Int. J. Nonlinear Anal. Appl. In Press, 1–8

ISSN: 2008-6822 (electronic)

http://dx.doi.org/10.22075/ijnaa.2024.33464.4987

Chebyshev-type fractional inequalities via (k,ψ) -Hilfer Operator

Bouharket Benaissa^{a,*}, Noureddine Azzouz^{b,c}

(Communicated by Mugur Alexandru Acu)

Abstract

In this paper, we use the (k, ψ) -Hilfer fractional integral of functions with respect to another function to generalize Chebyshev-type fractional integral inequalities. Some inequalities involving (k, ψ) -Hilfer fractional integrals are also to be proved.

Keywords: Chebyshev inequality, Hilfer operator, Fractional operator

2020 MSC: 26D10, 26A33, 26D15

1 Introduction

In applied sciences, integral inequalities are incredibly important. Furthermore, the study of integral inequalities using fractional integration theory has become extremely important; for specific applications, see ([6], [11]). In this paper, we will examine the Chebyshev inequality.

$$T(f,g)(x) \ge 0,\tag{1.1}$$

introduced in [3] for the following so-called Chebyshev functional

$$T(f,g)(x) = \frac{1}{b-a} \int_{a}^{b} f(x)g(x) dx - \frac{1}{b-a} \int_{a}^{b} f(x) dx \frac{1}{b-a} \int_{a}^{b} g(x) dx, \tag{1.2}$$

where f and g are two integrable functions and synchronous on [a, b], that is, for all $x, y \in [a, b]$

$$(f(x) - f(y))(g(x) - g(y)) \ge 0. (1.3)$$

Over the previous decade, several authors established different new integral inequalities of type 1.1 using various fractional integral operators, See ([10, 5, 8, 4, 1, 12, 13]). In particular, Belarbi and Dahmani [2] developed the following results about Chebyshev inequality using the Riemann-Liouville fractional integral operator defined by

$$I^{\alpha}f(x) = \frac{1}{\Gamma(\alpha)} \int_{0}^{x} (x-t)^{\alpha-1} f(t) dt.$$

 $Email\ addresses:\ \texttt{bouharket.benaissa@univ-tiaret.dz}\ (Bouharket\ Benaissa),\ \texttt{n.azzouz@cu-elbayadh.dz}\ (Noureddine\ Azzouz)$

Received: March 2024 Accepted: April 2024

^aLaboratory of Informatics and Mathematics, Faculty of Material Sciences, University of Tiaret, Algeria

^bFaculty of Sciences, University Center Nour Bachir, El Bayadh, Algeria

^cUniversity Belhadj Bouchaib Ain Temouchent, Ain Temouchent, Algeria

^{*}Corresponding author

Theorem 1.1. Let f and g be two synchronous functions on $[0, +\infty[$, then for all x > 0, $\alpha > 0$.

$$I^{\alpha}(fg)(x) \ge \frac{\Gamma(\alpha+1)}{r^{\alpha}} I^{\alpha}f(x) I^{\alpha}g(x). \tag{1.4}$$

Theorem 1.2. Let f and g be two synchronous functions on $[0, +\infty[$, then for all x > 0, $\alpha > 0$ and $\alpha > 0$, we have

$$\frac{x^{\beta}}{\Gamma(\beta+1)} \operatorname{I}^{\alpha}(fg)(x) + \frac{x^{\alpha}}{\Gamma(\alpha+1)} \operatorname{I}^{\beta}(fg)(x) \ge \operatorname{I}^{\alpha}f(x) \,_{a} + \operatorname{I}^{\beta}g(x) + \operatorname{I}^{\beta}f(x) \operatorname{I}^{\alpha}g(x). \tag{1.5}$$

Theorem 1.3. Let i = 1, 2, ..., m and f_i be n positive and increasing on [a, b], then for all integer $m \ge 1$ we have

$$I^{\alpha}\left(\prod_{i=1}^{m} f_{i}\right)(x) \geq \left(\frac{\Gamma(\alpha+1)}{x^{\alpha}}\right)^{m-1} \prod_{i=1}^{m} I^{\alpha}\left(f_{i}\right)(x). \tag{1.6}$$

On the other hand, the (k, ψ) -Hilfer integral fractional operators are defined as follows [7]:

Definition 1.4. Let k > 0 and ψ be an increasing positive monotone function on [a; b] such that ψ' is continuous on (a, b). The left and right-sided (k, ψ) -Hilfer fractional integral operators of a function f with respect to the function ψ on [a, b] are defined respectively as:

$$a + J_{k}^{\alpha,\psi} f(x) = \frac{1}{k\Gamma_{k}(\alpha)} \int_{a}^{x} \psi'(t)(\psi(x) - \psi(t))^{\frac{\alpha}{k} - 1} f(t) dt, \quad a < x \le b.$$

$$b - J_{k}^{\alpha,\psi} f(x) = \frac{1}{k\Gamma_{k}(\alpha)} \int_{x}^{b} \psi'(t)(\psi(t) - \psi(x))^{\frac{\alpha}{k} - 1} f(t) dt, \quad a \le x < b.$$

$$(1.7)$$

Our aim in this study is to establish Chebyshev fractional inequalities involving the (k, ψ) -Hilfer integral fractional operator defined in (1.7) with two parameters. Chebyshev fractional inequalities will be derived according to specific choices of the function ψ . This paper is organized as follows: in Section 2, we present some preliminary results; in Section 3, the main results are stated and proved; and in Section 4, some derived Chebyshev fractional inequalities are given.

2 Preliminaries

The space $L_p^W[a,b]$ of all real-valued Lebesgue measurable functions $f \neq 0$ on [a,b] with norm condition:

$$\| f \|_p^W = \left(\int_a^b |f(x)|^p W(x) dx \right)^{\frac{1}{p}} < \infty, \ p \ge 1,$$

is known as weighted Lebesgue space, where W is a weighted function (positive and measurable).

- 1. Put p=1 and $W\equiv 1$, the space $L_p^W[a,b]$ reduces to the classical Lebesgue space $L\left([a,b]\right)$.
- 2. Choose p=1 and $W(x)=\psi'(x)$, we get

$$L_{X_{\psi'}}([a,b]) = \left\{ f : \| f \|_{X_{\psi'}} = \int_{a}^{b} |f(x)| \psi'(x) dx < \infty \right\}.$$
 (2.1)

In the next theorem, we show that the (k, ψ) -Hilfer integral fractional operators are well defined on $L_{X_{\psi}}$, ([a, b]).

Theorem 2.1. For all functions $f \in L_{X_{\psi'}}([a,b])$ we have ${}_{a^+}\mathrm{J}^{\,\alpha,\psi}_{\,k}f \in L_{X_{\psi'}}([a,b])$ and ${}_{b^-}\mathrm{J}^{\,\alpha,\psi}_{\,k}f \in L_{X_{\psi'}}([a,b])$. Moreover the operators ${}_{a^+}\mathrm{J}^{\,\alpha,\psi}_{\,k}$ and ${}_{b^-}\mathrm{J}^{\,\alpha,\psi}_{\,k}$ are bounded on $L_{X_{\psi'}}([a,b])$. Explicitly

$$\left\|_{a^+} \mathbf{J}_k^{\alpha,\psi} f \right\|_{X_{\psi'}} \le C \left\| f \right\|_{X_{\psi'}}, \qquad \left\|_{b^-} \mathbf{J}_k^{\alpha,\psi} f \right\|_{X_{\psi'}} \le C \left\| f \right\|_{X_{\psi'}},$$

where
$$C = \frac{(\psi(b) - \psi(a))^{\frac{\alpha}{k}}}{\Gamma_k(\alpha + k)}$$
.

Proof. Let $f \in L_{X_{n}}$, ([a,b]) then, using Fubini's Theorem we get

$$\begin{split} \left\|_{a^{+}} \mathbf{J}_{k}^{\alpha,\psi} f \right\|_{X_{\psi'}} &= \int_{a}^{b} |_{a^{+}} \mathbf{J}_{k}^{\alpha,\psi} f(x) \mid \psi'(x) \, dx \\ &\leq \frac{1}{k \, \Gamma_{k}(\alpha)} \int_{a}^{b} \int_{a}^{x} |f(s)| \, \psi'(s) (\psi(x) - \psi(s))^{\frac{\alpha}{k} - 1} \psi'(x) \, ds \, dx \\ &= \frac{1}{k \, \Gamma_{k}(\alpha)} \int_{a}^{b} |f(s)| \left(\int_{s}^{b} (\psi(x) - \psi(s))^{\frac{\alpha}{k} - 1} \psi'(x) \, dx \right) \psi'(s) \, ds \\ &= \frac{1}{\alpha \, \Gamma_{k}(\alpha)} \int_{a}^{b} |f(s)| \, (\psi(b) - \psi(s))^{\frac{\alpha}{k}} \, \psi'(s) \, ds \\ &\leq \frac{(\psi(b) - \psi(a))^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha + k)} \int_{a}^{b} |f(s)| \, \psi'(s) \, ds \\ &= C \, \|f\|_{X_{\psi'}}. \end{split}$$

Similarly, we establish that

$$\left\|_{b^{-}} \mathbf{J}_{k}^{\alpha,\psi} f \right\|_{X_{\psi'}} \leq \frac{(\psi(b) - \psi(a))^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha + k)} \left\| f \right\|_{X_{\psi'}}.$$

Remark 2.2. If the function f is continuous, then

$$|| f ||_{X_{\psi'}} = \int_a^b |f(x)| \psi'(x) dx$$

$$\leq \max_{a \leq x \leq b} |f(x)| \int_a^b \psi'(x) dx$$

$$\leq (\psi(b) - \psi(a)) \max_{a \leq x \leq b} |f(x)| < \infty.$$

Thus, continued functions belong to the space $L_{X_{\psi}}$, ([a,b]). In all that follows, we will assume that the considered functions are in $L_{X_{\psi}}$, ([a,b]).

The (k, ψ) -Hilfer integral fractional operators are notable for their ability to generate specific types of k-fractional integrals depending on the choice of the function ψ .

1. Taking $\psi(\tau) = \tau$, the (k, ψ) -Hilfer yields to the k-Riemann-Liouville fractional integral operator of order $\alpha > 0$

$$\label{eq:linear_approx} \begin{split} {}_{a^+}\mathcal{R}\mathcal{L}_k^\alpha f(x) &= \frac{1}{k\,\Gamma_k(\alpha)} \int_a^x (x-t)^{\frac{\alpha}{k}-1} f(t) dt,, \quad x>a, \\ {}_{b^-}\mathcal{R}\mathcal{L}_k^\alpha f(x) &= \frac{1}{k\,\Gamma_k(\alpha)} \int_x^b (t-x)^{\frac{\alpha}{k}-1} f(t) dt,, \quad x< b. \end{split}$$

2. Using $\psi(\tau) = \ln \tau$, the (k, ψ) -Hilfer reduces to the k-Hadamard fractional integral operator of order $\alpha > 0$

$$\label{eq:lambda} \begin{split} _{a^+}\mathcal{H}_k^\alpha f(x) &= \frac{1}{k\Gamma_k(\alpha)} \int_a^x \left(\ln\frac{x}{t}\right)^{\frac{\alpha}{k}-1} f(t) \frac{dt}{t}, \quad x>a>1, \\ _{b^-}\mathcal{H}_k^\alpha f(x) &= \frac{1}{k\Gamma_k(\alpha)} \int_x^b \left(\ln\frac{t}{x}\right)^{\frac{\alpha}{k}-1} f(t) \frac{dt}{t}, \quad 1< x< b. \end{split}$$

3. Putting $\psi(\tau) = \frac{\tau^{\rho+1}}{\rho+1}$ where $\rho > 0$, the (k, ψ) -Hilfer makes it similar to the k-Katugompola fractional integral operator of order $\alpha > 0$

$${}_{a+}\mathcal{K}_{k}^{\alpha}f(x) = \frac{(\rho+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \int_{a}^{x} \left(x^{\rho+1} - t^{\rho+1}\right)^{\frac{\alpha}{k}-1} f(t)t^{\rho}dt, \ x > a,$$

$${}_{b-}\mathcal{K}_{k}^{\alpha}f(x) = \frac{(\rho+1)^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \int_{x}^{b} \left(t^{\rho+1} - x^{\rho+1}\right)^{\frac{\alpha}{k}-1} f(t)t^{\rho}dt, \ x < b.$$
(2.2)

4. Setting $\psi(\tau) = \frac{(\tau - a)^{\theta}}{\theta}$ ($\psi(\tau) = -\frac{(b - \tau)^{\theta}}{\theta}$) respectively where $\theta > 0$, the left sided (right sided) (k, ψ) -Hilfer respectively is reduced to the k-fractional conformable integral operator of order $\alpha > 0$ [9].

$${}_{a^{+}}\mathcal{C}_{k}^{\alpha}f(x) = \frac{\theta^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \int_{a}^{x} \left((x-a)^{\theta} - (t-a)^{\theta} \right)^{\frac{\alpha}{k}-1} \frac{f(t)}{(t-a)^{1-\theta}} dt, \ x > a,$$

$${}_{b^{-}}\mathcal{C}_{k}^{\alpha}f(x) = \frac{\theta^{1-\frac{\alpha}{k}}}{k\Gamma_{k}(\alpha)} \int_{a}^{b} \left((b-x)^{\theta} - (b-t)^{\theta} \right)^{\frac{\alpha}{k}-1} \frac{f(t)}{(b-t)^{1-\theta}} dt, \ x < b.$$
(2.3)

3 Main results

The Chebyshev-type inequalities are presented below with the (k, ψ) -Hilfer operator.

Theorem 3.1. Let $\alpha, \beta, k > 0$, f and g be two synchronous functions on [a, b] and ψ be a positive increasing function on [a,b] having a continuous derivative ψ' on (a,b), then for x>a the following inequalities hold:

$$\frac{(\psi(x) - \psi(a))^{\frac{\beta}{k}}}{\Gamma_k(\alpha + k)} {}_{a} + J_k^{\alpha,\psi}(fg)(x) + \frac{(\psi(x) - \psi(a))^{\frac{\alpha}{k}}}{\Gamma_k(\alpha + k)} {}_{a} + J_k^{\beta,\psi}(fg)(x)$$

$$\geq {}_{a} + J_k^{\alpha,\psi}f(x) {}_{a} + J_k^{\beta,\psi}g(x) + {}_{a} + J_k^{\beta,\psi}f(x) {}_{a} + J_k^{\alpha,\psi}g(x).$$
(3.1)

and

$${}_{a+}\operatorname{J}_{k}^{\alpha,\psi}(fg)(x) \geq \frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}} \, {}_{a+}\operatorname{J}_{k}^{\alpha,\psi}f(x) \, {}_{a+}\operatorname{J}_{k}^{\alpha,\psi}g(x). \tag{3.2}$$

Proof. Let f and g be two synchronous functions on [a, b], then according to (1.3) we have for all $t, s \in [a, b]$

$$f(t)g(t) + f(s)g(s) \ge f(t)g(s) + f(s)g(t).$$
 (3.3)

Multiplying by $\frac{\psi'(t)(\psi(x)-\psi(t))^{\frac{\alpha}{k}-1}}{k\Gamma_k(\alpha)}$ and integrating with respect to t over (a,x), we get

$${}_{a+} J_{k}^{\alpha,\psi} f(x)g(x) + f(s)g(s) \frac{(\psi(x) - \psi(a))^{\frac{\alpha}{k}}}{\Gamma_{k}(\alpha + k)} \ge g(s) {}_{a+} J_{k}^{\alpha,\psi} f(x) + f(s) {}_{a+} J_{k}^{\alpha,\psi} g(x).$$
(3.4)

Multiplying inequality (3.4) by $\frac{\psi'(s)(\psi(x)-\psi(s))^{\frac{\beta}{k}-1}}{k\,\Gamma_k(\beta)}$ and integrating with respect to s over (a,x), we get the desired inequality (3.1).

Putting $\beta = \alpha$ in the inequality (3.1), we'll get the required inequality (3.2). \square

Remark 3.2. We present some special cases of the above Theorem 3.1.

- 1. By putting k=1, $b=+\infty$ and a=0, we obtain Theorem 7 and Theorem 6 in [10].
- 2. If we choose $\psi(x) = \ln x$, we obtain Theorem 3 in [5].
- 3. Putting k=1, a=0 and $\psi(\tau)=\frac{(\tau)^{\xi+\eta}}{\xi+\eta}$ gives Theorems 2.2 and 2.1 in [8]. 4. Taking k=1, a=0 and $\psi(\tau)=\frac{(\tau)^{\theta}}{\theta}$ yields Theorems 6 and 5 in [13].

Corollary 3.3. Let i=1,2,...,m and $f, f_i \in L_{X_{s,t}^1}[a,b]$. If the functions f and f_i are positive and increasing on [a,b], then for all integer $m \geq 1$ we have

$${}_{a+}\mathbf{J}_{k}^{\alpha,\psi}\prod_{i=1}^{m}f_{i}(x) \geq \left(\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}}\right)^{m-1}\left(\prod_{i=1}^{m}{}_{a+}\mathbf{J}_{k}^{\alpha,\psi}f_{i}(x)\right),\tag{3.5}$$

and

$${}_{a+}\mathbf{J}_{k}^{\alpha,\psi}f^{m}(x) \ge \left(\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}}\right)^{m-1} \left({}_{a+}\mathbf{J}_{k}^{\alpha,\psi}f(x)\right)^{m}. \tag{3.6}$$

Proof. For m=1 the equality holds. Let $m \neq 1$, by using the inequality (3.2) with $g = \prod_{i=2}^{m} f_i$, we obtain

$$\begin{split} &_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}\prod_{i=1}^{m}f_{i}(x)\geq\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}}\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}f_{1}(x)\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}\prod_{i=2}^{m}f_{i}(x)\\ &\geq\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}}\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}f_{1}(x)\left(\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}}\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}f_{2}(x)\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}\prod_{i=3}^{m}f_{i}(x)\right)\\ &=\left(\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}}\right)^{2}\left(\prod_{i=1}^{2}\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}f_{i}(x)\right)\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}\prod_{i=3}^{m}f_{i}(x)\\ &\geq\left(\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}}\right)^{3}\left(\prod_{i=1}^{3}\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}f_{i}(x)\right)\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}\prod_{i=4}^{m}f_{i}(x)\\ &\vdots\\ &\geq\left(\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}}\right)^{m-1}\left(\prod_{i=1}^{m-1}\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}f_{i}(x)\right)\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}f_{m}(x)\\ &=\left(\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}}\right)^{m-1}\left(\prod_{i=1}^{m}\,_{a^{+}}\mathbf{J}_{k}^{\alpha,\psi}f_{i}(x)\right), \end{split}$$

which yields to the desired inequality (3.5). Putting $f_1 = f_2 = \cdots = f_m = f$ in the inequality (3.5), we get the inequality (3.6). \square

Remark 3.4. We present some particular cases of Corollary 3.3.

- 1. By putting k = 1, $b = +\infty$, and a = 0 in the above Corollary, we obtain Theorem 8 and Corollary 2 in [10].
- 2. Setting $k=1,\,a=0$ and $\psi(\tau)=\frac{(\tau)^{\xi+\eta}}{\xi+\eta}$ gives Theorem 2.3 in [8].
- 3. Taking k=1, a=0 and $\psi(\tau)=\frac{(\tau)^{\theta}}{\theta}$ yields Theorem 7 in [13].

Corollary 3.5. Let f and g be two functions defined on $L_{X_{\psi'}}([a,b])$, such that f is monotone, g is differentiable on (a,b) and there exists a real numbers $m:=\inf_{x\in[a,b]}g'(x)$ and $M:=\sup_{x\in[a,b]}g'(x)$.

• If f is an increasing function, then

$$_{a+} J_{k}^{\alpha,\psi}(fg)(x) \ge \frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}} {_{a+}} J_{k}^{\alpha,\psi}f(x) {_{a+}} J_{k}^{\alpha,\psi}g(x) - m \frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}} {_{a+}} J_{k}^{\alpha,\psi}f(x) {_{a+}} J_{k}^{\alpha,\psi}I_{d}(x) + m {_{a+}} J_{k}^{\alpha,\psi}(I_{d}f)(x).$$

$$(3.7)$$

• If f is a decreasing function, then

$${}_{a} + J_{k}^{\alpha,\psi}(fg)(x) \ge \frac{\Gamma_{k}(\alpha+k)}{(\psi(x) - \psi(a))^{\frac{\alpha}{k}}} {}_{a} + J_{k}^{\alpha,\psi}f(x) {}_{a} + J_{k}^{\alpha,\psi}g(x) - M \frac{\Gamma_{k}(\alpha+k)}{(\psi(x) - \psi(a))^{\frac{\alpha}{k}}} {}_{a} + J_{k}^{\alpha,\psi}f(x) {}_{a} + J_{k}^{\alpha,\psi}I_{d}(x) + M {}_{a} + J_{k}^{\alpha,\psi}(I_{d}f)(x),$$

$$(3.8)$$

where $I_d(x)$ is the identity function.

Proof. Taking G(x) = g(x) - mx, thus G is differentiable and increasing on (a, b). By using the inequality (3.2), we get

$$a+J_{k}^{\alpha,\psi}(fG)(x) \ge \frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}} a+J_{k}^{\alpha,\psi}f(x) a+J_{k}^{\alpha,\psi}(g-mx)(x)$$

$$=\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}} a+J_{k}^{\alpha,\psi}f(x) a+J_{k}^{\alpha,\psi}g(x) - m\frac{\Gamma_{k}(\alpha+k)}{(\psi(x)-\psi(a))^{\frac{\alpha}{k}}} a+J_{k}^{\alpha,\psi}f(x) a+J_{k}^{\alpha,\psi}I_{d}(x), \quad (3.9)$$

we also have

$${}_{a+}\mathbf{J}_{k}^{\alpha,\psi}f(g-mI_{d})(x) = {}_{a+}\mathbf{J}_{k}^{\alpha,\psi}(fg)(x) - m_{a+}\mathbf{J}_{k}^{\alpha,\psi}(I_{d}f)(x). \tag{3.10}$$

Combining inequalities (3.9) and (3.10), we obtain the required inequality (3.7). Considering the situation of a decreasing function f and taking G(x) = g(x) - Mx, we will obtain the inequality (3.8) by sketching the proof of the inequality (3.7). \square

Remark 3.6. We give some specific results of Corollary 3.5.

- 1. Using k = 1, $b = +\infty$ and a = 0, we obtain Theorem 10 in [10].
- 2. Taking k=1, a=0 and $\psi(\tau)=\frac{(\tau)^{\xi+\eta}}{\xi+\eta}$ yields Theorem 2.4 in [8].
- 3. Setting k=1, a=0 and $\psi(\tau)=\frac{(\tau)^{\theta}}{\theta}$ gives Theorem 8 in [13].

4 Applications

The previously mentioned result is now applied to Chebyshev inequalities involving two specific operators: the k-Katugompola operator and the k-fractional conformable integral operator.

4.1 Chebyshev-type inequalities via k-Katugompola operator

Putting $\psi(\tau) = \frac{\tau^{\rho+1}}{\rho+1}$ where $\rho > 0$, the left side (k,ψ) -Hilfer $_{a+}\mathbf{J}_{k}^{\alpha,\psi}$ reduces to the left side k-Katugompola fractional integral operator (2.2) of order $\alpha > 0$ and the following results hold.

Corollary 4.1. Let f and g be two synchronous functions on [a,b] and let $\alpha,\beta,k>0$, then for x>a we have

$$\frac{(x^{\rho+1}-a^{\rho+1})^{\frac{\beta}{k}}}{(\rho+1)^{\frac{\beta}{k}}\Gamma_k(\alpha+k)}\,_{a^+}\mathcal{K}_k^\alpha(f\,g)(x) + \frac{(x^{\rho+1}-a^{\rho+1})^{\frac{\beta}{k}}}{(\rho+1)^{\frac{\beta}{k}}\Gamma_k(\alpha+k)}\,_{a^+}\mathcal{K}_k^\alpha(f\,g)(x) \geq \,_{a^+}\mathcal{K}_k^\alpha f(x)\,_{a^+}\mathbf{J}_k^{\alpha,\psi}g(x) + \,_{a^+}\mathcal{K}_k^\alpha f(x)\,_{a^+}\mathbf{J}_k^{\alpha,\psi}g(x),$$

and

$$_{a^+}\mathcal{K}_k^{\alpha}(fg)(x) \ge \frac{(\rho+1)^{\frac{\beta}{k}} \Gamma_k(\alpha+k)}{(x^{\rho+1}-a^{\rho+1})^{\frac{\beta}{k}}} \,_{a^+}\mathcal{K}_k^{\alpha}f(x),_{a^+}\mathcal{K}_k^{\alpha}g(x).$$

Corollary 4.2. Let i=1,2,...,m and $f, f_i \in L_{X_{\psi}^1}[a,b]$. If the functions f and f_i are positive increasing functions on [a,b], then for all integer $m \geq 1$ we have

$${}_{a+}\mathcal{K}_k^{\alpha}\prod_{i=1}^m f_i(x) \ge \left(\frac{(\rho+1)^{\frac{\beta}{k}}\Gamma_k(\alpha+k)}{(x^{\rho+1}-a^{\rho+1})^{\frac{\beta}{k}}}\right)^{m-1} \left(\prod_{i=1}^m {}_{a+}\mathcal{K}_k^{\alpha}f_i(x)\right),$$

and

$${}_{a^+}\mathcal{K}_k^\alpha f^m(x) \geq \left(\frac{(\rho+1)^{\frac{\beta}{k}}\,\Gamma_k(\alpha+k)}{(x^{\rho+1}-a^{\rho+1})^{\frac{\beta}{k}}}\right)^{m-1} \left(\,{}_{a^+}\mathcal{K}_k^\alpha f(x)\right)^m.$$

Corollary 4.3. Let f and g be two functions defined on $L_{X_{\psi'}}([a,b])$, such that f is monotone and g is differentiable on]a,b[and there exists a real numbers $m:=\inf_{x\in[a,b]}g'(x)$ and $M:=\sup_{x\in[a,b]}g'(x)$.

• If f is an increasing function, then

$$a^{+}\mathcal{K}_{k}^{\alpha}(f\,g)(x) \geq \frac{(\rho+1)^{\frac{\beta}{k}} \Gamma_{k}(\alpha+k)}{(x^{\rho+1}-a^{\rho+1})^{\frac{\beta}{k}}} a^{+}\mathcal{K}_{k}^{\alpha}f(x) a^{+} J_{k}^{\alpha,\psi}g(x) - m \frac{(\rho+1)^{\frac{\beta}{k}} \Gamma_{k}(\alpha+k)}{(x^{\rho+1}-a^{\rho+1})^{\frac{\beta}{k}}} a^{+}\mathcal{K}_{k}^{\alpha}f(x) a^{+}\mathcal{K}_{k}^{\alpha}I_{d}(x) + m a^{+}\mathcal{K}_{k}^{\alpha}(I_{d}f)(x).$$

• If f is a decreasing function, then

$${}_{a^{+}}\mathcal{K}_{k}^{\alpha}(f\,g)(x) \geq \frac{(\rho+1)^{\frac{\beta}{k}} \, \Gamma_{k}(\alpha+k)}{(x^{\rho+1}-a^{\rho+1})^{\frac{\beta}{k}}} \, {}_{a^{+}}\mathcal{K}_{k}^{\alpha}f(x) \, {}_{a^{+}}\mathcal{K}_{k}^{\alpha}g(x) \, - \, M \, \frac{(\rho+1)^{\frac{\beta}{k}} \, \Gamma_{k}(\alpha+k)}{(x^{\rho+1}-a^{\rho+1})^{\frac{\beta}{k}}} \, {}_{a^{+}}\mathcal{K}_{k}^{\alpha}f(x) \, {}_{a^{+}}\mathcal{K}_{k}^{\alpha}I_{d}(x) + M \, {}_{a^{+}}\mathcal{K}_{k}^{\alpha}(I_{d}f)(x),$$

where $I_d(x)$ is the identity function.

4.2 Chebyshev-type inequalities via k-fractional conformable integral operator

Set $\psi(\tau) = \frac{(\tau - a)^{\theta}}{\theta}$ where $\theta > 0$, the left side (k, ψ) -Hilfer $_{a^+} \mathbf{J}_k^{\alpha, \psi}$ reduces to the left side k-fractional conformable integral operator (2.3) of order $\alpha > 0$ and we derive what follows.

Corollary 4.4. Let f and g be two synchronous functions on [a, b] and let $\alpha, \beta, k > 0$, then for x > a we have

$$\frac{(x-a)^{\frac{\theta \cdot \beta}{k}}}{\theta^{\frac{\beta}{k}} \Gamma_k(\alpha+k)} \, {}_{a^+}\mathcal{C}_k^\alpha(f\,g)(x) + \frac{(x-a)^{\frac{\theta \cdot \beta}{k}}}{\theta^{\frac{\beta}{k}} \, \Gamma_k(\alpha+k)} \, {}_{a^+}\mathcal{C}_k^\alpha(f\,g)(x) \geq \, {}_{a^+}\mathcal{C}_k^\alpha f(x) \, {}_{a^+} \mathbf{J}_k^{\,\beta,\psi} g(x) + \, {}_{a^+}\mathcal{C}_k^\alpha f(x) \, {}_{a^+} \mathbf{J}_k^{\,\alpha,\psi} g(x),$$

and

$$_{a^+}\mathcal{C}_k^{\alpha}(fg)(x) \ge \frac{\theta^{\frac{\beta}{k}} \Gamma_k(\alpha+k)}{(x-a)^{\frac{\theta\beta}{k}}} \, _{a^+}\mathcal{C}_k^{\alpha}f(x),_{a^+}\mathcal{C}_k^{\alpha}g(x).$$

Corollary 4.5. Let i=1,2,...,m and $f, f_i \in L_{X_{\psi}^1}[a,b]$. If the functions f and f_i are positive increasing functions on [a,b], then for all integer $m \geq 1$ we have

$$_{a^{+}}\mathcal{C}_{k}^{\alpha}\prod_{i=1}^{m}f_{i}(x)\geq\left(\frac{\theta^{\frac{\beta}{k}}\,\Gamma_{k}(\alpha+k)}{(x-a)^{\frac{\theta}{k}}}\right)^{m-1}\left(\prod_{i=1}^{m}\,_{a^{+}}\mathcal{C}_{k}^{\alpha}f_{i}(x)\right),$$

and

$$_{a^{+}}\mathcal{C}_{k}^{\alpha}f^{m}(x) \geq \left(\frac{\theta^{\frac{\beta}{k}}\Gamma_{k}(\alpha+k)}{(x-a)^{\frac{\theta-\beta}{k}}}\right)^{m-1}\left({_{a^{+}}\mathcal{C}_{k}^{\alpha}f(x)}\right)^{m}.$$

Corollary 4.6. Let f and g be two functions defined on $L_{X_{\psi'}}([a,b])$, such that f is monotone and g is differentiable on]a,b[and there exists a real numbers $m:=\inf_{x\in[a,b]}g'(x)$ and $M:=\sup_{x\in[a,b]}g'(x)$.

• If f is an increasing function, then

$$_{a^{+}}\mathcal{C}_{k}^{\alpha}(fg)(x) \geq \frac{\theta^{\frac{\beta}{k}} \Gamma_{k}(\alpha+k)}{(x-a)^{\frac{\theta-\beta}{k}}} \,_{a^{+}}\mathcal{C}_{k}^{\alpha}f(x) \,_{a^{+}} \mathcal{C}_{k}^{\alpha,\psi}g(x) - m \, \frac{\theta^{\frac{\beta}{k}} \Gamma_{k}(\alpha+k)}{(x-a)^{\frac{\theta-\beta}{k}}} \,_{a^{+}}\mathcal{C}_{k}^{\alpha}f(x) \,_{a^{+}}\mathcal{C}_{k}^{\alpha}I_{d}(x) + m \,_{a^{+}}\mathcal{C}_{k}^{\alpha}(I_{d}f)(x).$$

• If f is a decreasing function, then

$$_{a^{+}}\mathcal{C}_{k}^{\alpha}(f\,g)(x) \geq \frac{\theta^{\frac{\beta}{k}}\,\Gamma_{k}(\alpha+k)}{(x-a)^{\frac{\theta\,\beta}{k}}}\,_{a^{+}}\mathcal{C}_{k}^{\alpha}f(x)\,_{a^{+}}\mathcal{C}_{k}^{\alpha,\psi}g(x) - M\,\frac{\theta^{\frac{\beta}{k}}\,\Gamma_{k}(\alpha+k)}{(x-a)^{\frac{\theta\,\beta}{k}}}\,_{a^{+}}\mathcal{C}_{k}^{\alpha}f(x)\,_{a^{+}}\mathcal{C}_{k}^{\alpha}I_{d}(x) + M\,_{a^{+}}\mathcal{C}_{k}^{\alpha}(I_{d}f)(x)\,,$$

where $I_d(x)$ is the identity function.

References

- [1] A.O. Akdemir, S.I. Butt, M. Nadeem, and M.A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics 9 (2021), no. 2, 122.
- [2] S. Belarbi and Z. Dahmani, On some new fractional integral inequalities, J. Inequal. Pure Appl. Math. 10 (2009), no. 3, 1–12.
- [3] P.L. Chebyshev, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov 2 (1882), 93–98.
- [4] M. Houas, Z. Dahmani, and M.Z. Sarikaya, Some integral inequalities for (k, s)-Riemann-Liouville fractional operators, J. Interdiscip. Math. 21 (2018), 7-8, 1575–1585.
- [5] S. Iqbal, S. Mubeen, and M. Tomar, On Hadamard k-fractional integrals, J. Fractional Calc. Appl. 9 (2018), no. 2, 255–267.

[6] V. Kiryakova, Generalized Fractional Calculus and Applications, vol. 301 of Pitman Research Notes in Mathematics Series, Longman Scientific et Technical, Harlow, UK, 1994.

- [7] Y.C. Kwun, G. Farid, W. Nazeer, S. Ullah, and S. M. Kang, Generalized Riemann-Liouville k-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access 6 (2018), 64946–64953.
- [8] K.S. Nisar, G. Rahman, and K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl. **2019** (2019), 245.
- [9] F. Qi, S. Habib, S. Mubeen, and M.N. Naeem, Generalized k-fractional conformable integrals and related inequalities, AIMS Math. 4 (2019), no. 3, 343–358.
- [10] A. Senouci and M. Sofrani, Generalizations of some integral inequalities for Riemann-Liouville operator, Chebyshevskii Sbornik 23 (2022), no. 2, 161–169.
- [11] E. Set and A. Gozpnar, Some new inequalities involving generalized fractional integral operators for several class of functions, AIP Conf. Proc. **1833** (2017), no. 1.
- [12] E. Set, I. Mumcu, and S. Demirbas, Conformable fractional integral inequalities of Chebyshev type, Rev. Real Acad. Cien. Exact. Fis. Natur. Ser. A. Mate. 113 (2019), 2253–2259.
- [13] E. Set, M.E. Özdemir, and S. Demirbas, Chebyshev type inequalities involving extended generalized fractional integral operators, AIMS Math. 5 2020, no. 4, 3573–3583.