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Abstract

In this work, using semidefinite matrices gives a new generalization of the lp spaces and some inequalities containing
lower bounds of some operators are proved. Also, by defining an inner product on the classes of an equivalence relation
on operators, some inequalities similar to the well-known inequalities including the Copson, Cesaro, Hilbert and Hardy
inequalities are obtained.
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1 Introduction

The Mahalanobis distance is a measure of the distance between a point P and a distribution D, introduced
by P. C. Mahalanobis in 1936 [8]. The Mahalanobis distance between two random vectors x = (x1, x2, ..., xn) and
y = (y1, y2, ..., yn) of the same distribution with the covariance matrix Q is defined by

d(x, y) =
√

(x− y)tQ−1(x− y).

The Mahalanobis distance is widely used in cluster analysis and classification techniques. The notion ”lower
bounds” of matrix operators at first, was introduced by R. Lyons [7] and then intensively studied for lp spaces and its
generalizations, e.g., [2, 3, 6].

If X is a Banach sequense space, we denote by δ(X) the set of decreasing, non-negative sequences in X. For a
positive operator A on X, the lower bound of A is defined as

mX(A) = inf{∥AX∥ : x ∈ δ(X), ∥X∥ = 1}.

Let (wn) be a decreasing, non-negative sequence, for p ≥ 1,

lp(w) = {x = (xn) :

∞∑
n=1

wn|xn|p < ∞}

is called weighted sequence space equipped with the norm ∥x∥p,w =
(∑∞

n=1 wn|xn|p
) 1

p . If infn∈N w(n) > 0 then
lp(w) = lp with equivalent norms. So, we are mainly interested in the case when infn∈N w(n) = 0. Given a null
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sequence x = (xn), let (x
∗
n) be the decreasing rearrangement of |xn|. The Lorentz sequence space d(w, p) is the space

of null sequences x for which x∗ is in lp(w). Denote by δ(w) the set of decreasing, non-negative sequences in lp(w),
and define

∆p,w(A) = sup{∥Ax∥p,w : x ∈ δ(w) : ∥x∥p,w = 1}.

Jameson and Lashkaripour [5] proved the following Lemma.

Lemma 1.1. Suppose that (wn) is decreasing, that aij ≥ 0 for all i, j, and A maps δp(w) into lp(w). Write cm,j =∑∞
i=1 ai,j . Suppose further that for each i limj→∞ ai,j = 0 and either for each i, ai,j decreases with j or ai,j decreases

with i for each j and cm,j decreases with j for each m. Then ∥A(x∗)∥d(w,p) ≥ ∥A(x)∥d(w,p) for non-negative elements
x of d(w, p). Hence ∥A∥d(w,p) = ∆p,w(A).

In this work, inspired by the Mahalanobis distance, a new norm on sequence spaces is defined. Also some theorems
and inequlities are proved.

2 Main Results

Definition 2.1. Let X = {x = (xn)
∞
n=1, xn ∈ C} and Q ∈ L(X) , be a matrix, we define

∥x∥Q = (xtQx)
1
2 ,

where x = {xn}∞n=1, which a is the conjugate of a.

For positive semidefinite matrix Q there are A and D = diag(λi) such that Q = AtDA and so

∥x∥Q =(xtAtDAx)
1
2

=
(
(Ax)tD(Ax)

) 1
2

=
( ∞∑
i=1

λi|yi|2
) 1

2

=∥Ax∥2,w,

where, yi =
∑∞

j=1 ai,jxj and wi = λi. In this case, ∥x∥Q = 0, iff. x = 0 and

∥x+ y∥Q =∥A(x+ y)∥2,w
≤∥Ax∥2,w + ∥Ay∥2,w
=∥x∥Q + ∥y∥Q.

For a lower triangular matrix Q = [ai,j ] we have

∥x∥Q =
( ∞∑
i=1

Li|xi|2
) 1

2 = ∥x∥2,w, (wi = Li)

where, Li =
∑∞

j=1 ai,j is the summation of the i-th row of Q. In special case, if for each i, Li = 1 (for example, the
Cesaro matrix) we have ∥x∥Q = ∥x∥2.
For a positive semidefinite matrix Q, we define

l2Q = {x = (xn) : ∥x∥Q < ∞}.

Note that ∥x∥2Q = xtQx = (xtQx)t = xtQtx = ∥x∥Qt and so we have l2(Q) = l2(Qt). So for a positive semidefinite

upper triangular matrix U we have l2(U) = l2(U t) = l2,w , wi = Li(U
t) = Ci(U) where Li(A) and Ci(A) respectively

are the sum of rows and columns of A.
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Definition 2.2. Suppose that Q = (Qi)
∞
i=1 is a sequence of positive semidefinite matrices. For p ≥ 1 take

∥x∥p,Q :=
( ∞∑
i=1

∥x∥pQi

) 1
p .

Note that for each i we have,

∥x+ y∥pQi
≤ ∥x∥Qi

(
∥x+ y∥p−1

Qi

)
+ ∥y∥Qi

(
∥x+ y∥p−1

Qi

)
.

On the other hand,
∞∑
i=1

∥x∥Qi
∥x+ y∥p−1

Qi
≤
( ∞∑
i=1

∥x∥pQi

) 1
p
( ∞∑
i=1

∥x+ y∥qQi

) 1
q .

And so,

∥x+ y∥pp,Q ≤ ∥x∥p,Q∥x+ y∥
p
q

p,Q + ∥y∥p,Q∥x+ y∥
p
q

p,Q

therefore,
∥x+ y∥p,Q ≤ ∥x∥p,Q + ∥y∥p,Q.

Now, the set
lp(Q) := {x = (xn)

∞
n=1 : ∥x∥p,Q < ∞}

is a norm space. In special case, if Qi is a matrix which ai,i = 1 and zero in otherwise then lp(Q) = lp. Therefore, the
space lp(Q) is a generalization of the lp space.

Theorem 2.3. Suppose that P = (Pi)
∞
i=1, Q = (Qi)

∞
i=1 are two sequences of positive semidefinite matrices satisfying

Pi ≤ Qi for each i ∈ N. Then, for p ≥ 1 , lp(P ) ⊆ lp(Q).

Proof . For each i we have Pi ≤ Qi and so xtPix ≤ xtQix which implies that ∥x∥Pi
≤ ∥x∥Qi

. Therefore,

∥x∥p,P =
( ∞∑
i=1

∥x∥Pi

) 1
p ≤

( ∞∑
i=1

∥x∥Qi

) 1
p = ∥x∥p,Q.

So, we have lp(P ) ⊆ lp(Q). □

For a matrix Q, we have Q = L+D+U where L,U respectively are lower and upper triangular and D is diagonal.
Suppose all of them are positive semidefinite matrices. We have

∥x∥2Q = xtQx = xtLx+ xtDx+ xtUx = ∥x∥2l + ∥x∥2D + ∥x∥2U .

Suppose that Q = (Qi)
∞
i=1 and Qi = Ai + Di + Bi. Also, all matrices are positive semidefinte and Ai’s , Bi’s

respectively are lower and upper triangular. We have

∥x∥pp,Q =

∞∑
i=1

∥x∥pQi

=

∞∑
i=1

(
∥x∥2Ai

+ ∥x∥2Di
+ ∥x∥2Bi

) p
2

=

∞∑
i=1

( ∞∑
j=1

(Lj
i + λj

i + U j
i )|xj |2

) p
2

=

∞∑
i=1

( ∞∑
j=1

Qi⌋j |xj |2
) p

2

and so,

∥x∥p,Q =
( ∞∑
i=1

∥x∥p2,wi

) 1
p , wi = (Qi⌋j)∞j=1.
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For a a matrix A ∈ L(X) the symbol A⌋i stands for the i-th corner of A and is defined by

A⌋i =
i∑

j=1

ai,j +

i−1∑
k=1

ak,i.

If A,B ∈ L(X), we define

< A,B >=

∞∑
i=1

A⌋iB⌋i. (2.1)

By taking, a = (A⌋1, A⌋2, ...) and b = (B⌋1, B⌋2, ...), then < A,B > is the standard inner product. By defining an
equivalence relation on L(X) as following:

A ≈ B if and only if for all i, A⌋i = B⌋i,

we may define a norm on the classes of the equivalences relation as ∥A∥⌋ =
√
< A,A >.

Also, the Cauchy-Schwarz inequality is established | < A,B > | ≤ ∥A∥⌋∥B∥⌋.

Theorem 2.4. Suppose that Q = (Qi)
∞
i=1 is a sequence of positive semidefinite matrices and C =

∑∞
i=1 Qi then

l2(Q) = l2(C). Also, l2(Q)∗ = l2((C̃)−1) where (C̃)−1 = diag(C⌋i)∞i=1.

Proof . We have

∥x∥2C = xtCx =

∞∑
i=1

xtQix =

∞∑
i=1

∥x∥2Qi

which implies that ∥x∥C = ∥x∥2,Q and so l2(Q) = l2(C) = l2(w) with w = (C⌋i)∞i=1. Now we have l∗2(Q) = (l2(w))∗ =

l2(v) = l2((C̃)−1) where v = ( 1
C⌋i )

∞
i=1. Note that , if p, q are conjugate then, l∗p(w) = lq(v) with vi = w

− q
p

i . □

Theorem 2.5. Suppose that Q = (Qi)
∞
i=1 is a sequence of positive semidefinite matrices. Then

∥x∥p,Q ≤
( ∞∑

i=1

∥Qi∥
p
2

⌋

) 1
p

∥x∥4.

Therefore,
∞∑
i=1

∥x∥p2,wi
≤
( ∞∑
i=1

∥Qi∥
p
2

⌋ ∥x∥
p
4, (2.2)

where, wi = (Qi⌋j)∞j=1.

Proof . For a sequence x = (xn)
∞
n=1 we put X = diag(|xi|2)∞i=1. Now we have

∥x∥p,Q =
( ∞∑

i=1

( ∞∑
j=1

Qi⌋j |xj |2
) p

2 ) 1
p

=
( ∞∑

i=1

(
< Qi, X >

) p
2 ) 1

p

≤
( ∞∑

i=1

(
∥Qi∥⌋∥X∥⌋

) p
2 ) 1

p

=

( ∞∑
i=1

∥Qi∥
p
2

⌋

) 1
p

∥X∥
1
2

⌋

=

( ∞∑
i=1

∥Qi∥
p
2

⌋

) 1
p

∥x∥4.

□
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By taking Qi⌋j = 1
i for j ≤ i and zero otherwise and xj =

√
aj in (2.2) we have

∞∑
i=1

(∑i
j=1 aj

j

)p ≤
∞∑
i=1

1

i
p
2

∥a∥p2 = ζ(
p

2
)∥a∥p2. (2.3)

Hence, we prove that

∥Ca∥p ≤ ζ
1
p (

p

2
)∥a∥2. (2.4)

Bennett in [3] (Theorem 4) for every decreasing non-negative sequence a ∈ lp prove that

∥Ca∥p ≥ ζ
1
p (p)∥a∥p.

The Copson matrix B is an upper triangular matrix which is defined by bi,j =
1
j for 1 ≤ i ≤ j and zero otherwise.

In fact B = Ct, transpose of the Cesaro matrix which is defined by ci,j = 1
i for j ≤ i and zero otherwise. Copson in

[4] proved that ( ∞∑
n=1

( ∞∑
k=n

|xk|
k

)p) 1
p

≤ p
( ∞∑
n=1

|xn|p
) 1

p . (2.5)

By taking Qi⌋j = 1
j for 1 ≤ i ≤ j and zero otherwise and xj =

√
aj in (2.2) we have

∞∑
i=1

( ∞∑
j=i

aj
j

)p ≤
∞∑
i=1

( ∞∑
j=i

1

j2
) p

2 ∥a∥p2. (2.6)

Applying (2.5) we have
∞∑
i=1

( ∞∑
j=i

1

j2
) p

2 =

∞∑
i=1

( ∞∑
j=i

1
j

j

) p
2 ≤

(p
2

) p
2 ζ(

p

2
).

Therefore, we have
∞∑
i=1

( ∞∑
j=i

aj
j

)p ≤
(p
2

) p
2 ζ(

p

2
)∥a∥p2.

As an another application of the above theorem, by taking Qi = diag
(

1
(i+j−1)

)∞
j=1

and x = (
√
aj)

∞
j=1 we have

∞∑
i=1

( ∞∑
j=1

aj
i+ j − 1

) p
2 ≤

∞∑
i=1

( ∞∑
j=1

( 1

i+ j − 1

)2) p
2

∥a∥p2

=

∞∑
i=1

( ∞∑
j=i

(1
j

)2) p
2

∥a∥p2

≤
(p
2

) p
2 ζ(

p

2
)∥a∥p2.

Suppose that Q = (Qi) is a sequence of positive semidefinite matrices. Denote by δp(Q) the set of decreasing
non-negative sequences in lp(Q) and define

∆p,Q(T ) = sup{∥Tx∥p,Q : x ∈ δp(Q) : ∥x∥p,Q = 1},

where, T = [ti,j ] is a linear operator on lp(Q). We assume that ti,j ≥ 0 for all i, j which implies that the norm is
determined by the action of T on non-negative sequences. At the following we prove the analogous form of Lemma
1.1 for lp(Q). In fact, the following theorem establishes conditions insuring that ∥T∥lp(Q) is determined by decreasing,
non-negative sequences.

Theorem 2.6. Suppose that T = [ti,j ], ti,j ≥ 0 maps δp(Q) into lp(Q). Write cm,j =
∑m

i=1 ti,j . Suppose further that:

(i) limj→∞ ti,j = 0 for each i, and either

(ii) ai,j decreases with j for each i, or

(iii) ai,j decreases with i for each j and cm,j decreases with j for each m also, Qi⌋j decreases with j for each i.

Then, ∥T (x∗)∥p,Q ≥ ∥T (x)∥p,Q for non-negative elements x of lp(Q). Hence, ∥T∥lpQ = ∆p,Q(T ).
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Proof . Let z = Tx and z′ = Tx∗ . Write Xj = x1 + · · ·+ xj ,. By Abel summation and condition (ii), we have

zi =

∞∑
j=1

ti,jxj =

∞∑
j=1

(ti,j − ti,j+1)Xj ,

z′i =

∞∑
j=1

ti,jx
∗
j =

∞∑
j=1

(ti,j − ti,j+1)X
∗
j .

Since Xj ≤ X∗
j for all j, we have zi ≤ z′i for all i. Now, we have

∥z∥pp,Q =

∞∑
i=1

( ∞∑
j=1

Qi⌋j |zj |2
) p

2

≤
∞∑
i=1

( ∞∑
j=1

Qi⌋j |z′j |2
) p

2 = ∥z′∥pp,Q,

which implies that ∥z∥p,Q ≤ ∥z′∥p,Q. Now, assume (iii). Then zi and z′i decrease with i, and

Zm =

m∑
i=1

∞∑
j=1

ti,jxj =

∞∑
j=1

cm,jxj =

∞∑
j=1

(cm,j − cm,j+1)Xj ,

Z ′
m =

m∑
i=1

∞∑
j=1

ti,jx
∗
j =

∞∑
j=1

cm,jx
∗
j =

∞∑
j=1

(cm,j − cm,j+1)X
∗
j .

Hence, Zm ≤ Z ′
m for all m. By the majorization principle [1],

m∑
k=1

z2k ≤
m∑

k=1

z′2k .

Also, since Qi⌋j decreases with j for each i, by the Abel summuation we have

∞∑
j=1

Qi⌋j |zj |2 =

∞∑
j=1

(
Qi⌋j −Qi⌋j+1

) j∑
k=1

|zk|2

≤
∞∑
j=1

(
Qi⌋j −Qi⌋j+1

) j∑
k=1

|z′k|2

=

∞∑
j=1

Qi⌋j |z′j |2

and hence ∥z∥p,Q ≤ ∥z′∥p,Q. □
By taking Q1 = I the identity matrix and Qi = diag

(
1

i+j

)∞
j=1

, i ≥ 2 and T = C the cesaro operator , all conditions

of the above theorem are established. Now we have

∥x∥pp,Q =

∞∑
i=1

( ∞∑
j=1

Qi⌋j |xj |2
) p

2

=

∞∑
i=1

( ∞∑
j=1

|xj |2

i+ j

) p
2 .

Now, by the Hilbert’s Inequality which asserts that

∞∑
n=1

( ∞∑
m=1

am
m+ n

)p
<
( π

sin(πp )

)p ∞∑
n=1

apn, (p > 1)
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for p > 2 we have

∥x∥p,Q <
( π

sin( 2πp )

) 1
2 ∥x∥p.

Also,

∥Cx∥pp,Q =

∞∑
i=1

 ∞∑
j=1

X2
j

j2(i+ j)


p
2

<

(
π

sin( 2πp )

) p
2 ∞∑

j=1

(
Xj

j

)p

.

Applying the Hardy’s inequality which asserts

∞∑
n=1

( 1
n

n∑
m=1

am
)p ≤

( p

p− 1

)p ∞∑
n=1

apn, (p > 1)

we have

∥Cx∥pp,Q <
( π

sin( 2πp )

) p
2

∞∑
j=1

(Xj

j

)p
≤
( π

sin( 2πp )

) p
2
( p

p− 1

)p∥x∥pp.
So,

∥Cx∥p,Q <
( π

sin( 2πp )

) 1
2
( p

p− 1

)
∥x∥p.

By taking Qi = diag
(

1
i+j−1

)∞
j=1

, by the same manner one may obtain

∥Cx∥p,Q <
( π

sin( 2πp )

) 1
2
( p

p− 1

)
∥x∥p.

On the other hand by applying Propositin 1 of [3] for p ≥ 1 we have

∥Cx∥pp,Q =

∞∑
i=1

( ∞∑
j=1

X2
j

j2(i+ j − 1)

) p
2

≥
∞∑
i=1

∞∑
r=1

( r∑
j=1

X2
j

j2
) p

2
[
(i+ r − 1)−

p
2 − (i+ r)−

p
2

]
=

∞∑
r=1

( r∑
j=1

(Xj

j

) p
2

∞∑
i=1

(i+ r − 1)−
p
2 − (i+ r)−

p
2

)
=

∞∑
r=1

(∑r
j=1(

Xj

j )2

r

) p
2

=∥C2x∥
p
2
p
2
.

So for p > 2 we have

∥C2x∥
1
2
p
2
≤ ∥Cx∥p,Q <

( π

sin( 2πp )

) 1
2
( p

p− 1

)
∥x∥p,

specially, by choosing x = (1, 0, 0, · · · ), we have

∞∑
i=1

(1 + 1
2 + · · ·+ 1

i

i

) p
2 ≤

∞∑
i=1

( ∞∑
j=1

1

j2(i+ j − 1)

) p
2 <

( π

sin( 2πp )

) 1
2p
( p

p− 1

) 1
p .
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