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Abstract

We study the asymptotic behaviour of a solution of a mixed differential equation driven by an independent fractional
Brownian motion with Hurst index H € (0;1) and compensated Poisson process and a local time. This study consists
in determining the uniform Freidlin-Wentzell estimates in a temporal distribution space S'(R). The approach is purely
probabilistic.
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1 Introduction
let’s consider the stochastic differential equation (SDE) in short, defined in the probability space (S'(R), B(S’(R)),P)
t t t B
XE = 2 +/ b(Xf)dr+5/ o(X2)dBY +5/ K (x, X)N (da, dr) + L5, t € [0:T]
0 0 o Jr (1.1)
XS = X0

where the following assertions hold:

* xg € R* is a measurable random variable to value in the tempered distribution space S8’(R), dual space of Schwartz
space on which B(S'(R)) is a Borel algebra ;

x b, 0:[0;T] x S'(R) = S'(R) and K : [0;T] x R* x §'(R) — R* x S'(R) are measurable functions such that the
integrals are defined as white noise integral (see Siaska [18]). b, o and K satisfy the following assumptions:

Assumption 1.1. For almost all ¢ € [0; T] and for &, ¥ € S'(R) there exist constants M and L such that

(i) [b(®)] < M, |o(®)] < M, [ K (2, @) < M;
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(i) [b(®) = (V)| < LI =¥, |o(®) —o(V)[ < LI® - V|, |K(z,®)— K(z,¥)| < L|®— V.
* L7 is non-decreasing continuous process such that

0ift=0
=9 (1.2)
Jo Lixemop (XE)dLE if t€[0;7]

The local time Lf is increase when and only when the process is zero.

On the one hand, if the local time is zero in , Bai and Mai [2] have proved the existence and uniqueness of
solution. On the other hand, when the Poisson process is zero in , Diédhiou and al. [10] have established a large
deviation principle. Many authors have established the large deviations principle for a SDE driven by a Brownian
motion and a Poisson process (see Yumeng Li [I6]) To the best of our knowledge, no study of the large deviations
principle on SDE driven by a fractional Brownian motion, a Poisson process and a local time simultaneously has been
done. This is the motivation behind our study.

The paper is organized as follows: Section 2 contains some definitions and theorems of the fractional Brownian
motion, Poisson process and large deviation principle which we need for our results, Section 3 contain our main results.

2 Preliminaries

Consider a white noise space (S’'(R), B(S'(R)),P) and denote (.,.) the scalar product. We define the spaces of
continuous functions of integrable squares by:

Li(R) = {f € §'(R) such that s,t € [0, T, |f|§$,t = /t /s f(r)fw)o(r, w)dudr < +oo}
0 Jo

L*(R* x R) := {gp e S'(R* xR),A(p) = (1@, M) lj0,) = /0 / Moz, r))v(de)dr < Jroo}

where A(¢) = pe? —e® + 1.

Definition 2.1. (see Biagini and al [4]; Hu and al [14]) Let Bf be a fractional Brownian motion (fBm in short), for
w € §’(R), the process

t
(w, flio.g) = / f(r)dBY is Gaussian process with covariance
0

Py = Flioags Flowp)e = / / ) fw)d(ru)dudr | Y f € TA(R).
0 0
where

_ ’E(B{'B])

B(t,s) = pIR = H(2H —1)|t — s|*7172.

Definition 2.2. (see Lokka [17]) For n € S’(R* x R), the stochastic integral of p € L?*(R* x R) with respect to N is
defined by
t
=100 100 i= [ [ olar)N(da.dn). (2.1)
0 *

Definition 2.3. (Dembo and Zeitouni [7], Deuschel and Stroock [8]) The family (X{)c~o of probability P¢ is said to
satisfy large deviation principle if there exists a rate function I defined on L2 and a speed ¢ tending to 0 such that:

(i) 0 < I(h) < +oo, for all h € L?;
(ii) I is lower semi-continuous that is, for all @ < +oo, {h: I(h) < a} is a closed of L?;

(iii) for all a < +oo, {h: I(h) < a} is a compact of L2, in which case I is a good rate function;
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(iv) for any closed set C' C L2,

. e/ e < _; .
glg(l)supslogIF’ (Xfel)< é?gl(h) (2.2)
(v) for any open set O C L2,
lim inf elogP*(X; € O) > — inf I(h) (2.3)
e—0 heO

Theorem 2.4. (Dembo and Zeitouni[7]) Let £y and Eo C L? and g : E; — F is a continuous function. If the family
(X£)eso satisfies a large deviations principle of a rate function I on Ey, then the family g((X7).>0) satisfies the LDP
on Ey with a rate function J defined by:

J(z) =inf{I(h) : h € E1, z=g(h)}, foreach =z € Es.

3 Main Results

The aim of this paper is to establish the large deviations principle for solution (X7, L§) by assuming that the fBm
BH and the Poisson process N; are independent. We use the Azencott [1I] method according to the Freidlin-Wentzell
[13] estimates. The main result of this article is the Theorem , the proof of which is based on the following
propositions, lemmas and theorems.

Consider the family (eBff + eNy)(.>0), with ¢ € [0;7T] obtained from the stochastic differential equation (1.1
without the term L7, when we suppose that the drift is zero and the diffusion coeflicients are equal to the identity and
we denote by P¢ its probability.

Assume that P¢ = Pf’s X v° where ]P’f’5 is the probability measure of the family (¢Bf) and v¢ is the probability
measure of (eNV;). Let L? = LZ(R) x L*(R* x R) denote the space of integrable square functions h : [0, T] — R, with
the norm |||z is defined by ||h||Lz = sup |h(r)|, for all h € L? and t € [0,T] . It is well know (see [10]) that:

0<r<t

Theorem 3.1. The family (eBf + a]\_ft)(€>0) satisfies the large deviations principle with the good rate function
I:1L% — [0, +o0] given by

SIFI2+ Alp), if (f,¢) € L2
I(f,0) = )

+o0 otherwise.

In other word:

x I is a good rate function;
* for all closed set C' C L2,
- 1
lim sup £®log P* (e B! + eN, € C) < —[|f[5 + A(o)];
e—0 2

* for any open set O C L2,
- 1
lim inf logP*(eBf! +eN; € 0) > —[§|f@ + A(p)].
e—

Proof . see [11] O
For A € L2, define an operator I' : L2 — L2 by

TA; = A — inf (A(s) A0O) (3.2)

0<s<t
for ¢ € [0; T] satisfying the following inequality:

sup [y (r) = Tha(r)] <2 sup [¢hi(r) = a(r)l,

0<r<t 0<r<t
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see [10], for more details. By the reflection principle, the solution of (1.1 is given by

X:=TZ;
(3.3)
L; =T7Z; — Z;
where Z°¢ is a solution of the following stochastic differential equation:
t t t ~
Z7 =z —|—/ b(TZ:)dr +/ o(TZ%)dBH —|—/ K(x,TZ:)N(dx,dr), t € [0;T] (3.4)
0 0 o JRr*

and we denote the probability law of X7 by u® = P o F~! where

x IP? is the probability law of e(Bff + Ny);

* F'is a deterministic function associated to f and ¢ by solutions of the following ordinary differential equations:

F(f,)(t) = hy = o + [, b(h,)dr + fo (T, 8)dr 4[] [en K (2, he) (2@ — Dw(da)dr + n(hy)
F(f,0)(t) = F(ft) = 2t = xo + fo Zr) dr + fo (z) fro(r, s)dr + n(hf) (3.5)
F(0,9)(t) = F,(¢1) = gr = w0 + [y b(gr)dr + [ [p. K (2, 9:)(e?@) — D)u(dw)dr + n(g:) '
F(0,0)(t) =my = xo + fo my)dr + n(my)

where n(h;) fot X{hr_o}dnr is an increasing continuous function. Similar as 1' F can also be written as for
f e Li(R) and ¢ € L*(R)

n(f, o)) =TA(f, ) — Ae(f, )

where A is a solution of the following stochastic equations:

{ F(f,0)(t) = TA(f,¢) (3.6)

Ai(f,0) =m0 + [ B(TAL(f, dr—i—fo (CA(f,9) frd(r, s)dr + [ [ K (2, TAC(f, 9))(€#@") — 1)v(dz)dr
A(f,0) = o + [, B(TA(f,0) dr+f0 (TA-(f,0)) fro(r, s)dr

A(0,9)(t) = 20 + [y b(AL(0,9))dr + [ oo K (2, A,(0,0))(e#E) — Dw(dz)dr

A¢(0,0) = zo + [y bI'A,(0, O))dr

(3.7)
for which (f, ) € L2 are induced respectively by LDP of the fBm and Bm.

Proposition 3.2. Assume A;(0;0) defined in (3.7) and under (1.1f), then for R > 0 and § > 0 there exists o > 0 such
that
11_1}1(1) supe®log pf {1 Z8 — Ae(0;0)||L2 > 6, || B + Ny||lL> < a} < —R. (3.8)
g

Proof . For R > 0 and § > 0, we have
|Z8 — A4(0;0)] < /Ot b(TZ2) — b(T'A,.(0;0))|dr + |s/0t o(TZ8)dBH —l—e/ K(z,TZ%)N(dz, dr)|
< L/Ot ITZ¢ —T'A,(0;0)|dr + eM|BE + N|.
Then
sup |Z; — A(0;0)] < L/t sup |T'Z8 — T'A,.(0;0)|dr + M sup |BI + Ny|
0<r<t 0 0<r<t 0<r<t

t
< 2L/ sup |ZZ — A,.(0;0)|dr +eM sup |Bf + Ny|.
0

0<r<t 0<r<t

By Gronwall’s Lemma, we have

1Z; — Ae(0;0)¢||z < eM sup |BtH + Nt|e2LT.
0<t<T
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In light of [I0], we have

H _ Je—2LT
V{12 = M(0;0) e > 8} < 4F {nBt Nl > }

eM
62674LT
<dexp{— .
= eXp{ 2:2 M2 (121 1 t)T2}
Hence,
I _ H _ 5672LT o -~
{12 = M0 0) a2 > 8B + Nl < @} < (B + Nilea > 2 B+ Rifeo < o
52674LT
<dexpi— .
= eXp{ 2202 (121 + t)TQ}
(52 —4LT
Put R=——C _ thus

2M2(t2H —i—t)TQ’
— R
1 {HZZ: — At(O;O)H]Lz > 6, ||BtH + Nt”]]ﬂ < a} < 4dexp {—52} .

This implies that -
li_r% supe®log pu° {||Zf — A¢(0;0) ||z > 6, | B + Nyll= < a} < —R.
€

O

Lemma 3.3. Let 0 be a bounded Lipschitz function and f be bounded and continuous function. Then there exist
c¢>0and N > 0 such that

IF(H)p(t,s)| <e and  |o(h(t))o(t,s)| < N, Vs, tel0,T]. (3.9)

Proof . Since f is a bounded function, there exists ¢ such that |f| < d. We have for s,t € [0;T]

[F®)o(s, )| = [F(Ollo(s, )] = |fI[H2H = 1)[t = s[*772|
< SH|(2H — 1)|T* = ¢.

Moreover, from boundedness of o, there exists M such that |o(T'A;)| < M, for all h € L2, we have for s,t € [0;7]
|o(PA) G (s, 8)| = [o(TA)[6(s, )| = [o(PAL) || H (2H — 1)[t — s[> 2|
< MH|(2H —1)|T*! = N.
O

Proposition 3.4. Assume that A;(0, ) defined in (3.7), under (1.1) and
t
U, = / / (e#@") — Dy(dx)dr for ¢ e L*(R* x R).
0 *

Then for R' > 0 and 4’ > 0 there exists o > 0 such that

- 1
111% supe?log u{|| Z¢ — A¢(0,0) |2 > &', | B + N; — E‘I’tHU <a}<-—R. (3.10)
e—
Proof . For (0, ) € L2,
t t t
12 = MO < [ 102D A, el e [ oD e [ [ K025 (d,dn
0 0 0 R*
t
- / K (2, TAL(0,0)) (€@ — 1)u(da)dr]
0 R*
t t t B t
<L / D22 — TAL(0, 9))|dr + M]e / dB7 4 ¢ / N(da, dr) — / / (2@ _ 1)u(da)dr|
0 0 0 R* 0 *

t
— 1
gL/ ITZ: —TA(0,)|dr + eM|Bff + Ny — —0|.
0 3
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Then,

t
1
sup |Z; — A+(0, ¢)| §L/ sup [I'Z; —TA-(0,¢)|dr + M sup |B + N, — f\IJt|
0<t<T 0 0<r<t 0<t<T

t

1

SQL/ sup |ZE — A.(0,¢)|dr +eM sup |BE + N, — f\Ilt\
0 0<r<t 0<t<T

This implies that

|1Z; — Ae(0, )|z < eM sup |B —|—Nt—f\IJ \62LT

0<t<T

So, we have

I _ 1 51672LT
0 0125 = Mu0u)lze > 0 < {IBE + = 2wl > 2}

I / 7LT
Sexp{—(f_;“’)} < NBE N L > 2 }

eM
Hence,
— 1
ME {HZtE — At(o,(p)”]]} > (5/, ||BtH + Nt — *\I’tHLz’ < Oé}
: 6/ —LT _ 1
<exp{— (f2 )} X fi {|BH + N, — f\ptup > ——— ||BE + N, — =012 < a}
€ eM €
I ; 5/ —LT _ 1
:eXp{— (f2S0)} {||BH+Nt—\Ilt|]L2 > ||BtI_I+Nt—*\IJtH]L2 <OZ}
€ eM e
) _ 5 ~ 6/6_2LT B ~
_exp{_ (f )}Ns{llB{J+Nt||L2 >€T7||B{_]+Nt”ﬂ‘2 <OZ}
I
<4exp{ (f,2<,0) } X exp {—2}
5
I /
=4 exp { (f, 903 + R} =4 exp {2}
€
Thus,

- 1

lim sup e log 4i*{[| Z7 — A+(0,)ll> > &, | B + N — “Ville <o} <R

e—
O
Proposition 3.5. The functions F' and 7 defined by 1) are continuous on a compact subset of Li(R).
Proof .

e Let’s first show F is continuous. Let F(f1,¢1) = TA(f1,¢1) and F(f2,92) = TA(f2,¢2). Then
sup |F(f1,01)(t) = F(f2,02)(t)| = sup [TA(f1,¢1) — TAu(f2, 02)]
0<t<T 0<t<T
<2 sup [A¢e(fr,01) — Ae(fo2)]
0<t<T

with

A(fr9) = 20+ /0 B(TA, (f, ))dr + / o (TA(f, 9)) fob(r, 5)dr + / K(2.TA,(f.0))(e? — 1)du(dz)dr.
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Then,

t

A(froo1) — Au(frr02) = / BTA, (s 01)) — B(TA, (fa, 02))]dr + / o(CA(fr,00)) f1 (F)6(r 5)dr

—// K(w,FAr(f,gog))(e‘”—l)u(d:lc)dr—// K(x,TA(f, p2))(e¥? — 1)v(dx)dr
o Jr= o Jr

- / BITA (fr, 1)) — BTA(fa, 02)]dr + / [0(TA (f1, 1)) — 0 (TA (o, 02)) o (1) (r, 5)dr

0

+ [ oA ot )10~ i+ [ [ K DA pa)e - et
# [ A ) — K T2 — Dol
Hence,
A1) = Alfarea)l < [ A1 01) ~ B0 e+ [ lo (AT o) L)~ Fatr
# [ 10T 2)) = oA 0D )
b [ K DA 1)~ Ko DA e = vt
+ /Ot /]R* K(x,TA(f2, p2))[e?* — e??|v(dx)dr
< [ I Guser) = T ool + e [ IO 2) = DA )i
+N/ () — folr |dr+Lc/ TA(f1, 1) — DA, (for 02)|dr

+N// le¥t — e??|v(dx)dr
o Jr~

t
<L(1 4 2) / DAL (f1,01) — DAL (fa, 02)|dr + 2NGT.
0
This implies that

¢
sup [A:(f1,01) — Ae(fa, 02)| < L(1 +2K)/ sup [TA-(f1, 1) — TAr(f2, 2)|dr +2N6T
0

0<t<T 0<r<t

¢
<2L(1+ 20)/ sup |Ar(f1,01) — Ar(fa, p2)|dr + 2N6T.
0

0<r<t
Thus,

181, 01) = Aalfar ) lin < 2NOTEEHOTand [P (fu,01) = F(f2,00)llz < 2NGTe2HH20T,
Hence F' is continuous.
e According to [10], n:(f, ¢) = TAs(f, ») — Ae(f, ), s0

ne(f1,01) — m(f2, p2) = TA(f1,01) — Mi(f1,02) — DA(f2, 02) + Ae(fa, 02)-

Then
¢ (frs 1) = ne(fo, p2)| < TA(f1,01) — TAe(f2, p2) + [Ae(f1, 1) — Ae(fa, p2)|
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and we have

sup [n:(f1,01) — me(f2, 02)| < sup [TA¢(f1,01) — TAe(fo, p2)| + sup [Ae(f1,01) — Ae(f2, 02)]
0<t<T 0<t<T

0<t<T
<2 sup [A¢(f1,01) — Ae(fas p2)| + sup [Ae(f1,01) — Ae(f2, p2)
0<t<T 0<t<T
<3 sup [A¢(f1, 1) — Ae(fa, p2)l-
0<t<T

This implies that
Ine(f1,01) — me(fa, 02) |2 < 2N§T€6L(1+25)T,

because A € 2. Hence 7 is continuous. [J

Theorem 3.6. Assume g defined in (3.5). Then for R' > 0 and §’ > 0 there exists @ > 0 such that

- 1
li_r)r%)supg2 log ¥ {| X5 — g¢llLe + || LS — mellee > &, | B + N; — E\I]tHILQ <a}<-R. (3.11)
g

Proof . For R' > 0, § > 0, then by (3.3]) and (3.5]), we have

| XF —gel + |Lf — el = [T Z7 —TA(0,9)| + T Z5 — Z7 —T'A4(0, ) + A(0, )]
<PZF —=TA(0,9)| + [TZ; — TA(f, o) + 127 — A0, )]

Then

sup | X7 —g¢| + sup [Ly —n| < sup [I'Z7 —TA(0,9)] + sup [T'Z; —TA(0,9)] + sup [ZF — Ay(0, )|
0<t<T 0<t<T 0<t<T 0<t<T 0<t<T

<2 sup |Z; — A(0,0)| +2 sup |Z; — A(0,0)| + sup [Z7 — Ay(0, 0]
0<t<T 0<t<T 0<t<T

<5 sup |Z; — A(0, )]
0<t<T

Thus,
_ 1
1X5 — gellue + I1LF — nelle < 5eM|| B + N, — g‘I’tHJL2€2LT~

This implies that
. _ 1
glg})sup&z log p{[| X5 = gellez + L5 — melle > &', | B + Ny — E\IltH]L? <a}<-R.

O

We can now formulate the main theorem of this article.

Theorem 3.7. The family (XtH © Lf)o>0 of the stochastic differential equation 1) satisfies a large deviation prin-
ciple with a good rate function given by

sllo ™ (2)[E = b(2) = Xga=op (2051 + nf{A(p), Fu(p) =g} if (z,9) € L?

J(z,m,9) = (3.12)

+00 otherwise.

In other words:

e J is lower semi-continuous and {(z,g) € L%, and a € Ry, J(z,n,¢) < a} is a compact subset of L2;

o For all closed set C' C .2,
lir%sup e?log u[(X5, L5) € O] = lin%)sup€2 logPeoF~1[(X:, L) € O] < —J(z,1,9);
E— E—

e For any open set O C L2,
lir%infa2 log (X5, LE) € O] = lir%infa2 logPfoF~1[(X§,L5) € O] > —J(2,m,9).
e e—
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Proof . J is a good rate function for the LDP of the process X; because J is the sum of two good rate functions:

31071 (2)[2=b(2) = X (z=0} (2)7]|3 -1 (see Diatta and al [I1]) and inf{A(p), F,, () = g} (see Dadashi [6]) for all (z, g) € L2,
g

_ 1
The family (B} + N,) of probability measure P satisfies an LDP with the good rate function I(f, p) = 3 (115 +]A(e)]
for (f,¢) € L? and F is a continuous function. So by the contraction principle ([2.4), for a close set C' C L2, we have:

lim sup £® log 1 [(X7, Lf) € O] = lim supe? log PPoF ~'[(X{, Lf) € C]
e—0 e—0
= lim supe? log P [F[(X{, LS) € O
e—0
= lim sup e” log P[P~ '[(X, Lf)] € F~1(C)]
E—r
= liH(l) supe?logP*[e(Bf + N;) € F~1(0)]
e—

<— inf I(f,
< - (f; %)

feF-1
N _(z,i_tgfec{in”(f’ ©), (f,9) €L? Fy = 2, F,(¢) = g}
B %‘071(2)[2. = b2) = xge=0y (2Villlg-1 +0f{A(R). Fulp) = 9
= _J(Z’nvg)-

Hence lir% supe?log uf[(X§, L5) € C] < —J(2,m,9). For an open set O C L2,
E—

lim inf £ log ¥ [(X§, L§) € O] = lim supe?® logP*oF ' [(X{, LS) € O]
e—0 e—0
= lim inf e2logPE[FY(XF, LS) € O]
E—r
= lim inf e2logPE[FY(XF, L)) € F~1(0)]
e—
= lir% inf % log P*[e(Bf + N,) € F~1(0)]
e—

>— inf I(f,
> © (f; )

fer-1
- 7(Z}££O{inf I(fv 90)7 (f7 SO) € H_AQ, F¢ =2z, FV(SQ) — g}
— %lU_l(Z)[fé — b(Z) - X{Z:O}(Z)m@—l + igf{A((p)7Fy((p) — g}
=—J(z1,9)

Hence limo infe2log pf[(X¢, L) € O] > —J(z,1,g). Now, let us show that
e—

1, _ . . .
J(z.1.0) = Slo H2)[2 = b(2) = Xqe=0y (2)7][5-1 + inf{A(p), Fu(p) = g}-
According to , we have:
t t
ze =+ / b(z)dr + / o(zp) fro(r, s)dr +n(z).
0 0
Then,

Ze = b(2t) + 0(2e) frd(t, 8) + X{z,—0) (26)7)-

So, we have
_ Z = b(ze) — (=)
fi=

Sd s =0 ()l = be) = Xgmop (@il (1)
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Then
1 _ . o .
T(zm,0) =510 (20 [ = b(20) = Xgzi=oy (20167 (t 9)IG + nf{A(0), Fu () = g}

I A ) o1 . . .
=5 [ [ ol = 8 = ey ()il () () = Be) — X )
x ¢t

“(ryu)e(u, r)dudr + ir’}f{A(w), F,(p) = g}

Lt . - . .
=5 | [ o el b = e oy )il )l = H) = gy (2067 )

+ ir;f{A(w)v F,(p) =g}

=%|U‘1(Z)[2 = b(2) = Xgz=0y (2l G-+ + EH{A (), Fu () = g}

4 Conclusion

In the present paper, we have established the asymptotic behaviour of a solution of a mixed differential equation
driven by an independent fractional Brownian motion, a compensated Poisson process and a local time under the
assumption of low regularity. This construction is carried out in the tempered distribution space &’(R) using the
method of Freidlin-Wentzell [I3] and Azencott [1]. So it would be very interesting to do this in a space larger than
that considered here. For example it is interesting to study the process in a higher dimensional space.
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