).

Theorem 2.1. For all functions f € Lx, , ([a,b]) we have P e = Lx,, ([a,b]) and N Sl = Lx,, ([a,b]).
Moreover the operators a+Jz’w and ,-J g,w are bounded on Ly , ([a, b]). Explicitly

| <Ok, It <O,
@ k Xﬂ)’ X“L’ k Xﬂ)/ Xw

where € — 0 —¥(@)F
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Proof . Let f € Lx , ([a,b]) then, using Fubini’s Theorem we get

I = / s BV H) | 97(0) do

ka // £ ()0 (s)(eh(x) — ¥(s))F ' (x) ds da

= s z) —(s))F Y (x)da | ' (s)ds
kr(a)/Q|f<>|</s<w<> v(s) w<>d>w<>d

b
—# / ()] ((b) —0(s)) " (s) ds

(w0~ vie)?
ST Tath) Fka-l-k /|f '
—CIflly,, -

Similarly, we establish that

(w(b) —¢( )E

ap

O

Remark 2.2. If the function f is continuous, then

b
I flx, = / | f(2) | % (2)de

b
< maxgcpcy | f(2) | / ' (@)da
< ((b) — ¢(a)) maxq<e<sy| f(x) | < o00.

Thus, continued functions belong to the space Lx , ([a,b]). In all that follows, we will assume that the considered
functions are in Lx, ([a,b]).

The (k,)-Hilfer integral fractional operators are notable for their ability to generate specific types of k-fractional
integrals depending on the choice of the function .

1. Taking ¢(7) = 7, the (k,1)-Hilfer yields to the k- Riemann-Liouville fractional integral operator of order « > 0

At RLY f(x) = ﬁm)/a (x —t)* "L f()dt,, x> a,

« 1 b &1
beka(:c):m/ (t— ) ()t z<b

2. Using (1) = In 7, the (k,v)-Hilfer reduces to the k-Hadamard fractional integral operator of order o > 0

o 1 RV AN 2ot dt
a+7'lkf(x)—m/a (hlz) f(t)?, z>a>1,

N 1 b\ FT dt

3. Putting ¥(7) = 7;:11 where p > 0, the (k,)-Hilfer makes it similar to the k-Katugompola fractional integral
operator of order v > 0

o+ K f(x) = w /w (@t — ) T pyeedt, @ > a, (2.2)
k& a
_a b N
- K f(z) = m/ (L1 — 2Pt p(yeedt, @ < b,
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4. Setting ¥(7) = @ ((r) = —@ ) respectively where 6 > 0, the left sided ( right sided ) (k,)-Hilfer
respectively is reduced to the k-fractional conformable integral operator of order o > 0 [9].

W COf(z) = k(’rkm) / (@ —a) — (t—a)®)F " (t_fg))l_edt, z>a, (2.3)

1-% b a_q
b-Ci f(z) = karkm)/m (b—2) = (b-1)%)" (bf(tt))l_edt, z <b.

3 Main results

The Chebyshev-type inequalities are presented below with the (k,¢)-Hilfer operator.

Theorem 3.1. Let o, 3, k > 0, f and g be two synchronous functions on [a, b] and 1) be a positive increasing function
on [a,b] having a continuous derivative ¢’ on (a,b), then for & > a the following inequalities hold:

(W) — () ® W) = @E 50 s o)

a, ) T
Dot k) o8 VOO T REh (3.1)

> I3V (@) 0 30V (@) + 0r 30V F(@) 0t TV ()

and
Ti(a+ k)
a, k a,p a,)
+J fo)(x) > —————m o+ J 0 f(x) o+ I 3 T g(2). (3.2)
a k ( )( ) (w(x)—lﬁ(a))k a k ( a k ( )

Proof . Let f and g be two synchronous functions on [a, b], then according to ([1.3]) we have for all ¢, s € [a, b]

f)gt) + f(s)g(s) > f(t)g(s) + f(s)g(t). (3.3)
Multiplying by w/(t)(w,(v?;(ﬁgt)ﬁil and integrating with respect to t over (a,z), we get
a x) — a % a [}

I3 g@gte) + 161906 DI 5 ) 510 + 95 ol (3.4

’ 27
Multiplying inequality 1) by £ (S)(wlg?;(g)(s)) ¥~ and integrating with respect to s over (a,x), we get the desired
inequality (3.1)).

Putting 8 = « in the inequality (3.1)), we’ll get the required inequality (3.2)). O

Remark 3.2. We present some special cases of the above Theorem (3.1

1. By putting k =1, b = +00 and a = 0, we obtain Theorem 7 and Theorem 6 in [10].
If we choose 9(z) = Inz, we obtain Theorem 3 in [5].

2.
3. Putting k=1, a =0 and ¢(7) = () gives Theorems 2.2 and 2.1 in [g].
4.

&+n
Taking k=1, a =0 and ¢(7) = % yields Theorems 6 and 5 in [13].

Corollary 3.3. Let 1 = 1,2,...,m and f, f; € in,[a,b]. If the functions f and f; are positive and increasing on

[a, b], then for all integer m > 1 we have
i m—1 m
1 <W> IOV fi ) 3.5
’ gf = (P(z) — Y(a)® 21;[1 ko fi() (3.5)

and

at IOV () > (l;k(a—i—k))) " (a+J z’wf($)>m : (3.6)
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m
Proof . For m =1 the equality holds. Let m # 1, by using the inequality 1] with g = [] fi, we obtain

=2

a,y s . Fk(a+k) a, o
G+Jk: ;l;[lf’b(x) Z(w(x) —’(/)(Cl))% a*J fl a*J Hfz

T(a+ k) o) Tp(a+ k) o o
T atd — I Yatd g i(

2 w) —wlapE < <<w<x>—w<a>> e Hf )
o Tila+k) [T -
= ((1/)(33 — 7#(@))%) (I[l atJ 3 ) atJ gy Hfz

Ty (o + k) )3 S aw > o
>l = ard 2V fi( atdy i
> (Gt e (H hie Hf
> <W>m_l ﬁl IRV i) | 0 I3 f(@)
“\(@W(2) —¥(a)F LTl ek
= W>m1 M +Ja,w .

(6 v (H IR )
which yields to the desired inequality (3.5). Putting fi = fo = --- = f,, = f in the inequality (3.5]), we get the

inequality (3.6). O

Remark 3.4. We present some particular cases of Corollary [3-3]
1. By putting k =1, b = +00, and a = 0 in the above Corollary, we obtain Theorem 8 and Corollary 2 in [I0].
2. Setting k =1, a =0 and ¥(7) = (T)EM [8].
3. Taking k=1, a = 0 and ¢(7) = —) yields Theorem 7 in [13].

Corollary 3.5. Let f and g be two functions defined on Ly, ([a,b]), such that f is monotone, g is differentiable on

(a,b) and there exists a real numbers m := 1r[1fb] g'(x) and M := sup g'(z).
z€la z€Ja,b]

e If f is an increasing function, then

o . Ti(a+ k) LT ) T () — m Ti(a+k) s LJo
a+Jk; (fg)( )Z(w(l')_i/}(a))%a Jk f( )a Jk g( ) (d)(z)_w( )%a J f( )a J Id( )
+ M IOV (Laf) (). (3.7)
o If f is a decreasing function, then
o x _Dilatk) LTV F() e TV g(2) — Li(a+ k) V() 0r d SV (e
atd g (fg)()z(w(x)—@/}(a))%aJk f()a I g(x) M(¢(m)—¢( ) I3 f(@)q I La(z)
+ M I Iaf) (), (3.8)

where I;(x) is the identity function.

Proof . Taking G(z) = g(x) — mz, thus G is differentiable and increasing on (a,b). By using the inequality (3.2)), we
get

a+J§*¢(fG)(x) maJrJ ﬂ!}f( )ﬁJ?’w(g—mx)(x)
Fk(a+k) I‘k(a+k)

= T TPV (@) e IV g(x) —m at JOVF(@) e IOV Ig(2),  (3.9)

(¥(z) —¥(a))® * (¥(z) —(a) ¥
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we also have
IV flg = mla) (@) =+ TP (fo) (@) — m o T 00 (Taf) (@) (3.10)

Combining inequalities (3.9) and (3.10]), we obtain the required inequality (3.7). Considering the situation of a
decreasing function f and taking G(z) = g(x) — M x, we will obtain the inequality (3.8)) by sketching the proof of the

inequality (3.7). O

Remark 3.6. We give some specific results of Corollary [3.5]
1. Using k=1, b = +0o0 and a = 0, we obtain Theorem 10 in [10].

2. Taking k =1, a =0 and ¢(7) = (?j;" yields Theorem 2.4 in [§].

3. Setting k=1, a =0 and ¢(7) = # gives Theorem 8 in [13].

4 Applications

The previously mentioned result is now applied to Chebyshev inequalities involving two specific operators: the
k-Katugompola operator and the k-fractional conformable integral operator.

4.1 Chebyshev-type inequalities via k-Katugompola operator

Putting ¢(7) = Tp’:: where p > 0, the left side (k,)-Hilfer a+JZ"w reduces to the left side k-Katugompola

fractional integral operator (2.2]) of order a > 0 and the following results hold.

Corollary 4.1. Let f and g be two synchronous functions on [a, ] and let «, 3, k > 0, then for 2 > a we have
(zP+! — apH)%
(p+1)% Difa + k)

and

(zP+! — a’”rl)%

A KR (f 9)(z) + KR 9)(@) = (it KR f(@) 0+ 0V g(2) + 0 KR (@) 0+ TV g(2),

(p+ D)% Difa+k)

B
(p+1)% Di(cx +gk) Wt KEf(2) s Kg(a).

(mp+1 — a’”l)i

ot K (f9)(x) >

Corollary 4.2. Let i = 1,2,...,m and f, f; € LX’; , [a,b]. If the functions f and f; are positive increasing functions

on [a,b], then for all integer m > 1 we have

m i3 m-1 m
NENECE (“&ﬂ F{jﬁf&“) (H auczfi(x)),

i=1

and
(p+1)% Tpla+k
(zP 1 — art1)%

m—1
ot KR ™ () 2 ( )> (ot K f (@)™

Corollary 4.3. Let f and g be two functions defined on Lx ol ([a, b)), such that f is monotone and g is differentiable

on Ja, b[ and there exists a real numbers m := inf g¢'(z) and M := sup g¢'(z).
z€[a,b] z€[a,b]

e If f is an increasing function, then

(p+1)% Tp(a+ k)
(zp+1 — ap+1)%

+ mo+ K (1af)(2).

et 1) Tg (o + k)

a a1 _
a*’ck ('T)a+Jk g(:z:) (xp+1_ap+1)%

o+ K5 (f 9)(z) = ot Kii f(€)a+ K La(2)

e If f is a decreasing function, then

B
+1D)F (a4 k o N
(p<xp+)1 - f;(ﬂyz (K@) 0o Kig(a) -

+ Ma*’Cg(Idf)(x)a

y et 1)% Ty(a + k)
(xp+1 — qr+1)%

ot K (f 9)(x) >

ot K f(2) ot K la(x)

where I;(x) is the identity function.
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4.2 Chebyshev-type inequalities via k-fractional conformable integral operator

Set (1) = where 6 > 0, the left side (k,v)-Hilfer ,+J ?w reduces to the left side k-fractional conformable
integral operator (2.3) of order & > 0 and we derive what follows.

Corollary 4.4. Let f and g be two synchronous functions on [a, ] and let «, 3, k > 0, then for 2 > a we have

(x-a)% o (r-a)% . o . o -
9% Fk(oH— ]43) atbk (fg)(x) + 9% Fk(a n k‘) a*ck (fg)(!E) > a*ck f(CL') a*Jk g(c(:) + u*ckf(x) a*Jk g(x),
and
O 2 T O 0 )0 o)

Corollary 4.5. Let i = 1,2,....,m and f, f; € LX; la, b]. If the functions f and f; are positive increasing functions

on [a,b], then for all integer m > 1 we have

RAINCE (‘W) (ﬁ a+cgfi(x>> ,

(z—a)® i=1
and _—
G ) 2 (W) (wrCEFE)™

Corollary 4.6. Let f and g be two functions defined on Lx , ([a,b]), such that f is monotone and g is differentiable

on Ja, b[ and there exists a real numbers m := i?fb] g'(x) and M := sup ¢'(x).
z€la, z€Ja,b]

e If f is an increasing function, then

N OF Tila+ k) N 0F Tl + k) . .
G 2 T O ) O gle) —m T O @) L) + s ) )
e If f is a decreasing function, then
. OF Tl + k) N OF Tpla+k) . .
GO 2 T @) O gte) ~ M T 00 O le) + M s CRUaf) ),

where I;(x) is the identity function.
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