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Abstract

In this paper, we extend the q-derivative operator, which plays an essential role in quantum calculus. Indeed, by using
the Hadamard product and generalized Koebe function we define the following (α, β, γ)-derivative operator

dα,β,γf(z) =
1

z
{f(z) ∗ Lα,β,γ(z)} ,

where

Lα,β,γ(z) =
2(1 − γ)z

(1 − αz)(1 − βz)
,

and α ∈ [−1, 1], β ∈ [−1, 1], αβ ̸= ±1 and γ ∈ [0, 1). Then by subordination relation, the operator dα,β,γf(z), and a
special function ϕδ(z) = 1 + δz/ exp(δz) (0 < δ ≤ 1), we define a new particular Ma-Minda class. We investigate some
properties of this class, such as, radius problem and coefficient estimate.
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1 Introduction

In 1992, Ma and Minda [15] introduced a certain class of starlike functions using the subordination relation ”≺”
as follows:

S∗(φ) :=

{
f ∈ A :

zf ′(z)

f(z)
≺ φ(z), |z| < 1

}
,

where φ is an analytic function with positive real part such that satisfies φ(0) = 1 and φ′(0) > 0. We note that the
function φ maps the unit disk |z| < 1 onto a starlike domain with respect to φ(0) = 1 which is symmetric with respect
to the real axis. Also, A denotes the family of all analytic and normalized functions in the unit disk.

During the past few decades there has been considerable interest in the study of Ma-Minda starlike functions.
Many authors have studied the class S∗(φ) for special cases of φ. Here, we recall some of these cases:
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1. If we take φ(z) = (1 + Az)/(1 + Bz), −1 ≤ B < A ≤ 1 then the class S∗(φ) ≡ S∗[A,B] is called the Janowski
starlike functions, see [8]. If we let A = 1 − 2α and B = −1, then S∗[1 − 2α,−1] becomes the class S∗(α) of
starlike functions of order α, where 0 ≤ α < 1.

2. By taking φ(z) = ((1 + z)/(1 − z))β , we obtain the class SS∗(β) of strongly starlike function of order β, where
β ∈ (0, 1].

3. The class S∗(
√

1 + cz) ≡ S∗(qc), c ∈ (0, 1] was studied by Aouf et al. [3], while S∗(
√

1 + z) was introduced by
Sokó l and Stankiewicz [23].

4. Raina and Sokó l introduced and studied the class S∗(z +
√

1 + z2), see [20].

5. Letting φ(z) = 1 + sin z, the class S∗(φ) reduces the class S∗
sin which was defined by Cho et al. in [4].

6. The class S∗(1/(1 − z)s) ≡ S∗
s , c ∈ (0, 1] was introduced by Kanas et al. in [10] which is related to a domain

bounded by a right branch of a hyperbola.

7. If we take φ(z) = 1 + z/((1 − pz)(1 − qz)), where (p, q) ∈ [−1, 1] × [−1, 1], then we get the class S∗
k(p, q) which

is associated with the generalized Koebe function [11].

8. Masih et al. in [17] introduced and studied the class S∗((1 − z)λ) ≡ S∗
L(λ) (0 < λ < 1).

9. The case φ = 1 + 4z/3 + 2z2/3 was studied by Sharma et al. [21].

10. If we take φ = ez, we get the class S∗
e which was introduced by Mendiratta et al. [16].

Some more special cases of Ma-Minda class can be found in [14, 21, 22]. Motivated by above works, in this paper
we introduce a new class of Ma-Minda starlike functions.

The structure of this paper is as follows. In Section 2 we define a new derivative operator and a new subclass of
analytic functions. In Section 3 we investigate radius problem and coefficient estimate.

2 Preliminaries

Let us first introduce our notations. Throughout the paper we denote by D := {z ∈ C : |z| < 1} the open unit
disk in the complex plane C and by ∂D := {z ∈ C : |z| = 1} the boundary of D. Also, let D := {z ∈ C : |z| ≤ 1} and
Dρ := {z ∈ C : |z| < ρ, ρ > 0}. All analytic and normalized functions f (f(0) = f ′(0) − 1 = 0) in D having the form

f(z) = z + a2z
2 + · · · + anz

n = z +

∞∑
n=2

anz
n, (z ∈ D), (2.1)

with an ∈ C is denoted by A. A subclass of A including of all univalent (one-to-one) functions in D is denoted by U .
For two analytic functions f1 and f2 in A, we say that f1 is subordinate to f2, written as f1(z) ≺ f2(z) (z ∈ D) or
f1 ≺ f2, if there exists a Schwarz function w : D → D so that f1(z) = f2(w(z)) for all z ∈ D. We have the following
equivalence relation provided that f2 is univalent in D:

f1(z) ≺ f2(z) (z ∈ D) ⇔ f1(0) = f2(0) and f1(D) ⊂ f2(D).

Let α ∈ [0, 1). A function f ∈ S is said to be starlike of order α in ∆ if, and only if,

Re

{
zf ′(z)

f(z)

}
> α, (z ∈ D).

Also, a function f ∈ S is a convex function of order α in ∆ if, and only if,

Re

{
1 +

zf ′′(z)

f ′(z)

}
> α, (z ∈ D).

We denote by S∗(α) and K(α) the class of starlike and convex functions of order α, respectively. By the Alexander
theorem f ∈ K(α) if and only if zf ′(z) ∈ S∗(α). It should be remarked that S∗(0) ≡ S∗ and K(α) ≡ K are,
respectively, the classes of starlike and convex functions in D. We say also that a function f ∈ A is strongly starlike
function of order β, denoted by SS(β), if satisfies∣∣∣∣arg

{
zf ′(z)

f(z)

}∣∣∣∣ < π

2
β, (z ∈ D).
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We note that SS(1) ≡ S∗. The main objective of this paper is to introduce a special case of Ma-Minda starlike
function class. Before, we introduce the q-calculus. Quantum calculus (q-calculus) was developed by Frank Hilton
Jackson [6, 7] in the early twentieth century. A number of researchers were interested in this method of connecting
mathematics and physics. Number theory, combinatorics, orthogonal polynomials, and basic hypergeometric functions
are some of the mathematics areas where q-calculus finds application. We recall that the q-derivative for q ∈ [0, 1] was
introduced and studied by Jackson as follows:

dqf(z) =

 (f(qz) − f(z))/(qz − z), if z ̸= 0, 0 ≤ q < 1;
f ′(0), if z = 0;
f ′(z), if q = 1.

(2.2)

In the theory of basic hypergeometric series, the q-derivative operator plays an important role [2]. It is easy to see
that if f ∈ A, then

dqf(z) = 1 +

∞∑
n=2

[n]qanz
n, where [n]q =

1 − qn

1 − q
=

n−1∑
k=0

qk, (n = 2, 3, . . .). (2.3)

This is what we gain from convolution:

dqf(z) =
1

z
{f(z) ∗ hq(z)} =

1

z

{
f(z) ∗ z

(1 − qz)(1 − z)

}
,

where hq(z) := z/(1−qz)(1−z). Very recently, Piejko and Sokó l (see [19]) extended the q-operator dqf(z) by replacing
the real number q with the complex number ζ, where |ζ| ≤ 1. The aim of this paper is to extend the ζ-derivative
operator dζf(z) by the following generalized Koebe function ([9])

Lα,β,γ(z) =
2(1 − γ)z

(1 − αz)(1 − βz)
, (2.4)

where α ∈ [−1, 1], β ∈ [−1, 1], αβ ̸= ±1 and γ ∈ [0, 1).

Definition 2.1. Let α, β be two complex numbers such that |α| ≤ 1 and |β| ≤ 1. Also let γ be a real number so
that γ ∈ [0, 1). We define the (α, β, γ)-derivative operator as

dα,β,γf(z) =
1

z
{f(z) ∗ Lα,β,γ(z)} , (2.5)

where Lα,β,γ(z) is defined as in (2.4).

We note that Lα,β,γ(z) is a generalization of Koebe function. We have

Lα,β,γ(z) =

∞∑
n=1

Bnz
n =

{
2(1 − γ)

∑∞
n=1

(
αn−βn

α−β

)
zn, α ̸= β;

2(1 − γ)
∑∞

n=1 nα
n−1zn, α = β,

It should be noted that if α = q ∈ [0, 1] is a real number, β = 1 and γ = 1/2, then dα,β,γ reduces the Jackson
operator while if α = ζ is a complex number with |α| ≤ 1, β = 1 and γ = 1/2, then we have the ζ-derivative operator
which is defined by Piejko and Sokó l [19]. Thus, we understand dα,β,γ as the generalization of dqf(z). If a function f
belongs to the class A and α ̸= β, then

dα,β,γf(z) =
1

z
{f(z) ∗ Lα,β,γ(z)}

=
1

z

{
z +

∞∑
n=2

anz
n ∗ z +

∞∑
n=1

2(1 − γ)

(
αn − βn

α− β

)
zn

}

=
1

z

{
z +

∞∑
n=2

2(1 − γ)

(
αn − βn

α− β

)
anz

n

}

=
1

z

{
z +

∞∑
n=2

[n]α,β,γanz
n

}
, (2.6)
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where

[n]α,β,γ := 2(1 − γ)

(
αn − βn

α− β

)
, (n = 2, 3, . . .). (2.7)

In the case α = β, we have

dα,α,γf(z) =
1

z

{
z +

∞∑
n=2

[n]α,γanz
n

}
where

[n]α,γ = 2n(1 − γ)αn−1, (n = 2, 3, . . .).

By using the new derivative operator (2.5) we define a new subclass of analytic functions as follows:

Definition 2.2. Let α, β be two complex numbers with |α| ≤ 1, |β| ≤ 1 and γ be a real number such that γ ∈ [0, 1).
Let the function f belongs to the class A and δ ∈ (0, 1]. We say that f belongs to S∗(α, β, γ, δ) if it satisfies

zdα,β,γf(z)

f(z)
≺ ϕδ(z), (z ∈ D), (2.8)

where

ϕδ(z) := 1 +
δz

eδz
. (2.9)

We note that S∗(1, 1, 1/2, δ) is a special case of Ma-Minda starlike function class S∗(φ) with φ(z) = 1+δz/ exp(δz).

3 Radius Problems

As a result, we find the radius of convexity of ϕδ(z).

Lemma 3.1. Let ϕδ(z) be defined as in (2.9), where δ ∈ (0, 1] and z ∈ D. Then ϕδ(z) is a convex univalent function
in |z| < rc(δ), where rc(δ) := (3 −

√
5)/2δ.

Proof . Let δ ∈ (0, 1]. It follows from (2.9), by a simple calculation that

1 +
zϕ′′

δ (z)

ϕ′
δ(z)

= 1 −
(
δz +

δz

1 − δz

)
, (z ∈ D).

By using the definition of convexity we obtain

Re

{
1 +

zϕ′′
δ (z)

ϕ′
δ(z)

}
= Re

{
1 −

(
δz +

δz

1 − δz

)}
≥ 1 −

∣∣∣∣δz +
δz

1 − δz

∣∣∣∣
≥ 1 − δr − δr

1 − δr
=: h(r, δ), (|z| = r).

It is easy to check that h(r, δ) > 0 if and only if r < (3 −
√

5)/2δ which implies the result. □

It is easy to see that ϕδ(z) have the Taylor series

ϕδ(z) = 1 + δz − δ2z2 +
δ3

2
z3 − δ4

6
z4 + · · · =

∞∑
n=1

(−1)n−1 δn

(n− 1)!
zn. (3.1)

Also, the function ϕδ(z) is univalent, where δ ∈ (0, 1]. If we let δ tends to 1−, then the image of D under ϕδ(z) is
bounded by a heart-shaped curve, see Figure 1(b) while tending δ → 0+ its range is bounded by a circle, see Figure
1(a). We note that for δ > 1, the function ϕδ(z) is not univalent in D, see Figure 1(c).
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Figure 1: (a): The boundary curve of ϕ0.01(D) (univalent) (b): The boundary curve of ϕ0.99(D) (univalent) (c): The boundary curve of
ϕ2(D) (non-univalent)

Lemma 3.2. Let ϕδ(z) be given by (2.9), where δ ∈ (0, 1]. Then

1 − δeδ < Re{ϕδ(z)} < 1 + δe−δ.

Proof . We can easily check that

Re{ϕδ(z)} = 1 + δe−δ cos(θ) (cos(θ) cos(δ sin(θ)) + sin(θ) sin(δ sin(θ))) .

A simple calculation shows that Re{ϕδ(z)} gets its minimum at θ = π and its maximum at θ = 0. Therefore, the
result follows. □

Corollary 3.3. Since ϕδ(z) is a univalent function for all δ ∈ (0, 1], therefore, if f belongs to the class S∗(α, β, γ, δ),
then

1 − δeδ < Re

(
zdα,β,γf(z)

f(z)

)
< 1 + δe−δ, (z ∈ D).

We continue this section by the following result.

Theorem 3.4. Let α, β be two complex numbers with |α| ≤ 1, |β| ≤ 1 and γ be a real number such that γ ∈ [0, 1).
Let δ0 = 0.567143 be the unique root of the equation 1 − δeδ = 0, where δ ∈ (0, 1]. If a function f ∈ A belongs to the
class S∗(α, β, γ, δ) then

Re

(
zdα,β,γf(z)

f(z)

)
> 0,

in the disk Drs , where rs ∈ (0, δ0). The result is sharp.

Proof . Let the function f ∈ A belongs to the class S∗(α, β, γ, δ), where δ ∈ (0, 1]. Then by definition there exists a
Schwarz function w such that

zdα,β,γf(z)

f(z)
= 1 +

δw(z)

eδw(z)
, (z ∈ D). (3.2)

It follows from
e−|z| ≤ |ez| ≤ e|z| and |w(z)| ≤ |z| (3.3)

that for all z ∈ D

Re

(
zdα,β,γf(z)

f(z)

)
= Re

(
1 +

δw(z)

eδw(z)

)
≥ 1 −

∣∣∣∣δw(z)

eδw(z)

∣∣∣∣ ≥ 1 − δ|z|
e−δ|z| = 1 − δreδr =: h(r),

where |z| = r < 1. Since h′(r) < 0 for all r ∈ (0, 1), we conclude that h is strictly decreasing function on the interval
[0, 1] and it decreases from h(0) = 1 > 0 to the value h(1) = 1 − δeδ < 0, where δ ∈ (0.57, 1]. Therefore, the equation
h(r) = 0 has only one root in the interval (0, 1). We conclude that h(r) > 0 if and only if 0 < r < δ0. Thus the proof
is completed. □

If we take α = β = 1 and γ = 1/2 in Theorem 3.4, we get the following result.
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Example 3.5. note function

fδ(z) = ze(−e−δz+1) = z + z2 − 1

6
z4 +

z5

24
+ O(z6) + · · · = z

n=∞∑
n=0

(1 − exp−z)n

n!
(3.4)

from the fact that fδ(z) ∈ A

zf ′
δ(z)

fδ(z)
=

z

(
e(−e−δz+1)+zδe−δze(−e−δz+1)

)
ze(−e−δz+1)

=
e(−e−δz+1)(1 + zδe−δz)

e(−e−δz+1)
= 1 + zδe−δz = ϕδ(z) (3.5)

so fδ(z) ∈ S∗(1, 1, 1
2 , δ) because δ ∈ (0, 1] so various δ makes different examples. also fδ(z) satisfies in theorem 3.4

because we proved in lemma (3.2) taht

1 − δeδ < Re{ϕδ(z)} < 1 + δe−δ.

so if 1 − δeδ = 0 thenRe{ϕδ(z)} > 0 but in theorem 3.4 we proved for δ0 = 0.56 which is unique root of equation

1 − δeδ = 0 , Re{ϕδ0(z)} > 0 therefore from 3.5 we conclude that Re{ zf ′
δ0

(z)

fδ0 (z)
} > 0

Corollary 3.6. Let δ0 be defined as in Theorem 3.4. If a function f ∈ A satisfies the following subordination relation

zf ′(z)

f(z)
≺ ϕδ(z), (z ∈ D) (3.6)

where ϕδ(z) is defined as in (2.9), then f is a starlike univalent function in Drs , where rs ∈ (0, δ0). The result is sharp
for the function

f1(z) = z exp
(
e−δz − 1

)
= z − δz2 + δ2z3 − 5

6
δ3z4 + o(z5), (z ∈ D).

The following due to Nehari [18] will be useful.

Lemma 3.7. Let w(z) be analytic in D and satisfying |w(z)| ≤ 1 for all z ∈ D. Then

|w′(z)| ≤ 1 − |w(z)|2

1 − |z|2
. (3.7)

Theorem 3.8. The radius of convexity of the class S∗(1, 1, 1/2, δ) is r ∈ (0, 0.17) for all δ ∈ (0, 1].

Proof . If the function f ∈ A belongs to the class S∗(1, 1, 1/2, δ), then (3.6) holds true. It means that there is
Schwarz function w(z) such that

zf ′(z)

f(z)
= ϕδ(w(z)) = 1 +

δw(z)

eδw(z)
, (z ∈ D). (3.8)

By taking the logarithmic differential of (3.8), we obtain

1 +
zf ′′(z)

f ′(z)
=

zf ′(z)

f(z)
+

z(δw′(z)eδw(z) + δw′(z))

eδw(z) + δw(z)
− δzw′(z)

= 1 +
δw(z)

eδw(z)
+

(
eδw(z) + 1

eδw(z) + δw(z)
− 1

)
δzw′(z), (z ∈ D).

Moreover, by applying (3.3) and Lemma 3.7 we obtain

Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
1 +

δw(z)

eδw(z)
+

(
eδw(z) + 1

eδw(z) + δw(z)
− 1

)
δzw′(z)

)
≥ 1 −

∣∣∣∣δw(z)

eδw(z)
+

(
eδw(z) + 1

eδw(z) + δw(z)
− 1

)
δzw′(z)

∣∣∣∣
≥ 1 − δ|z|

e−δ|z| −
(

e|z| + 1

e−δ|z| − δ|z|
+ 1

)
δ|zw′(z)|

≥ 1 − δr

e−δr
−
(

er + 1

e−δr − δr
+ 1

)
δr

1 − r2
=: h(r, δ), (z ∈ D).
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Figure 2: The 3D graph of the function w = h(r, δ) (orange) and w = 0 (blue)

Computer experiment shows that h(r, δ) > 0 for all r ∈ (0, 0.17), and δ ∈ (0, 1], see Figure 2. The proof now is
complete.

Notation: Because fδ(z) belongs to S∗(1, 1, 1
2 , δ) so convexity for this function in r ∈ (0, 0.17) is trivial. □

4 On coefficients

We need the following lemmas.

Lemma 4.1. ([18, p. 172]) Assume that w is a Schwarz function so that w(z) =
∑∞

n=1 wnz
n. Then

|w1| ≤ 1 and |wn| ≤ 1 − |w1|2, (n = 2, 3, . . .).

Lemma 4.2. ([1, Lemma 1]) If w(z) =
∑∞

n=1 wnz
n is a Schwarz function, then

|w2 − tw2
1| ≤

 −t, t ≤ −1;
1, −1 ≤ t ≤ 1;
t, t ≥ 1.

All inequalities are sharp.

Theorem 4.3. Let the function f ∈ A belongs to the class S∗(α, β, γ, δ) such that α, β, γ satisfy the assumption of
Theorem 3.4, and 0 < δ ≤ 1. Then

|a2| ≤
δ

[2]α,β,γ − 1
, and |a3| ≤

δ([2]α,β,γ − 1) + δ2

([2]α,β,γ − 1)([3]α,β,γ − 1)
, (4.1)

where [·]α,β,γ is defined as in (2.7). The result is sharp.

Proof . If a function f ∈ A belongs to the class S∗(α, β, γ, δ), then there exists a Schwarz function w(z) = w1z +
w2z

2 + · · · such that
zdα,β,γf(z)

f(z)
= ϕδ(w(z)), (z ∈ D), (4.2)



44 Vesali, Najafzadeh

holds true. By using the Taylor series of (2.6) we obtain

zdα,β,γf(z)

f(z)
= 1 + ([2]α,β,γ − 1)a2z +

(
([3]α,β,γ − 1) a3 − ([2]α,β,γ − 1) a22

)
z2 + · · · . (4.3)

On the other hand,

ϕδ(w(z)) = 1 +
δw(z)

eδw(z)
= 1 + δw(z) − δ2w2(z) +

δ3

2
w3(z) − · · ·

= 1 + δ(w1z + w2z
2 + · · · ) + δ2(w1z + w2z

2 + · · · )2 + · · ·
= 1 + δw1z + (δw2 − δ2w2

1)z2 + (δ3w3
1/2 + δw3 − 2δ2w1w2)z3 + · · · . (4.4)

Equating the corresponding coefficients of (4.3) and (4.4) we get

([2]α,β,γ − 1)a2 = δw1, and ([3]α,β,γ − 1) a3 − ([2]α,β,γ − 1) a22 = δw2 − δ2w2
1. (4.5)

If we apply Lemma 4.1, then |a2| ≤ δ/([2]α,β,γ − 1) which implies the first inequality of (4.1). It follows from both
equalities of (4.5) that

a3 =
δ(w2 − δw2

1)([2]α,β,γ − 1) + δ2w2
1

([3]α,β,γ − 1)([2]α,β,γ − 1)
.

The estimation a3 follows from Lemma 4.1 and Lemma 4.2. The proof is now complete. □

Example 4.4. if we put δ = 1 in inequations 4.3 in paper considering to 3.4 we see that 1 = |a2| ≤ 1and0 = |a3| < 1
so function fδ(z) satisfies in theorem 4.3

Let P be the family of holomorphic function p(z) in D such that p(0) = 1 and Re{p(z)} > 0. In order to prove the
next result we need the following lemma.

Lemma 4.5. [15, Lemma 1] Let p(z) = 1 + p1z + p2z
2 + · · · be in P . Then

|p2 − µp21| ≤

 −4µ + 2, µ ≤ 0;
2, 0 ≤ µ ≤ 1;
4µ− 2, µ ≥ 1.

All inequalities are sharp.

Theorem 4.6. Let δ ∈ (0, 1], and α, β, γ satisfy the assumption of Theorem 3.4. If a function f ∈ A belongs to the
class S∗(α, β, γ, δ), then

|a3 − µa22| ≤


−4µ′ + 2, µ ≤ µ1;

2, µ1 ≤ µ ≤ µ2;

4µ′ − 2, µ ≥ µ2,

(4.6)

where

µ′ :=
µδ([3]αβγ − 1) − [(1 + δ)(1 − [2]αβγ) + δ]([2]αβγ − 1)

2([2]αβγ − 1)2
, (4.7)

µ1 :=
[(1 + δ)(1 − [2]αβγ) + δ]([2]αβγ − 1)

δ([3]αβγ − 1)
, (4.8)

and

µ2 :=
[(1 + δ)(1 − [2]αβγ) + δ]([2]αβγ − 1) + 2([2]αβγ − 1)2

δ([3]αβγ − 1)
. (4.9)

The result is sharp.
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Proof . If a function f ∈ A belongs to the class S∗(α, β, γ, δ), then there exists a Schwarz function such that (3.2)
holds true. We define

C(z) =
1 + w(z)

1 − w(z)
= 1 + c1z + c2z

2 + · · · . (4.10)

Then

w(z) =
C(z) − 1

C(z) + 1
= 1 +

1

2
c1z +

1

2
(c2 −

1

2
c21)z2 + · · · . (4.11)

Taking the above w(z) into account, we get

ϕδ(w(z)) = 1 +
1

2
δc1z +

1

2
δ

(
c2 −

1

2
(1 + δ)c21

)
z2 + · · · . (4.12)

Equating the corresponding coefficients (4.3) and (4.12) gives

([2]α,β,γ − 1)a2 =
1

2
δc1 (4.13)

and

([3]α,β,γ − 1) a3 − ([2]α,β,γ − 1) a22 =
1

2
δ

(
c2 −

1

2
(1 + δ)c21

)
. (4.14)

It follow from both (4.13) and (4.14) that

a2 =
δc1

2([2]αβγ − 1)
(4.15)

and

a3 =

[
δ(1 + δ)(1 − [2]αβγ) + δ2

]
c21 + 2δc2([2]αβγ − 1)

4([2]αβγ − 1)([3]αβγ − 1)
. (4.16)

Now from (4.15) and (4.16) for the complex number µ we get

a3 − µa22 =
δ

2([3]αβγ − 1)

(
c2 −

µδ([3]αβγ − 1) − [(1 + δ)(1 − [2]αβγ) + δ]([2]αβγ − 1)

2([2]αβγ − 1)2
c21

)
.

Letting

µ′ :=
µδ([3]αβγ − 1) − [(1 + δ)(1 − [2]αβγ) + δ]([2]αβγ − 1)

2([2]αβγ − 1)2
(4.17)

and applying Lemma 4.5 we get the desired result. □

Example 4.7. for the function fδ(z) from 3.4 we obtain |a3 − µa22| = |µ| so if we put |µ| = 1 then µ = 1
or

µ = −1

on the other hand if we put δ = 1 in 4.8 and 4.9 and 4.17 equations in paper we will have µ1 = −1
2 and µ2 = 1

2 and

µ′ = 2µ+1
2 and for µ = −1 , µ′ = −1

2 and for µ = 1 , µ′ = 3
2 so if we put these values in theorem 4.6 inequality we will

have

|a3 − µa22| = |µ| = 1 <

 −4 × (−1
2 ) + 2 = 4, −1 = µ < µ1 = −1

2 ;

4 × ( 3
2 ) − 2 = 4, 1 = µ > µ2 = 1

2 ,
(4.18)

and for second inequality we put µ = 1
4 so |a3 − µa22| = |µ| = | 14 | < 2 when−1

2 = µ1 < 1
4 = µ < µ2 = 1

2 if µ1 = µ =
µ2 = 1 then inequality 4.6 is trivial.
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