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Abstract

In this paper, a new version of Ekeland’s variational principle by using the concept of τ -distance for bounded from
below functions which are not necessarily lower semicontinuous is provided. This new version of Ekeland’s variational
principle will be applied to establish an existence theorem for a solution to the equilibrium problem in the setting of
complete metric spaces.
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1 Introduction

To the best of our knowledge, the first appearance of equilibrium problems as we understand them now is due to
Muu and Oettli [11] and it was further developed by Blum and Oettli [3]. They are conceptually connected to Ky
Fan’s minimax inequality [7] Which goes back to the equality result of von Neumann [16].

Ekeland’s variational principle was first expressed by Ekeland [6] and developed by many authors and researchers
[2, 4, 5, 8, 13]. Tataru in [14] defined the concept of Tataru’s distance and using it proved the generalization of
Ekeland’s variational principle. Afterwards, in 1996, Kada in [10] stated the concept of w-distance and extended
Ekeland’s variational principle. The concept of τ -distance which is a generalization of w-distance and Tataru’s distance
was first introduced by Suzuki. He also improved the concept of Ekeland’s variational principle ([12]).

The purpose of this paper is to study equilibrium problems to get some existing results. In fact, we recall the
concept of τ -distance on a complete metric space and then a new version of Ekeland’s variational principle by using the
concept of τ -distance is proved and, by applying it, a version of the existence result of a solution for the equilibrium
problem in compact domains in the setting of complete metric spaces are investigated. Finally, some examples to
illustrate the results of this note are given. The results of this paper improve the corresponding results given in
[2, 4, 5, 8].
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2 Preliminaries

In this section we introduce and remind tools that will be useful throughout the paper and we will use standard
notations and terminology from real analysis.

By an equilibrium problem (EP)([15]) we understand the problem of finding

x̄ ∈ C such that f(x̄, y) ≥ 0 ∀y ∈ C,

where C is a set and f : C × C → R is a bifunction.

Definition 2.1. Given a nonempty subset C of a topological space X, a function h : C → R is said to be:

� lower semicontinuous if for each x ∈ C and each λ ∈ R such that h(x)>λ, there exists a neighborhood Vx of
x such that h(y)>λ, for all y ∈ Vx ∩ C or equivalently for any net {xα} ⊂ C, xα → x implies

h(x) ≤ lim inf
α

h(xα).

� upper semicontinuous if for each x ∈ C, −h is lower semicontinuous or equivalently for any net {xα} ⊂ C,
xα → x implies

h(x) ≥ lim sup
α

h(xα).

Also the epigraph of the function h is denoted by Epi(h) and is defined by Epi(h) := {(x, λ) ∈ C ×R : h(x) ≤ λ}.
The lower sub-level set at level λ of h is defined by Sh(λ) := {x ∈ C : h(x) ≤ λ}. It is well-known that a function h
is lower semicontinuous if and only if Epi(h) is closed in C ×R or equivalently, if and only if Sh(λ) is closed in C, for
all λ ∈ R.

Given a nonempty subset C of a topological space X, it is a basic fact from real analysis that every function
h : C → R (not necessarily lower semicontinuous) admits a lower semicontinuous regularization h : C → R ∪ {−∞}
defined by Epi(h) := Epi(h), the closure in C × R, equivalently by

h(x) = lim inf
y→x

h(y) = sup
U

inf
y∈U∩C

h(y),

where U runs all neighborhoods of x. It is well-known that for any x ∈ C and any λ ∈ R
1. h(x) = inf{λ ∈ R : x ∈ Sh(λ)};
2. h(x) ≤ h(x).

Example 2.2. Let h : R → R defined by

h(x) :=

{
x2 if x ̸= 0

1 if x = 0
,

It is clear that h is not lower semicontinuous and its lower semicontinuous regularization is h(x) = x2.

Example 2.3. If h : R → R is defined by h(x) := [x], then it is easy to check that

h(x) =

{
x− 1 if x ∈ Z
[x] if x /∈ Z

Definition 2.4. ([8]) Let (X,d) be a metric space. Then a function p : X ×X → R is called a τ -distance on X if

(1) p(x, z) ≤ p(x, y) + p(y, z), for all x, y, z ∈ X, moreover, there exists a function η : X × R+ → R+ which is
concave and continuous in its second argument and satisfying the following conditions:

(2) η(x, 0) = 0 and η(x, t) ≥ t ∀x ∈ X, t ∈ R+;

(3) limn xn = x and limnsup{η(zn, p(zn, xm)) : m ≥ n}= 0 imply

p(w, x) ≤ lim inf
n

p(w, xn) ∀w ∈ X;

(4) limnsup{p(xn, ym) : m ≥ n}= 0 and limn η(xn, tn) = 0 imply limn η(yn, tn) = 0;

(5) limn η(zn, p(zn, xn)) = 0 and limn η(zn, p(zn, yn)) = 0 imply limn d(xn, yn) = 0.
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Note that if d is a meter then it is τ -distance, by taking p = d and η(x, t) = t.

Example 2.5. ([8]) Let (X,d) be a metric space. Then a function p : X ×X → [0,∞) defined by p(x, y) = |y|, for all
x, y ∈ X is a τ -distance on X.

3 The Ekeland Variational Principle for equilibrium problems

In this section a new version of Ekeland’s variational principle by using the concepts of τ -distance and relaxing
the lower semicontinuity condition of the function is given. This new version of Ekeland’s variational principle will be
applied to establish an existence theorem for a solution of the equilibrium problem in the setting of complete metric
spaces.

Theorem 3.1. (The Ekeland variational principle)([6]) Let C be a nonempty closed subset of a complete metric space
(X,d), and h : C → R be a lower semicontinuous function bounded from below. For every ε > 0, and for any x0 ∈ C,
there exists x̂ ∈ C such that

h(x̂) + εd(x0, x̂) ≤ h(x0), h(x) + εd(x, x̂) > h(x̂),

for all x ∈ C \ {x̂}.

The following theorem is a generalization of Ekeland’s variational principle (Theorem 3.1) by replacing a meter by
a τ -distance.

Theorem 3.2. ([12]) Let C be a nonempty closed subset of a complete metric space (X,d), and h : C → R ∪ {+∞}
be a proper lower semicontinuous function, bounded from below. Assume that there exists a τ -distance p on X. Then,
for every ε > 0, and for any u ∈ C with p(u, u) = 0, there exists v ∈ C such that

h(v) + εp(u, v) ≤ h(u), h(w) + εp(v, w) > h(v),

for all w ∈ C \ {v}.

Proof . Let C = {x ∈ X : h(x) ≤ h(u)− εp(u, x)}. Then, it is obvious that C is nonempty and closed. Suppose that
for every x ∈ C, there exists w ∈ X such that w ̸= x and h(w) ≤ h(x)− εp(x,w). Then

εp(u,w) ≤εp(u, x) + εp(x,w)

≤h(u)− h(x) + h(x)− h(w)

=h(u)− h(w)

and hence w ∈ C. By Theorem 5 in [12], there exists x0 ∈ C such that

h(x0) = inf
z∈C

h(z).

This is a contradiction, for there exists w0 ∈ C with h(w0) < h(x0). □

The next result is a new version of theorem 3.2 by relaxing the lower semicontinuity condition of the function h,
and also it is and extension of the corresponding theorem given in [5] for τ -distance functions with a simpler proof
than as given in [5].

Theorem 3.3. Let C be a nonempty closed subset of a complete metric space (X,d), and h : C → R be a function
bounded from below. Assume that there exists a τ -distance p on X. For every ε > 0, and for any x0 ∈ C with
p(x0, x0) = 0, there exists x̂ ∈ C such that

h(x̂) + εp(x0, x̂) ≤ h(x0), h(x) + εp(x, x̂) > h(x̂),

for all x ∈ C \ {x̂}.
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Proof . We consider the lower semicontinuous regularization h(x) which is defined as follows,

h(x) = lim inf
y→x

h(y) = sup
U

inf
y∈U∩C

h(y),

where U runs over all neighborhoods of x. Since h is bounded below, there exists α ∈ R such that h(y) ≥ α, for all
y ∈ U ∩ C. Thus

inf
y∈U∩C

h(y) ≥ α,

this implies h(x) ≥ α. Therefore h is bounded below and it satisfies all the hypotheses of Theorem 3.2. Using Theorem
3.2 we have h(x̂) + εp(x0, x̂) ≤ h(x0) and h(x) + εp(x, x̂) > h(x̂), for all x ∈ C \ {x̂}. Since h(x) ≤ h(x), for all x ∈ C,
we have h(x̂) + εp(x0, x̂) ≤ h(x0) and h(x) + εp(x, x̂) > h(x̂), for all x ∈ C \ {x̂}. This completes the proof. □

The following example illustrates Theorem 3.3.

Example 3.4. Let X = R, C = [0,∞) and d be the Euclidean metric on X. The function h : C → R is defined by
h(x) := [x], for all x ∈ C (Example 2.3) is not lower semicontinuous. Obviously, h satisfies all conditions of Theorem
3.3 and so if we take x0 = 1 and 0 < ε ≤ 1 then x̂ = 0 is a candidate which fulfills in the conclusion of Theorem 3.3.

The next theorem is a direct consequence of Theorem 3.3 for bifunctions. Moreover, it provides sufficient conditions
for non-emptiness of the solution set of (EP).

Theorem 3.5. Let C be a nonempty closed subset of a complete metric space (X,d), and f : C × C → R be a
bifunction. Assume that there exists a τ -distance p on X. Assume that the following conditions hold

(i) f is bounded from below and lower semicontinuous with respect to its second argument;

(ii) f(x, x) = 0, for all x ∈ C;

(iii) f satisfies the triangle inequality property

f(x, y) ≤ f(x, z) + f(z, y) ∀x, y, z ∈ C.

Then, for all ε > 0 and all x0 ∈ C with p(x0, x0) = 0, there exists x̂ ∈ C such that

f(x0, x̂) + εp(x0, x̂) ≤ 0, f(x̂, x) + εp(x, x̂) > 0,

for all x ∈ C \ {x̂}. Furthermore if C be a compact set, and f and p be upper semicontinuous with respect to its first
argument, then the solution set of (EP) is nonempty and compact.

Proof . Define h(x) = f(x0, x), for all x ∈ C. It follows from Theorem 3.3 that there exist lower semicontinuous
regularization h and x̂ ∈ C such that

h(x̂) + εp(x0, x̂) ≤ h(x0), h(x) + εp(x, x̂) > h(x̂),

for all x ∈ C \ {x̂}. Thus, it follows from the definition of h(x), (i) and (ii) that

f(x0, x̂) + εp(x0, x̂) ≤ lim inf
y→x̂

f(x0, y) + εp(x0, x̂)

= lim inf
y→x̂

h(y) + εp(x0, x̂)

=h(x̂) + εp(x0, x̂)

≤h(x0) = f(x0, x0) = 0,

and also, it follows from the definition of h(x), (i) and (iii) that

f(x0, x̂) + f(x̂, x) + εp(x, x̂) ≥f(x0, x) + εp(x, x̂)

=h(x) + εp(x, x̂)

>h(x̂)

= lim inf
y→x̂

h(y) = lim inf
y→x̂

f(x0, y)

≥f(x0, x̂),
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for all x ∈ C \ {x̂}. This completes the proof of the first part of the assertion. Since f(x̂, x) + εp(x, x̂) > 0, for all
x ∈ C \ {x̂}, then there exists {x̂n} ∈ C such that

f(x̂n, x) +
1

n
p(x̂n, x) > 0

The compactness of C implies existence of a subsequence {x̂nk
} of {x̂n} such that x̂nk

→ x̂ as n → ∞. Hence,
f(x̂nk

, x) + 1
nk

p(x̂nk
, x) > 0. Then,

lim sup
k→∞

f(x̂nk
, x) + lim sup

k→∞

1

nk
p(x̂nk

, x) ≥ 0.

It follows from the upper semicontinuity f and p in the first argument that

f(x̂, x) ≥ lim sup
k→∞

f(x̂nk
, x) > 0, ∀x ∈ C.

This means that x̂ is a solution of (EP). The compactness of the solution set (EP) follows from the upper semi-
continuity f in the first argument. □

Example 3.6. Let X = R, C = [−1, 1], d the Euclidean metric on X and f : C × C → R be defined by

f(x, y) =

{
x2 + x+ y if x ̸= y

0 if x = y

It is easy to verify the solution set (EP) equals to [
√
5−1
2 , 1].

Example 3.7. Let X = C = R and d be the Euclidean metric on X. Consider the function p : X × X → [0,∞)
defined by p(x, y) = |y|, for all x, y ∈ X. The function p is a τ -distance. Define the function h : C → R by

h(x) :=

{
x2 if x ̸= 0

1 if x = 0,

for all x ∈ C (Example 2.2). Obviously, h satisfies all conditions of Theorem 3.3 and so if we take x0 = 0 then x̂ = 0
is a candidate which fullfils in the conclusion of Theorem 3.3.

Example 3.8. ([8]) Let X = R, C = [0,∞) and d be the Euclidean metric on X. Consider the function p : X ×X →
[0,∞) defined by p(x, y) = |y|, for all x, y ∈ X. The function p is a τ -distance (see Example 2.5). Define the function
f : C × C → R by f(x, y) = sin(y − x), for all x, y ∈ C. Obviously, f satisfies all conditions of Theorem 3.5 and so if
we take x0 = 0 then x̂ = 0 is a candidate which fullfils in the conclusion of Theorem 3.5.

Let C be a nonempty subset of a topological space X, and f, g : C × C → R be two bifunctions. the following
inequality holds: f ≥ g, that means f(x, y) ≥ g(x, y), for all x, y ∈ C. As a direct consequence of Theorem 3.5 we
have the following Theorem.

Theorem 3.9. Let C be a nonempty closed subset of a complete metric space (X,d), and f : C × C → R be a
bifunction. Assume that there exists a τ -distance p on X. Assume that there exists a bifunction g : C × C → R such
that

(i) f ≥ g;

(ii) g is bounded from below and lower semicontinuous with respect to its second argument;

(iii) g(x, x) = 0, for all x ∈ C;

(iv) g satisfies the triangle inequality property g(x, y) ≤ g(x, z) + g(z, y), for all x, y, z ∈ C.

Then, for all ε > 0 and all x0 ∈ C with p(x0, x0) = 0, there exists x̂ ∈ C such that

g(x0, x̂) + εp(x0, x̂) ≤ 0, f(x̂, x) + εp(x, x̂) > 0,

for all x ∈ C \ {x̂}. The conclusion of Theorem 3.9 is similar to the one in (Corollary 3.1 in [5]), where we replacing a
meter by a τ -distance.
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4 Conclusion

A new form of Ekeland’s variational principle for functions which are not necessarily lower semicontinuous in the
setting of τ -distance spaces. By using this result Ekeland’s variational principle is extended for bifunctions which
satisfy the triangle inequality property. Then, this form of Ekeland’s variational principle is applied for proving and
existence result of the solution for the equilibrium problem. This result is an improvement of Theorem 3.2 in [8] and
similar results for equilibrium versions of Ekeland’s variational principle were obtained by Alfuraidan and Khamsi
(Theorem 2.1 in [1]) and Feng, Xie and Wu (Theorem 3, Theorem 4 and Theorem 5 and Corollary 1 in [9]) and also
Bianchi, Kassay and Pini (Theorem 2.1 by replacing a norm by a meter in [2]).
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