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Abstract

In the contemporary supply chain management landscape, the intricacies of managing a single vendor-multi-buyer
network amidst stochastic demand pose significant challenges. This paper delves into optimizing such supply chains,
emphasizing resilience in the face of uncertain demand scenarios. Leveraging the NSGA-II (Non-dominated Sorting
Genetic Algorithm II), a powerful evolutionary optimization technique, we explore the multifaceted dimensions of
supply chain optimization. The proposed framework aims to enhance the robustness and adaptability of supply chain
networks by simultaneously addressing two key objectives: minimizing costs and maximizing service levels. By consid-
ering stochastic demand patterns, inherent uncertainties are meticulously accounted for, ensuring that the optimized
solutions are efficient and resilient to unforeseen fluctuations in demand. This study comprehensively evaluates the
single vendor-multi buyer supply chain model and highlights the efficacy of the NSGA-II algorithm in navigating
the complex trade-offs inherent in supply chain optimization. By generating diverse Pareto-optimal solutions, the
algorithm empowers decision-makers with actionable insights, enabling them to make informed choices that balance
cost-effectiveness with service quality. Furthermore, this paper contributes to the evolving discourse on supply chain
resilience by integrating advanced optimization methodologies with real-world supply chain dynamics. The findings
underscore the importance of proactive optimization strategies in building resilient supply chain networks capable of
withstanding the volatility of today’s global marketplace. In conclusion, this research illuminates the path towards
catalyzing resilience in single vendor-multi buyer supply chains, offering a nuanced understanding of the interplay
between optimization algorithms, stochastic demand, and supply chain performance. Organizations can fortify their
supply chain architectures through continuous refinement and adaptation, fostering agility and competitiveness in an
ever-evolving business landscape.

Keywords: supply chain optimization, stochastic demand, NSGA-II algorithm, resilience, multi-objective
optimization, single vendor-multi buyer
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1 Introduction

Supply chain management (SCM) is not merely a functional aspect of business operations; it serves as the lifeblood
that sustains the modern economy, orchestrating the seamless flow of goods and services across global networks. At
its core, SCM embodies a delicate balance of integrity and coordination, weaving disparate elements together into a
cohesive efficiency and resilience tapestry. It ensures that every link in the supply chain, from sourcing raw materials
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to delivering the final product to customers, functions harmoniously, optimizing resources, minimizing costs, and
maximizing customer satisfaction. This intricate dance of suppliers, manufacturers, distributors, and retailers requires
meticulous planning, real-time visibility, and agile responses to disruptions, making SCM a linchpin of economic
stability and growth in today’s interconnected world [16, 24].

Scholars like Goyal [3, 4] Pan, Yang [15], Lu, Yu-Jen [9], and Lee [7] have illuminated the path toward optimizing
supply chain dynamics. Their pioneering research has laid a robust foundation upon which subsequent generations of
scholars and practitioners continue to build, each brick adding depth and nuance to the evolving discourse on supply
chain optimization.

As the intricacies of global commerce evolve, so do the challenges confronting SCM practitioners. In an era
defined by volatility, uncertainty, complexity, and ambiguity (VUCA), the imperative for agile and adaptive supply
chain strategies is increasingly evident. Within this dynamic crucible of challenge and opportunity, genetic algorithms
(GAs) emerge as a potent catalyst for transformation, providing a ray of hope amid the turbulence of the contemporary
business landscape.

In the face of VUCA, traditional supply chain optimization methods often fall short, unable to adapt quickly to
fluctuating market conditions and dynamic customer demands. This is where genetic algorithms step in, offering a
powerful solution to the complexities of supply chain management. Unlike conventional optimization techniques, GAs
mimics the process of natural selection, evolving solutions over successive generations to find the most efficient and
effective outcomes.

GAs excel in handling complex, multi-objective optimization problems, which are prevalent in SCM. These problems
often involve conflicting objectives, such as minimizing costs while maximizing service levels or reducing lead times
while minimizing inventory levels. Traditional optimization methods struggle to find optimal solutions in such scenarios
due to their inability to explore diverse solution spaces and handle non-linear relationships between variables. GAs,
on the other hand, employ evolutionary principles to search for solutions that balance these competing objectives,
enabling SCM practitioners to make informed decisions that drive sustainable value creation.

Furthermore, GAs facilitate adaptability and resilience in supply chain operations. In a VUCA environment,
where disruptions are frequent and unpredictable, quickly adjusting and optimizing supply chain processes is crucial
for maintaining competitiveness. Genetic algorithms enable SCM professionals to rapidly reconfigure routes, adjust
inventory levels, and optimize production schedules in response to changing market conditions or unforeseen events.
By leveraging data-driven insights and adaptive optimization techniques, GAs empower organizations to react to
disruptions and proactively anticipate and mitigate risks, driving continuous improvement and competitive advantage.

By harnessing GAs’ computational prowess, researchers have unlocked new frontiers in supply chain optimization.
They transcend traditional paradigms to explore innovative inventory management, production planning, and logistics
optimization approaches. From the intricacies of inventory routing to the complexities of vendor-managed inventory
(VMI) systems, GAs have emerged as indispensable tools in the arsenal of SCM professionals, enabling them to
navigate the complexities of the modern supply chain with agility and precision.

One key advantage of genetic algorithms is their ability to handle complex, multi-objective optimization problems.
In the context of supply chain management, where multiple objectives such as cost minimization, service level max-
imization, and risk mitigation often conflict, GAs offer a flexible and efficient means of finding optimal trade-offs.
Through exploring diverse solution spaces and applying evolutionary principles, GAs enable SCM practitioners to
uncover innovative strategies that balance competing objectives and drive sustainable value creation.

Moreover, GAs facilitate adaptability and resilience in supply chain operations. In a VUCA environment, where
disruptions are frequent and unpredictable, quickly adjusting and optimizing supply chain processes is crucial for
maintaining competitiveness. Genetic algorithms excel in this regard, providing SCM professionals with the tools to
rapidly reconfigure routes, adjust inventory levels, and optimize production schedules in response to changing market
conditions or unforeseen events.

As the digital revolution continues to reshape the landscape of global commerce, the role of genetic algorithms
in supply chain optimization is poised to become even more significant. With the advent of big data analytics,
IoT-enabled devices, and artificial intelligence, GAs offers a scalable and robust solution for managing supply chain
networks’ increasing complexity and interconnectedness. By leveraging data-driven insights and adaptive optimization
techniques, GAs empower SCM practitioners to react to disruptions and proactively anticipate and mitigate risks,
driving continuous improvement and competitive advantage.

In conclusion, genetic algorithms represent a transformative force in supply chain management, enabling practition-
ers to navigate the challenges of a VUCA world with confidence and agility. As we continue to push the boundaries
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of innovation and explore new horizons in SCM, GAs will undoubtedly remain at the forefront, driving efficiency,
resilience, and sustainable growth in the global supply chain ecosystem [20, 22, 23, 25].

The journey undertaken in this paper represents more than a mere academic exercise; it is a quest for enlightenment
in the realm of supply chain optimization. As we delve deeper into the intricacies of problem definitions, mathematical
models, and solution methodologies, we seek not only to unravel the mysteries of supply chain dynamics but also to
illuminate the path forward for practitioners and scholars alike.

Through meticulous analysis and rigorous experimentation, we endeavor to distill insights that transcend the
boundaries of theory and practice. We empower stakeholders to make informed decisions that drive sustainable value
creation and foster competitive advantage in an ever-changing world. Indeed, the conclusions drawn from this endeavor
are not merely endpoints but rather waypoints on a continuous journey of discovery and innovation.

As we embark on this voyage of exploration, let us not lose sight of the ultimate destination: a future where supply
chains are not merely efficient and resilient but also compassionate and sustainable, serving as engines of prosperity
for all stakeholders involved. With this vision in mind, we embark on our quest, fueled by curiosity, passion, and the
relentless pursuit of excellence.

2 Problem definitions

This study focuses on elucidating the complexities inherent in a single vendor-multi buyer supply chain model. This
intricate system comprises interconnected components, including production, transportation, and demand dynamics,
all of which interact synergistically to determine the system’s overall efficiency and effectiveness.

Within this multifaceted framework, each buyer assumes a critical role in influencing demand patterns, thereby
exerting a significant impact on the operational dynamics of the supply chain. Concurrently, the vendor shoulders the
responsibility of coordinating production activities to fulfill these varied demands within stipulated time constraints,
further complicating the operational landscape [11, 29].

At the heart of the problem lies the challenge of harmonizing disparate elements—production, transportation, and
demand—into a cohesive and optimized system. This entails devising strategies to synchronize production schedules
with fluctuating demand patterns, orchestrating the movement of goods through the transportation network efficiently,
and ensuring timely delivery to meet buyer requirements.

Moreover, the inherent uncertainties associated with demand variability and transportation constraints add layers
of complexity to the problem, necessitating robust optimization techniques to navigate through these uncertainties
effectively. Balancing conflicting objectives such as minimizing production costs, optimizing transportation routes,
and meeting diverse buyer demands presents a formidable optimization challenge that requires careful consideration
and strategic decision-making [13, 18, 28].

In summary, the problem at hand encompasses the intricate interplay of production, transportation, and demand
dynamics within a single vendor-multi-buyer supply chain model. By elucidating these problem definitions, we lay the
groundwork for a comprehensive analysis to identify optimal solutions to enhance the supply chain system’s efficiency,
responsiveness, and resilience. Through rigorous investigation and innovative methodologies, we endeavor to unlock
insights that drive tangible improvements in supply chain performance and operational excellence [5, 10].

2.1 Assumptions

1. Limited Storage Capacity: Storage space availability is finite within the supply chain. Consequently, strategic
allocation of inventory space is imperative to ensure optimal utilization and mitigate the risks associated with
stockouts or excessive inventory levels.

2. Stochastic Demand: Variability in buyers’ demand patterns introduces inherent uncertainty into the supply chain
dynamics. Addressing this uncertainty necessitates the adoption of robust forecasting techniques and adaptive
inventory management strategies to navigate demand fluctuations and maintain service levels effectively.

3. Constant Production Rate: A consistent production rate is assumed across all products. This assumption
underscores the importance of standardized manufacturing processes and efficient resource utilization to uphold
reliability and consistency in product supply and effectively meet demand requirements.

4. Limited Planning Horizon: The planning horizon within the supply chain is bounded, imposing constraints
on decision-making processes. Proactive planning and resource allocation are essential to align with demand
requirements within specified time frames, ensuring timely response to market dynamics and customer needs.
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5. Heterogeneous Transportation Fleets: The transportation fleet comprises vehicles with diverse capacities and
capabilities. Optimal route planning and vehicle allocation strategies are indispensable to enhance transportation
efficiency, minimize costs, and reduce delivery lead times, thereby optimizing overall supply chain performance.

6. Single Vehicle per Route: Each transportation route is serviced by a single vehicle, simplifying logistics operations
and fostering streamlined coordination. This approach maximizes the utilization of transportation resources while
minimizing congestion and delays, thereby enhancing operational efficiency and customer satisfaction.

7. Single Meeting per Period: Limiting each buyer to interact with each vehicle once per time period streamlines
communication and transactional processes. This simplification enhances logistical efficiency and reduces un-
necessary complexity in scheduling and coordination, facilitating smoother operations within the supply chain
network.

By delineating these assumptions, this study sets the stage for a comprehensive analysis of the single vendor-multi
buyer supply chain model. Through rigorous analysis and simulation, the aim is to unravel the complexities inherent in
supply chain operations, identify optimization opportunities, and offer insights and recommendations to drive tangible
improvements in performance and resilience.

2.2 Parameters and decision variables

The supply chain operates within an infinite horizon that encompasses buyers, products, and the transportation
fleet. A vast array of parameters and decision variables dictate its fluid dynamics and operational efficacy [14, 17, 24].

Parameters:

In an infinite horizon for buyers (i = 1, 2, ..., N), products (p = 1, 2, ..., P ) and fleet of transportation (k = 1, 2, ...,K)
parameters are:

Qp: Inventory of product p for vendor,

Qip: Value of product p ordered by buyer i,

Dp: Demand rate of product p

Rp: Production rate of product p, (Pi ≥ Di)

Dip: The demand of products ordered by buyer i, (Dp =
∑p

i=1Dip)

Xip: Demand in lead-time, Xip ∼ N{DipLip, (σip
√
Lip)

2)}
ULip: Upper bound for lead-time of product p for buyer i,

Aip: Ordering cost of the product p for buyer i,

Avp: Set-up cost of product p,

Cv
p : Produce cost of each unit of product p,

CB
ip: purchasing cost of each unit of product p, (Cv

p < CB
ip, ∀i, p)

Cv
ip(Lip): Violation cost of lead-time for the product p for buyer i,

hip: Holding cost of the product p for buyer i,

hvp: Holding cost of product p for vendor

h′vp: Safety coefficient of product p for buyer i,

K: Maximum capacity of transportation vehicles,

qk: Maximum capacity of vehicle k,

tij : Travel time from vertex i to vertex j,

ai: Receiving time to vertex i,

gik: Service time of vehicle k to vertex i,

wik: Lead-time of the vehicle k in vertex i,

τk: Longest permitted route time for vehicle k,

fik: Servicing time of the vehicle k in vertex i,

z0k: Leaving time of vehicle k from purchasing storage,
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ei: The earliest time that the buyer i received goods,

li: the latest time that the buyer i received goods,

f : Fix the cost of using vehicles on the routes,

F v: Maximum capacity of vendor capacity,

FB
i : Maximum capacity of buyer i,

Sip: Safety stock of product p for the buyer i,

vp: The ratio for a volume of product p to basis product,

ct: Fix cost of each transportation time unit,

TECV
0 : The expected total cost of each time unit for the vendor,

TECB
0 : The expected total cost of each time unit for a buyer,

TECV
A : Expected fixed set-up cost of each time unit for the vendor,

TECV
H : Expected holding cost of each time unit for the vendor,

TECB
H : Expected holding cost of each time unit for buyer,

TECB
O : Expected ordering cost of each time unit for buyer,

TECB
T : Expected transportation cost of each time unit for buyer,

Pi: Production rate of buyer i,

Di: Demand rate of buyer i,

σip: The standard deviation of product p for buyer i,

n: Number of transportations from vendor to buyer,

rip: Re-order point of the product p

Lip: Lead-time of product p for buyer i,

xijk: Binary variable, if vehicle k travel from vertex i to vertex j is equal to 1, else is equal zero, (i, j ̸= 0, i ̸= j)

The mathematical model is as follows [6, 8]:

Mathematical model

The inventory pattern of the vendor and buyer i for the product p is presented in figure 1.

Z1 = min

(
P∑

p=1

Dp

Qp

(
Avp

n
+

N∑
i=1

(Aip + Cip(Lip))

))
+

N∑
i=1

P∑
p=1

(
hipC

B
ip

(
Qp

2Rp
Dip + k′ipσip

√
Lip

))

+

P∑
p=1

Qp

2
hvpC

V
p

(
n

(
1− Dp

Rp

)
− 1 +

2Dp

Rp

)

+

N∑
i=1

N∑
j=1

K∑
k=1

xijktijctk (2.1)

Z2 = minmax
i

{
P∑

p=1

Dpσip
√
Lipψ(k

′
ip)

DipQp

}
(2.2)

N∑
j=1,i̸=j

xijk =

N∑
j=1,i̸=j

xjik ≤ 1, ∀i; i = {0, 1, ..., N}, ∀k; k = {1, ...,K} (2.3)

K∑
k=1

N∑
j=0,j ̸=i

xijk = 1, ∀i; i = {1, ..., N} (2.4)

K∑
k=1

N∑
i=0,i̸=j

xijk = 1, ∀j; j = {1, ..., N} (2.5)
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Figure 1: The inventory pattern of the vendor and buyer i for the product p

N∑
i=1

P∑
p=1

Qipvp

N∑
j=0

xijk ≤ qk, ∀k; k = {1, ...,K} (2.6)

N∑
i=0

N∑
j=0,j ̸=i

xijk(tij + gik + ωik) ≤ τk, ∀k; k = {0, 1, ...,K} (2.7)

z0k = ω0k = g0k = 0, ∀k; k = {1, ...,K} (2.8)

K∑
k=1

N∑
i=0,j ̸=i

xijk(ai + tij + gik + ωik) ≤ aj , ∀j; j = {i, ..., N} (2.9)

ei ≤ (ai + ωik) ≤ li, ∀i; i = {1, ..., N}, ∀k; k = {i, ...,K} (2.10)
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P∑
p=1

(Sip +Qip)Vp ≤ FB
i , ∀i; i = {1, ..., N} (2.11)

P∑
p=1

nVp

(
Qp −

QpDp

Rp

)
≤ FV

1 ≤ Lip ≤ ULip

Qip, n ≥ 0;xijk ∈ {0, 1}, ∀i, j; i, j = {1, ..., N} (2.12)

3 Solving algorithm

The NSGA (Non-dominated Sorting Genetic Algorithm) introduced by Srinivas and Deb [27] represents a signif-
icant advancement in the realm of multi-objective optimization algorithms. Building upon Goldberg’s non-dominant
criterion [1, 2] this algorithm revolutionized the approach to solving complex optimization problems by efficiently
ranking solutions based on their dominance status.

However, despite its efficacy, the NSGA algorithm exhibited high sensitivity to the parameters of shared fitness.
In response to this limitation, Deb et al. embarked on a quest to refine and enhance the algorithm’s performance,
culminating in the development of NSGA-II.

NSGA-II represents a quantum leap forward in multi-objective optimization, offering improved robustness and
stability compared to its predecessor. By leveraging innovative techniques and methodologies, NSGA-II overcomes its
predecessor’s shortcomings, providing more reliable and accurate solutions to complex optimization problems [12].

Through a meticulous blend of evolutionary principles and computational ingenuity, NSGA-II has indeed risen as
a cornerstone in the arsenal of optimization algorithms. This powerful tool empowers researchers and practitioners
alike to confront real-world challenges with unparalleled efficiency and precision. Its versatility and adaptability make
it the preferred choice for addressing many optimization problems across diverse domains, spanning from engineering
and finance to logistics and beyond [19, 21, 26].

For the presented model, the algorithm chromosome encapsulates crucial parameters essential for optimizing the
supply chain dynamics. These parameters include each product’s production value, production cycle, lead time, safety
coefficient, and routes. Figure 2 illustrates the schematic chromosome structure tailored for a scenario involving 3
products, 5 buyers, and 3 vehicles.

Figure 2: Chromosome Structure of Presented Model

Each component plays a pivotal role in shaping the optimization process in this chromosome structure. The
production value and cycle dictate the manufacturing schedule and volume for each product, while the lead time
parameter influences the timing of product delivery to buyers. Additionally, the safety coefficient ensures buffer stock
levels to mitigate risks associated with demand variability.

Furthermore, the incorporation of routes within the chromosome enables the optimization algorithm to explore
various transportation strategies, considering factors such as vehicle capacity, distance, and efficiency. By integrating
these diverse parameters into a unified chromosome structure, the optimization algorithm can navigate the complex-
ities of the supply chain model with precision and effectiveness, ultimately driving toward enhanced efficiency and
performance.
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4 Numerical example

This section presents a numerical example with 8 buyers, 3 products, and 3 vehicles. Tables 1 to 7 present all the
parameters of this problem, and Table 8 contains the results of the NSGA-II algorithm. Figure 3 presents the Pareto
front of this problem [6].

Table 1: Ordering cost, demand rate, purchasing cost, and standard deviation of products for buyers

Table 2: Holding cost, lead-time and service time

Table 8 provides a comprehensive overview of key performance metrics used to evaluate the results of multi-
objective algorithms. These metrics include the mean ideal distance (MID), diversity, algorithm implementation time,
and the number of Pareto solutions (Nos). By analyzing these metrics, researchers can gain valuable insights into the
efficiency and effectiveness of optimization algorithms in addressing complex multi-objective optimization problems.
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Table 3: Safety stock, upper bound for lead-time and violation cost of lead-time

Table 4: Travel time

Table 5: Earliest time, latest time and maximum capacity of buyers
Buyer

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

ei 19 13 15 14 6 8 5 11 12 8 10 13 9 4 7

li 190 133 150 140 60 80 52 111 120 82 103 135 90 46 70

FB
i 96687 90548 74227 87838 70852 98590 99399 93208 69444 72737 62334 89221 94142 95686 77914
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Table 6: Products information
Product

1 2 3
Dp 41842 43883 45095
Rp 42277 44223 45314
Avp 2000 1500 2500

CV
p 15 20 10

hvp 0.2 0.15 0.25
Vp 3 1 2

Table 7: Maximum capacity, longest permitted route time, and fix cost of each transportation time
machine

1 2 3
qk 50000 45000 55000
τk 100 90 110
ct 2 4 3

Figure 3: Pareto front of NSGA-II.

Table 8: Results of NSGA-II algorithm
TIME DIVERSITY SPACING NOS MID

NSGA-II 85.23 1.6613E+05 1.0015E+03 100 2.1197E+05

Furthermore, Fig. 3 showcases the optimal Pareto front obtained through the implementation of NSGA-II. This
visualization offers a graphical representation of the trade-offs between competing objectives, clearly depicting the
Pareto-optimal solutions generated by the algorithm. By examining the Pareto front, researchers can discern the
relationships between different objectives and make informed decisions regarding the selection of solutions that best
align with their preferences and constraints.

5 Conclusion

In this paper, we have delved into the complexities of a single vendor-multi buyer bi-objective inventory model
within the realm of supply chain management (SCM). Our primary objectives were to minimize the cost of SCM and
maximize the service level provided to buyers. Given this model’s non-linear integer programming nature and its
classification as NP-hard, we employed the NSGA-II algorithm to tackle the optimization challenge effectively.

The proposed model has been formulated with the aim of minimizing the total expected cost associated with various
facets of the supply chain, including production, inventory management, transportation, and lead time reduction. By
optimizing production, inventory, and routing decisions while simultaneously ensuring the satisfaction of buyer service
level constraints, we strive to enhance the overall efficiency and performance of the supply chain system.

Several avenues for further studies present themselves. Firstly, alternative multi-objective optimization algorithms,
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such as multi-objective particle swarm optimization (MOPSO), could be investigated to compare their efficacy and
performance against NSGA-II. Additionally, the scope of research could be broadened to encompass more complex
supply chain scenarios, such as multi-vendor-multi-buyer models, which would introduce additional layers of complexity
and challenge to the optimization problem.

By continuing to push the boundaries of research in supply chain optimization, exploring new methodologies, and
addressing increasingly complex real-world scenarios, we can strive towards developing robust and adaptive supply
chain strategies capable of navigating the evolving landscape of global commerce with agility and resilience.
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