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Abstract

In this paper, we defined αG−admissible interpolative type contraction mappings in G-metric spaces. We proved some
convergence results for such classes of mappings using the properties of G-metric space and found the fixed point
results for such contractive mappings. To elaborate on the results we provided some examples, which show that our
results hold in the setting of G−metric spaces.
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1 Introduction and preliminaries

The study of metric fixed point theory is one of the cornerstones of mathematics and many other sciences. Various
studies have been made using different generalizations of the metric spaces in this theory. One of them is G-metric
spaces (see [24, 25]) which was introduced as a generalization of metric spaces (X, d). The G-metric space is defined
as follows:

Definition 1.1. [25] Let X be a nonempty set and let G : X ×X ×X → R+ be a function satisfying the following
properties:

(i) G(x, y, z) = 0 if and only if x = y = z;

(ii) 0 < G(x, x, y) for all x, y ∈ X with x ̸= y;

(iii) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with z ̸= y;

(iv) G(x, y, z) = G(x, z, y) = G(y, z, x) = . . . , (symmetry in all three variables);

(v) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X (rectangle inequality ).

Then the function G is called a G−metric on X and the pair (X,G) is called a G−metric space.
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Example 1.2. [24] Let (X, d) be an usual metric space, define Gs and Gm on X ×X ×X to R+ by

Gs (x, y, z) = d (x, y) + d (y, z) + d (x, z) , and Gm (x, y, z) = max {d (x, y) , d (y, z) , d (x, z)}

for all x, y, z ∈ X. Then (X,Gs) and (X,Gm) are G−metric spaces.

Definition 1.3. [25] Let (X,G) be a G−metric space and let (xn) be a sequence of points of X. A point x ∈ X
is said to be the limit of the sequence (xn) , if limn,m→+∞G (x, xn, xm) = 0, and one say that the sequence (xn) is
G−convergent to x.

Proposition 1.4. [25] Let (X,G) be G−metric space. Then the following are equivalent;

1. A sequence (xn) is G−convergent to x;

2. G (xn, xn, x) → 0, as n→ +∞;

3. G (xn, x, x) → 0, as n→ +∞;

4. G (xm, xn, x) → 0, as m,n→ +∞.

Definition 1.5. [25] Let (X,G) be a G−metric space. A sequence (xn) is called G−Cauchy sequence, if for any
ϵ > 0, there is N ∈ N such that G (xn, xm, xl) < ϵ, for all l,m, n ≥ N, that is, G (xn, xm, xl) → 0 as l,m, n→ +∞.

Proposition 1.6. [25] In a G−metric space (X,G) , the following are equivalent;

1. The sequence (xn) is a G−Cauchy sequence;

2. For every ϵ > 0, there exists N ∈ N such that G (xn, xm, xm) < ϵ, for all n,m ≥ N ∈ N.

Definition 1.7. [25] A G−metric space (X,G) is called symmetric G−metric space, if G (x, y, y) = G (y, x, x) for all
x, y ∈ X.

It is clear that, any G−metric space, where G derives from an underlying metric via Gs or Gm in Example 1.2 is
symmetric. The following example presents the simplest instance of a nonsymmetric G−metric and so also one which
does not arise from any metric in the above ways.

Example 1.8. [25] Let X = {a, b} consider G (a, a, a) = G (b, b, b) = 0, G (a, a, b) = 1, G (a, b, b) = 2. Then it can be
easily verified that G is a G−metric, but G (a, b, b) ̸= G (a, a, b) .

Proposition 1.9. [25] Every G−metric space (X,G) induces a metric space (X, dG) , which is defined as follows:

dG (x, y) = G (x, y, y) +G (y, x, x) , for all x, y ∈ X.

Note that, if (X,G) is symmetric, thendG (x, y) = 2G (x, y, y) for all x, y ∈ X. However, if (X,G) is not symmetric,
then

3

2
G (x, y, y) ≤ dG (x, y) ≤ 3G (x, y, y) for all x, y ∈ X.

Definition 1.10. [25] A G−metric space (X,G) is said to be G−complete if every G−Cauchy sequence in (X,G) is
G−convergent in (X,G) .

Proposition 1.11. [25] A G−metric space (X,G) is G−complete if and only if (X, dG) is a complete metric space.

Lemma 1.12. [25] In a G−metric space (X,G), for x, y, z, t ∈ X, we have

(i) if G(x, y, z) = 0, then x = y = z;

(ii) G(x, y, z) ≤ G(x, x, y) +G(x, x, z);

(iii) G(x, y, y) ≤ 2G(y, x, x);

(iv) G(x, y, z) ≤ G(x, t, z) +G(t, y, z);

(v) G(x, y, z) ≤ 2

3
[G(x, y, t) +G(x, t, z) +G(t, y, z)];
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(vi) G(x, y, z) ≤ G(x, t, t) +G(y, t, t) +G(z, t, t).

Definition 1.13. [25] In a G−metric space (X,G), a mapping T : X → X is known as G−continuous if {T (xn)} is
G−convergent to T (x), where {xn} is any G−convergent sequence converging to x.

Here firstly, we recall the definition of α−admissible mappings and its generalizations in metric space and G−metric
space.

Definition 1.14. [34] Let α : X×X → [0,+∞) be a function. A mapping T : X → X is said to be an α−admissible
if x, y ∈ X, α(x, y) ≥ 1 makes α(Tx, Ty) ≥ 1.

Example 1.15. [34] Consider X = [0,+∞). We define T : X → X by Tx = 5x and α : X ×X → [0,+∞) by

α(x, y) =

{
e

y
x , if x ≥ y, x ̸= 0

0, if x < y,

for all x, y ∈ X. Then, T is an α−admissible mapping.

Definition 1.16. [20] Let T : X → X and α : X ×X → (−∞,+∞). It is said that T is a triangular α-admissible
mapping if

(T1) α(x, y) ≥ 1, implies α(Tx, Ty) ≥ 1, x, y ∈ X,

(T2) α(x, z) ≥ 1, α(z, y) ≥ 1, implies α(x, y) ≥ 1, x, y, z ∈ X.

Alghamdi and Karapinar [1] generalized the concept of α−admissible mappings in the context of G−metric space
and called it β−admissible. The definition of β−admissible given by Alghamdi and Karapinar is defined as follows.

Definition 1.17. [1] Let T : X → X and β : X ×X ×X → [0,+∞). Then T is said to be β−admissible if for all
x, y, z ∈ X. Then

β(x, y, z) ≥ 1 implies β(Tx, Ty, Tz) ≥ 1.

Alghamdi and Karapinar [1] introduced G−β−ψ contractive mappings of type-I and type-II. They also introduced
G − β − ψ contractive mappings of type−A. They also gave the relation between these different types of G − β − ψ
contractions and equivalent Banach contractions.

Alghamdi and Karapinar [2] further generalized the results of [1] by introducing generalized G− β−ψ contractive
mappings of type-I and type-II.

Kutbi et al. [22] defined rectangular G − α−admissible mapping. They also defined weak α − ψ − z contractive
mappings to establish some coincidence point theorems for coupled and tripled in Gb−metric space.

Definition 1.18. [22] Let (X,G) be a G-metric space and let T, S : X → X be given mappings and α : X3 → [0,+∞)
be a function. A mapping T is said to be a rectangular G− α−admissible mapping with respect to S if

(i) α(Sx, Sy, Sz) ≥ 1 implies α(Tx, Ty, Tz) ≥ 1, x, y, z ∈ X;

(ii) α(Sx, Sy, Sy) ≥ 1 and α(Sy, Sz, Sz) ≥ 1 implies α(Sx, Sy, Sz) ≥ 1, x, y, z ∈ X.

Hussain et al. [15] generalised the concept of rectangular G− α−admissible mappings and used to obtain coupled
and tripled fixed point theorems. Hussain et al. [16] established a generalized form of α−admissible mappings in
order to prove coincidence points and common fixed points in the framework of G-metric spaces. Further, several
authors obtained different kind of generalization of Banach contraction principle in different spaces, see for details
([33, 32, 4, 31, 6, 30, 7, 5]).

Definition 1.19. [16] Let X be an arbitrary set, α : X × X × X → [0,+∞) be a function and T : X → X. The
mapping T is called an α−dominating map on X if α(x, Tx, Tx) ≥ 1 or α(x, x, Tx) ≥ 1 for each x in X.
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Definition 1.20. [16] In an arbitrary set X, let T, S : X → X be given mappings and α : X ×X ×X → [0,+∞) be
a function. The pair (T, S) is said to be partially weakly G−α−admissible if and only if α(Tx, STx, STx) ≥ 1 for all
x ∈ X.

Definition 1.21. [16] In an arbitrary set X, let T, S : X → X be given mappings and α : X ×X ×X → [0,+∞)
be a function. The pair (T, S) is said to be partially weakly G− α−admissible with respect to T if and only if for all
x ∈ X, α(Tx, Sy, Sy) ≥ 1 where y ∈ T−1(Sx).

In the above definition, if T = S, T is said to be partially weakly G − α−admissible (or α−admissible of rank
3) with respect to T . If T = IX (the identity mapping on X), then the above definition becomes the definition of
partially weakly G− α−admissible pair.

Ansari et al. [3] also studied α−admissible mappings in G−metric space by introducing G − η−subadmissible
mapping and α−dominating map. They also introduced η−subdominating map, α−regular in the framework of
G−metric space, partially weakly G− α−admissible and partially weakly G− η−subadmissible mappings, etc.

Definition 1.22. [3] Let (X,G) be a G−metric space and let T be a self-mapping on X and η : X×X×X → [0,+∞)
be a function. T is said to be a G− η−subadmissible (or η-subadmissible of rank 3) mapping if x, y, z ∈ X,

η(x, y, z) ≤ 1 implies η(Tx, Ty, Tz) ≤ 1.

Definition 1.23. [3] Let X be an arbitrary set, η : X × X × X → [0,+∞) be a function and T : X → X be a
mapping. A mapping T is called an η−subdominating map on X if η(x, Tx, Tx) ≤ 1 or α(x, x, Tx) ≤ 1 for each x in
X.

Definition 1.24. [3] In a G−metric space (X,G), let T, S : X → X be given mappings and η : X×X×X → [0,+∞)
be a function. The pair (T, S) is said to be partially weakly G − η−subadmissible (or η−subadmissible of rank 3) if
and only if η(Tx, STx, STx) ≤ 1 for all x ∈ X.

Definition 1.25. [3] In a G-metric space (X,G), let T, S : X → X be given mappings and η : X×X×X → [0,+∞)
be a function. The pair (T, S) is said to be partially weakly G−η−subadmissible (or η−subadmissible of rank 3) with
respect to T if and only if for all x ∈ X, α(Tx, Sy, Sy) ≥ 1 where y ∈ T−1(Sx).

Hussain et al. [14] defined G−(α,ψ)−Mier-Keeler contractive mapping and used it in proving fixed point theorems
in the framework of G-metric spaces.

Definition 1.26. [14] Let (X,G) be a G−metric space and ψ ∈ Ψ. Let T : X → X be an α−admissible, if for each
ε > 0, there exists δ > 0 such that ε ≤ ψ(G(x, y, z)) < ε+ δ implies α(x, x)α(y, y)α(z, z)ψ(G(Tx, Ty, Tz)) < ε for all
x, y, z ∈ X. Then T is known as a G− (α,ψ)−Meir-Keeler contractive mapping.

In the above definition Ψ is the collection of nondecreasing functions ψ : [0,+∞) → [0,+∞) continuous in t such
that ψ(t) = 0 if and only if t = 0 and ψ(t+ s) ≤ ψ(t) + ψ(s). The concept of α−admissible mappings is extended to
S−metric space by Zhou et al. [37] and called it γ−admissible. They are defined as follows:

Definition 1.27. [37] Let T : X → X and γ : X ×X ×X → [0,+∞) then T is said to be a γ−admissible if for all
x, y, z ∈ X,

γ(x, y, z) ≥ 1 implies γ(Tx, Ty, Tz) ≥ 1.

They also extended γ−admissibility for two mappings. Further, they also introduced concepts of various contractive
mappings viz. type A, type B, type C, type D and type E. Bulbul et al. [21] also derived the concept of generalized
S − β−ψ contractive type mappings on the line of generalized G− β− γ contractive type mappings. Nabil et.al. [23]
also defined the concept of α−admissible mappings in Sb−metric space.

From these what we observe is that β−admissible was for the first time used by Samet et. al. [34] to represent
α−admissible while dealing with coupled fixed point related problems. Phiangsungnoen et. al. [29] also used the name
β−admissible mapping in order to represent α−admissible for fuzzy mappings. On the other hand, β−admissible of
Alghamdi and Karapinar [2] and γ−admissible of Zhou et. al. [37] are all extended versions of α−admissible mappings
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in G−metric space and S−metric space respectively. Thus, we can remark that α−admissible and its various forms
can be extended to G−metric as well as S−metric spaces and further to Gb−metric and Sb−metric spaces. With this
idea we introduce various forms of α−admissible mappings in the context of G−metric space and present following
definitions. For notation we use αG for α−admissible mappings in G−metric space.

Definition 1.28. Let T : X → X be a mapping and αG : X ×X ×X → [0,+∞) be a function, then the mapping
T is said to be αG−admissible, if for all x, y, z ∈ X, αG(x, y, z) ≥ 1 implies αG(Tx, Ty, Tz) ≥ 1.

Definition 1.29. Let T, S : X → X are mappings and αG : X ×X ×X → [0,+∞) be a function. We say that the
pair (T, S) is αG−admissible if for all x, y, z ∈ X such that αG(x, y, z) ≥ 1, then we have αG(Tx, Sy, Sz) ≥ 1 and
αG(Sx, Ty, Tz) ≥ 1.

Definition 1.30. Let T : X → X and αG : X × X × X → [0,+∞). We say that T is triangular αG−admissible
mapping if

(i) αG(x, y, z) ≥ 1 implies αG(Tx, Ty, Tz) ≥ 1, x, y, z ∈ X,

(ii) αG(x, t, t) ≥ 1 and αG(t, y, z) ≥ 1 implies αG(x, y, z) ≥ 1, x, y, z, t ∈ X.

Definition 1.31. Let T : X → X be a mapping and αG, ηG : X ×X → [0,+∞) are functions. We say that T is an
αG−admissible mapping with respect to ηG if x, y, z ∈ X,

αG(x, y, z) ≥ ηG(x, y, z) implies αG(Tx, Ty, Tz) ≥ ηG(Tx, Ty, Tz)

Note that if we take ηG(x, y, z) = 1, then this definition becomes definition 1.28 Also, if we take αG(x, y, z) = 1,
then it is said that T is an ηG−subadmissible mapping.

Definition 1.32. Let T, S : X → X and αG, ηG : X×X×X → [0,+∞). We say that the pair (T, S) is αG−admissible
mapping with respect to ηG if x, y, z ∈ X such that αG(x, y, z) ≥ ηG(x, y, z), then we have αG(Tx, Sy, Sz) ≥
ηG(Tx, Sy, Sz) and αG(Sx, Ty, Tz) ≥ ηG(Sx, Ty, Tz).

Lemma 1.33. Let T, S : X → X are triangular αG-admissible mappings. Suppose that there exists x0 ∈ X such
that αG(x0, Tx0, Tx0) ≥ 1. Define sequences

x2i+1 = Tx2i and x2i+2 = Sx2i+1, where i = 0, 1, 2, . . . .

Then we have αG(xn, xm, xm) ≥ 1, m,n ∈ N ∪ {0} and n < m.

Mustafa et al. ([26, 27, 28]) state and proved the following fixed point theorems on some classes of contractive
mappings defined on a G−metric space.

Theorem 1.34. [27] Let (X,G) be a G−metric space and T : X → X be a mapping satisfying the following:

G (Tx, Ty, Tz) ≤ aG (x, Tx, Tx) + bG (y, Ty, Ty) + cG (z, Tz, Tz) (1.1)

for all x, y, z ∈ X, where 0 < a+ b+ c < 1. Then T has a unique fixed point.

Theorem 1.35. [26] Let (X,G) be a complete G−metric space and T : X → X be a mapping satisfying:

G (Tx, Ty, Tz) ≤ aG (x, y, z) + bG (x, Tx, Tx) + cG (y, Ty, Ty) + dG (z, Tz, Tz) (1.2)

for all x, y, z ∈ X, where 0 ≤ a+ b+ c+ d < 1. Then T has a unique fixed point.

Theorem 1.36. [28] Let (X,G) be complete G−metric space and T : X → X be a mapping satisfying:

G(Tx, Ty, Tz) ≤ αG(x, y, z) + βmax {G(x, Tx, Tx), G(y, Ty, Ty), G(z, Tz, Tz)} (1.3)

for all x, y, z ∈ X, where 0 ≤ α+ β < 1. Then T has unique fixed point.
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Recently, Karapinar [17] proved a well known fixed point theorem of Kannan under the aspect of interpolation,
stated as:

Definition 1.37. [17] Let (X, d) be a metric space. A mapping T : X → X is said to be an interpolative Kannan
type contraction, if there are constants k ∈ [0, 1) and α ∈ (0, 1) such that

d (Tx, Ty) ≤ k [d (x, Tx)]
α
[d (y, Ty)]

1−α
,

for all x, y ∈ X \ Fix(T ), where Fix(T ) = {x ∈ X : Tx = x} .

Karapinar et al. [19] state and proved the following theorem for fixed point of above mapping.

Theorem 1.38. [19] Let (X, d) be a complete metric space. Let T : X → X be an interpolative Kannan type
contraction. Then T has a fixed point in X.

After, Karapinar et al. [18] introduced the notion of interpolative Reich–Rus–Cirić type contractions.

Definition 1.39. [18] In the framework of a partial metric space (X, d), a mapping T : X → X is called an
interpolative Reich–Rus–Cirić type contraction, if there are some constants k ∈ [0, 1) and α, β ∈ (0, 1) such that

d (Tx, Ty) ≤ k [d (x, y)]
α
[d (x, Tx)]

β
[d (y, Ty)]

1−α−β
,

for all x, y ∈ X \ Fix(T ).

Karapinar et al. [18] proved the following fixed point result for interpolative Reich–Rus–Cirić type contractions in
metric space.

Proposition 1.40. [18] In the framework of a metric space (X, d), if T : X → X is an interpolative Reich–Rus–Cirić
type contraction, then T has a fixed point in X.

Several authors have studied the fixed points of different interpolative type contractions mappings in generalized
metric spaces such as partial metric spaces, T0-quasi-metric spaces and convex b−metric spaces ([11, 12, 35, 36]).
Inspired by the results and definition above, we introduce the concept of interpolative type contractions in G−metric
space and we give some fixed point theorem for this contractions in complete G-metric spaces.

2 Main Results

In this section, we firstly give the following result corresponding to Theorem 1.34 using interpolation notion in
G−metric space.

Theorem 2.1. Let (X,G) be a complete G−metric space, αG : X ×X ×X → [0,+∞) be a function and T : X → X
be an αG−admissible mapping and an interpolative Reich-Rus-Cirić type contraction satisfying

αG(x, y, z)G (Tx, Ty, Tz) ≤ k [G (x, Tx, Tx)]
α
[G (y, Ty, Ty)]

β
[G (z, Tz, Tz)]

1−α−β
(2.1)

with αG(x, y, z) ≥ 1 for all x, y, z ∈ X\Fix (T ) where k ∈ [0, 1) and α, β ∈ (0, 1). Then T has a unique fixed point.

Proof . Since T is an interpolative Reich-Rus-Cirić type contraction, then from (2.1), we have

G (Tx, Ty, Ty) ≤ αG(x, y, y)G (Tx, Ty, Ty) ≤ k [G (x, Tx, Tx)]
α
[G (y, Ty, Ty)]

1−α

and
G (Ty, Tx, Tx) ≤ αG(y, x, x)G (Ty, Tx, Tx) ≤ k [G (y, Ty, Ty)]

α
[G (x, Tx, Tx)]

1−α

for all x, y ∈ X\Fix (T ) . Assume that (X,G) is symmetric. From the Proposition 1.9 and (2.1), the above inequality
becomes

1

2
dG (Tx, Ty) ≤ k

[
1

2
dG (x, Tx)

]α[
1

2
dG (y, Ty)

]1−α

=
k

2
[dG (x, Tx)]

α
[dG (y, Ty)]

1−α
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which implies that
dG (Tx, Ty) ≤ k [dG (x, Tx)]

α
[dG (y, Ty)]

1−α
(2.2)

for all x, y ∈ X\Fix (T ) . According to the condition (2.2), T is an interpolative Kannan type contraction in (X, dG)
metric space. Then, we know that T possesses a fixed point in X from Theorem 1.38. Suppose that (X,G) is not
symmetric. From the definition of the metric (X, dG) and (2.1), we get

1

3
dG (Tx, Ty) ≤ k

[
2

3
dG (x, Tx)

]α[
2

3
dG (y, Ty)

]1−α

=
2k

3
[dG (x, Tx)]

α
[dG (y, Ty)]

1−α

which implies that
dG (Tx, Ty) ≤ 2k [dG (x, Tx)]

α
[dG (y, Ty)]

1−α

for all x, y ∈ X\Fix (T ) . Since k ∈ [0, 1) . So, we are not sure about that either 2k < 1 or not. But we can prove
the existence of a fixed point using the properties of G−metric space. Let x0 ∈ X and the sequence {xn} be defined
as xn = Txn−1 = Tnx0, since αG(x0, x1, x1) ≥ 1 and T is an αG−admissible mapping, then αG(x1, x2, x2) =
αG(Tx0, Tx1, Tx1) ≥ 1, continuing on the same lines, we have αG(xn, xn+1, xn+1) ≥ 1. By using the condition (2.1),
we have

G (xn, xn+1, xn+1) ≤ αG(xn, xn+1, xn+1)G (xn, xn+1, xn+1)

= αG(Txn−1, Txn, Txn)G (Txn−1, Txn, Txn)

≤ k [G (xn−1, xn, xn)]
α
[G (xn, xn+1, xn+1)]

1−α
,

which implies that
[G (xn, xn+1, xn+1)]

α ≤ k [G (xn−1, xn, xn)]
α
.

From the above inequality, we have

G (xn, xn+1, xn+1) ≤ kG (xn−1, xn, xn) .

Recursively, we can write
G (xn, xn+1, xn+1) ≤ knG (x0, x1, x1) . (2.3)

Now, we will show that the sequence {xn} is a Cauchy sequence. Using the rectangle inequality, the inequality
(2.3) and for all n,m ∈ N, n < m, we get

G (xn, xm, xm) ≤ G (xn, xn+1, xn+1) +G (xn+1, xn+2, xn+2) + · · ·+G (xm−1, xm, xm)

≤ knG (x0, x1, x1) + kn+1G (x0, x1, x1) + · · ·+ km−1G (x0, x1, x1)

=
(
kn + kn+1 + · · ·+ km−1

)
G (x0, x1, x1)

≤ kn

1− k
G (x0, x1, x1) .

Taking limit as n,m→ +∞ in above inequality, we get

lim
n,m→+∞

G (xn, xm, xm) = 0.

This implies that {xn} is a Cauchy sequence. Since (X,G) is complete G−metric space, there exists u ∈ X such
that xn → u as n→ +∞. We suppose that Tu ̸= u. Then

G (xn+1, Tu, Tu) ≤ k [G (xn, xn+1, xn+1)]
α
[G (u, Tu, Tu)]

1−α

= k [G (xn, Txn, Txn)]
α
[G (u, Tu, Tu)]

1−α
.

Taking the limit as n→ +∞ in above inequality, this leads to

G (u, Tu, Tu) ≤ kG (u, Tu, Tu) < G (u, Tu, Tu) .

Which is a contradiction, hence Tu = u. □
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Now, we will state and prove our next result corresponding to Theorem (1.35) for interpolative type contraction.

Theorem 2.2. Let (X,G) be a complete G−metric space, αG : X × X × X → [0,+∞) and T : X → X be an
αG−admissible mapping satisfying

αG(x, y, z)G (Tx, Ty, Tz) ≤ k [G (x, y, z)]
α
[G (x, Tx, Tx)]

β
[G (y, Ty, Ty)]

γ
[G (z, Tz, Tz)]

1−α−β−γ
, (2.4)

where αG(x, y, z) ≥ 1 for all x, y, z ∈ X\Fix (T ) , k ∈ [0, 1) and α, β, γ ∈ (0, 1). Then, T has a fixed point in X.

Proof . Since T holds the condition (2.4), αG(x, y, y) and αG(y, x, x) ≥ 1, we have

G (Tx, Ty, Ty) ≤ αG(x, y, y)G (Tx, Ty, Ty)

≤ k [G (x, y, y)]
α
[G (x, Tx, Tx)]

β
[G (y, Ty, Ty)]

γ
[G (y, Ty, Ty)]

1−α−β−γ

= k [G (x, y, y)]
α
[G (x, Tx, Tx)]

β
[G (y, Ty, Ty)]

1−α−β
,

and

G (Ty, Tx, Tx) ≤ αG(y, x, x)G (Ty, Tx, Tx)

≤ k [G (y, x, x)]
α
[G (y, Ty, Ty)]

β
[G (x, Tx, Tx)]

γ
[G (x, Tx, Tx)]

1−α−β−γ

= k [G (y, x, x)]
α
[G (y, Ty, Ty)]

β
[G (x, Tx, Tx)]

1−α−β
,

for all x, y ∈ X\Fix (T ) . Suppose that (X,G) is symmetric. Using the Proposition (1.9) and (2.4), we obtain that

1

2
dG (Tx, Ty) ≤ k

[
1

2
dG (x, y)

]α[
1

2
dG (x, Tx)

]β[
1

2
dG (y, Ty)

]1−α−β

=
k

2
[dG (x, y)]

α
[dG (x, Tx)]

β
[dG (y, Ty)]

1−α−β
,

which implies that
dG (Tx, Ty) ≤ k [dG (x, y)]

α
[dG (x, Tx)]

β
[dG (y, Ty)]

1−α−β
,

for all x, y ∈ X\Fix (T ) . From the above inequality, we know that T is an interpolative Reich-Rus-Ciric type contrac-
tion in (X, dG) metric space. Since (X, dG) is a complete metric space, then T has a fixed point in X from Proposition
(1.40).

Now, we suppose that (X,G) is not symmetric. From the definition of metric space (X, dG) and (2.4), we can write

1

3
dG (Tx, Ty) ≤ k

[
2

3
dG (x, y)

]α[
2

3
dG (x, Tx)

]β[
2

3
dG (y, Ty)

]1−α−β

=
2k

3
[dG (x, y)] α [dG (x, Tx)]

β
[dG (y, Ty)]

1−α−β

and
dG (Tx, Ty) ≤ 2k [dG (x, y)] α [dG (x, Tx)]

β
[dG (y, Ty)]

1−α−β

for all x, y ∈ X\Fix (T ) . Since k ∈ [0, 1) , we are not sure that 2k < 1. But we can prove the existence of fixed point
using properties of G−metric space. Assume that x0 ∈ X is any arbitrary point and the sequence {xn} is a Picard
sequence defined as xn = Txn−1 = Tnx0. Since T is an αG−admissible mapping and αG(x0, x1, x1) ≥ 1 implies
αG(x1, x2, x2) = αG(Tx0, Tx1, Tx1) ≥ 1, continuing on the same lines, we have αG(xn, xn+1, xn+1) ≥ 1. From the
condition (2.4), we have

G (xn, xn+1, xn+1) ≤ αG(xn, xn+1, xn+1)G (xn, xn+1, xn+1)

≤ k [G (xn−1, xn, xn)]
α+β

[G (xn, xn+1, xn+1)]
1−α−β

,

which implies that
[G (xn, xn+1, xn+1)]

α+β ≤ k [G (xn−1, xn, xn)]
α+β

.
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Using the above inequality, we get

G (xn, xn+1, xn+1) ≤ kG (xn−1, xn, xn) .

Continuing on the same way, we obtain

G (xn, xn+1, xn+1) ≤ knG (x0, x1, x1) . (2.5)

On the same lines of proof of Theorem (2.1), we can show that the sequence {xn} is a Cauchy sequence. Since
(X,G) is a complete G−metric space, then the sequence {xn} is convergent, (say) converges to u ∈ X such that
xn → u as n→ +∞. Then

G (xn+1, Tu, Tu) ≤ αG(xn+1, u, u)G (xn+1, Tu, Tu)

≤ k [G (xn, u, u)]
α
[G (xn, xn+1, xn+1)]

β
[G (u, Tu, Tu)]

1−α−β

= k [G (xn, u, u)]
α [G (xn, Txn, Txn)]

β
[G (u, Tu, Tu)]

1−α−β
.

Taking the limit as n→ +∞ in above inequality, we have

G (xn+1, Tu, Tu) → 0.

That is, xn+1 → Tu. Since xn → u and xn+1 → Tu, we have Tu = u. □

Finally, we give the following result corresponding to Theorem 1.36 using interpolation notion in G−metric space.

Theorem 2.3. Let (X,G) be a complete G−metric space and T : X → X be a αG−admissible mapping satisfying
the following condition

αG(x, y, z)G (Tx, Ty, Tz) ≤ k [G (x, y, z)]
α
max


[G (x, Tx, Tx)]

1−α
,

[G (y, Ty, Ty)]
1−α

,

[G (z, Tz, Tz)]
1−α

 , (2.6)

with αG(x, y, z) ≥ 1 for all x, y, z ∈ X\Fix (T ), where k ∈ [0, 1) and α ∈ (0, 1). Then, T has a fixed point in X.

Proof . From (2.6), we have

G (Tx, Ty, Ty) ≤ αG(x, y, y)G (Tx, Ty, Ty) ≤ k [G (x, y, y)]
α
max

{
[G (x, Tx, Tx)]

1−α
,

[G (y, Ty, Ty)]
1−α

}
and

G (Ty, Tx, Tx) ≤ αG(y, x, x)G (Ty, Tx, Tx) ≤ k [G (y, x, x)]
α
max

{
[G (y, Ty, Ty)]

1−α
,

[G (x, Tx, Tx)]
1−α

}
,

for all x, y ∈ X\Fix (T ). We assume that (X,G) is symmetric. From the Proposition (1.9) and (2.6), we write

1

2
dG (Tx, Ty) ≤ k

[
1

2
dG (x, y)

]α
max

{[
1

2
dG (x, Tx)

]1−α

,

[
1

2
dG (y, Ty)

]1−α
}
.

Then
dG (Tx, Ty) ≤ k [dG (x, y)]

α
max

{
[dG (x, Tx)]

1−α
, [dG (y, Ty)]

1−α
}

for all x, y ∈ X\Fix (T ) . Then the inequality (2.6) is a special case of the interpolative Reich-Rus-Cirić type contraction
in (X, dG) metric space. Therefore we say that T has a fixed point in X from Proposition (1.40). However, if (X,G)
is not symmetric, then

1

3
dG (Tx, Ty) ≤ k

[
2

3
dG (x, y)

]α
max

{[
2

3
dG (x, Tx)

]1−α

,

[
2

3
dG (y, Ty)

]1−α
}

=
2k

3
[dG (x, y)]

α
max

{
[dG (x, Tx)]

1−α
, [dG (y, Ty)]

1−α
}
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which implies that

dG (Tx, Ty) ≤ 2k[dG (x, y)]
α
max

{
[dG (x, Tx)]

1−α
, [dG (y, Ty)]

1−α
}
,

for all x, y ∈ X\Fix (T ) . Since k ∈ [0, 1) , we are not sure about 2k < 1. But to the existence of a fixed point using
properties of G−metric space, we can assume that x0 ∈ X is an arbitrary point and the sequence {xn} is a Picard
sequence defined as xn = Txn−1 = Tnx0. Assume that x0 ∈ X is any arbitrary point and the sequence {xn} is a
Picard sequence defined as xn = Txn−1 = Tnx0. Since T is an αG−admissible mapping and αG(x0, x1, x1) ≥ 1 implies
αG(x1, x2, x2) = αG(Tx0, Tx1, Tx1) ≥ 1, continuing on the same lines, we have αG(xn, xn+1, xn+1) ≥ 1. From the
condition (2.6), we have

G (xn, xn+1, xn+1) ≤ αG(xn−1, xn, xn)G (xn, xn+1, xn+1) (2.7)

≤ k [G (xn−1, xn, xn)]
α
max

{
[G (xn−1, Txn−1, Txn−1)]

1−α
,

[G (xn, Txn, Txn)]
1−α

}
= k [G (xn−1, xn, xn)]

α
max

{
[G (xn−1, xn, xn)]

1−α
,

[G (xn, xn+1, xn+1)]
1−α

}
.

We have two cases:

Case 1: If max
{
G (xn−1, xn, xn)

1−α
, G (xn, xn+1, xn+1)

1−α
}
= G (xn−1, xn, xn)

1−α
, from (2.7), we have

G (xn, xn+1, xn+1) ≤ kG (xn−1, xn, xn). (2.8)

Case 2: If max
{
G (xn−1, xn, xn)

1−α
, G (xn, xn+1, xn+1)

1−α
}
= G (xn, xn+1, xn+1)

1−α
, from (2.7)

G (xn, xn+1, xn+1) ≤ k [G (xn−1, xn, xn)]
α
[G (xn, xn+1, xn+1)]

1−α
,

which implies that
G (xn, xn+1, xn+1) ≤ kG (xn−1, xn, xn) . (2.9)

In both cases, using (2.8) and (2.9), we have

G (xn, xn+1, xn+1) ≤ knG (x0, x1, x1) .

Use the same lines of proof of Theorem 2.1, we can show that the sequence {xn} is a Cauchy sequence. Since
(X,G) is a complete space, the sequence {xn} is convergent. Let u ∈ X such that xn → u as n→ +∞. Then

G (xn+1, Tu, Tu) ≤ αG(xn, u, u)G (xn+1, Tu, Tu)

≤ k [G (xn, u, u)]
α
max

{
[G (xn, Tu, Tu)]

1−α
,

[G (u, Tu, Tu)]
1−α

}
.

Taking the limit as n→ +∞ in above inequality, we have

G (xn+1, Tu, Tu) → 0.

This implies that xn+1 → Tu. Since xn → u and xn+1 → Tu, we have Tu = u. □

Now, we are going to provide an example to support our main result.

Example 2.4. Let X = [0, 2] and define

G(x, y, z) =

{
0 if x = y = z;

max{x, y, z} otherwise,
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be a complete G-metric space on X. Define a mapping T : X → X by

T (x) =

{
1 if x ∈

[
0, 12

]
∪ {1};

min{1,x}
1+max{1,x} otherwise,

and αG : X ×X ×X → [0,+∞) by

α(x, y, z) =

{
0 if x = y = z;

2
max{x,y,z} otherwise.

It is easy to see that T is an αG-admissible mapping. Then, the contraction condition of Theorem (2.3) satisfied
for α = 1

2 and k = 1
3 . Also, observe that all conditions of Theorem (2.3) fulfilled and 1 is a fixed point of T .

3 Conclusion

In this paper, we proposed the concept of αG−admissible interpolative type contraction mappings in G-metric
spaces, we state and proved some convergence results for such classes of contractive mappings using the properties
of G-metric space and find the fixed point results for such contractive mappings. We provided some examples to
elaborate the results in the setting of G−metric spaces. Our results are new and general in the G−metric space.
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