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Abstract

In this paper, an online neural inverse controller is used to deal with actuator faults. In such a way that the inverse of
the nonlinear induction furnace system (IFS) is used as a fault-tolerant controller (FTC) so that it can cover the fault
of the actuator. The design is such that an online neural network is used to model the NIFC, the three-layer neural
network is converted into a four-layer RBF neural network, and the last layer is the nonlinear IFS, and this layer is It
is unchangeable and the controller and the system are connected and finally form a four-layer neural network. So, an
intelligent inverse model of the IFS is used as FTC to cover the actuator fault of the nonlinear IFC. This controller
design is done in two ways: in the first part, five inputs are used for training the neural network, one of which is the
neural network training error, but in the second part, in addition to the five inputs of the first part, the derivative of
the error is used. And the error integral has also been used in neural network training and the advantage of the second
plan is to reduce overshoot. Finally, a fault actuator is applied to the nonlinear IFS in the 10th to the 30th second,
despite the presence of the intelligent FTC, this defect is covered in less than one second, and the system continues
to function normally despite the operator’s defect in this interval of time.
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1 Introduction

In today’s industry, the main requirements for any system, in addition to good performance and efficiency, are
availability, reliability, and safety for that system. Therefore, the monitoring tasks in the control unit of any system
have a high priority in achieving these goals [3, 18]. These components include the detection method, fault isolation,
and the use of fault tolerant control(FTC) to maintain good performance in the fault state, and in fact, fault has
become a more interesting topic for modern safety and technological systems in the last decade [38]. In fact, FTC is
of high importance for every aspect of systems, this issue specifically prevents defects from turning into failure [7, 4].
Where the increasing demand for more reliable performance necessitates the development of sophisticated techniques
to provide timely and accurate fault diagnosis and fault tolerance [3, 8]. Normally, a complete system consists of three
parts: the actuator, the main structure, and the sensor, so a fault monitoring system must be specifically designed
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to monitor and fix the fault of each sub-system [34] so that any fault Before it leads to disastrous consequences. In
terms of fault diagnosis, our interest is mainly focused on checking actuators and sensors. Because these subsystems
are more prone to faults, where their healthy function usually guarantees a smoother and more reliable operation for
the system [34, 10]. Existing FTC techniques are divided into two categories, active approach and passive approach
[13], where the passive fault-tolerant controller (PFTC) parameters are chosen very conservatively [6, 5] so that the
desired system may be in The nominal state loses its function. On the other hand, the active fault tolerant controller
(AFTC) is resistant to the fault and is reconfigured according to the fault information provided by the fault detection
modules [25, 4]. As mentioned in [12], fault detection and isolation schemes have been applied to the nonlinear system
of gas turbines, based on two observers to detect and isolate the actuator fault. Likewise, a nonlinear control approach
is used to predict the future behavior of satellite systems to prevent faults/failures that may affect their thrusters [26].

Fault detection methods can be classified into two groups based on hardware redundancy and analytical redundancy,
especially the one that is more popular in practice because it does not require additional hardware [10]. Data-driven,
model-based methods are examples of analytical redundancy methods. Data mining methods are usually performed
using techniques such as fuzzy logic [18], artificial neural networks [13] and genetic algorithms, etc. Neural networks
(NN) can be used to automate the operation of high-speed trains. Unexpected disturbances, faults, and nonlinearities
are considered by applying a neuro-adaptive fault-tolerant control scheme. As a result, velocity and position tracking
are improved despite uncertainties [14]. In addition, a model-based fault accommodation system based on recurrent
wavelet Elman neural networks has been developed to estimate the uncertainties and disturbances in the control
of a robotic arm during locomotion. Wavelet functions are used as activation functions for hidden neurons [17].
Inverse neural network models are the next evolution. As controllers, they offer appropriate parameters to achieve a
particular target input at their output. A special type of neural network is called a Radial Basis Function (RBF).
An RBF neural network is used to approximate the nonlinear function and compensate for the uncertain part of the
system. In addition, the Lyapunov stability theory is used to adapt the weight of the RBF neural network. The
approach controls a six-degree-of-freedom robotic arm [16] and a permanent magnet motor drive [2]. The authors in
[32] developed an improved model of predictive power control (MPPC) for fault-tolerant converter operation connected
to the grid. In an inverse controller’s induction furnace system, the inverse model is derived using an RBF neural
network offline and sliding mode. Due to the Chattering effects of this type of controller [28], the intelligent online
inverse for nonlinear induction furnace systems is presented.

It is therefore important to design a controller that meets the intended purpose. A nonlinear inverse control
strategy can provide an intelligent fault-tolerant control method. An inverse model of a similar system is used as a
nonlinear controller [9, 35]. In addition to their ability to deal with nonlinear systems, artificial neural networks can
also learn complex nonlinear relationships, making them useful tools [1]. An intelligent system determines the exact
orientation angle for solar sun trackers [23]. In the hot rolling of steel quality control, inverse mapping is used between
the output and input of the NN. The inverse fault-tolerant controller consists of a reconfigurable block and a detector
unit. Detector units calculate the differences between system outputs and model outputs. When the error exceeds the
standard limit, the reconfiguration section is enabled. From the controller’s point of view, the reconfiguration section
ensures that the system is fault-free. Therefore, it makes the system resistant to this flaw and hides it. Therefore,
using a neural network for inverse system modeling is appropriate for this control strategy.

This strategy is often needed for nonlinear induction furnaces with actuators, sensors, or other parts of the structure
that heated parts may damage (melting, milling, etc.). An induction furnace consists of a coil, melting shell, and power
supply. Current flows through the coil, which is the primary winding, causing current to flow into the coreless melting
shell, which is the secondary coil. As a result, the raw material melts [28]. Induction furnaces operate by passing
a current through a coil, which creates a magnetic field in the coil core. As a result, heat is generated. Thus, the
induction furnace comprises two parts, electric and thermal. The electrical part of the furnace includes the burner,
the inverter, and the capacitive bank, while the thermal part includes the coil and the workpiece [28]. Induction
furnace temperature control is an important issue in the industry. Therefore, PID controllers are used to control the
temperature of induction furnaces. RBF neural networks are used to determine the parameters of this PID controller
[37]. The temperature of the induction furnace is controlled with fuzzy logic [36]. The PID controller has been applied
to control the temperature of the induction furnace system [27]. The PI controller has been developed in three modes:
1) linear PI for the linear model, 2) linear PI for the saturated linear model, and 3) anti-wind-up PI control for the
saturated linear model [22]. In 2016, fuzzy control was used [21] and in the same year, PID control based on BP neural
networks was implemented [11]. In the study by Torabi et al. [28], the actuator defect is examined in a nonlinear
induction furnace system that uses a slip-mode controller for fault-tolerant control. The operator’s fault is considered
an indefinite one in this study. The inverse model of the system is also used in the control discussion, which is trained
offline using an RBF neural network. However, the amount of output error is significant due to the modeling error and
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the presence of chatting in the sliding mode controller. In this paper, RBF neural network training has been applied
online to reduce modeling errors. The inverse system model has been used as a fault-tolerant controller to minimize
output errors and provide the fault-tolerant control of a faulty system. With this approach, the faulty system tracks
its ideal value, and consequently, the tracking error tends to be near zero quickly.

Authors in [29] deal with detection of similarity in Carbon Fiber-Reinforced Polymer Plate Defects based on fuzzy
systems. [20] develops similarity in Profiled Temporal Association Pattern Mining based on both fuzzy systems and
prevalence estimation. Fuzzy similarity measurement and their applications are develop in [30]. [33] deals with Fuzzy-
Wavelet Neuro Adaptive controller to apply on Multivariable Servo Actuator in Real-Time. Authors in [15] derive
BP Neural Network for Permanent Magnet Synchronous Linear Motor. A neural-based model reference controller is
developed for a class of discrete time nonlinear systems in [24]. [19] presents neuro-predictive regulator to stabilize
nonlinear model of gimbal process with interaction.

This paper presents an FTC based on fault hiding and inverse neural networks. NNs can model several nonlinear
systems, including their inverse, so using RBFs in this control scheme is promising. Here, the control design employs
the inverse model in series with the system, and whatever is given as input to the inverse model would be received
as output from the system. Both additive and multiplicative modes are investigated for the actuator fault. Next, the
nonlinear induction furnace is described. It is then subjected to an actuator fault. In the third part, inverse system
modeling is followed by direct system modeling. This leads to inverse system control. There are two ways to achieve
inverse system control. Simulations and results related to the article are presented in the fourth part. The results are
then presented.

The structure of the article is as follows: the first part is the introduction of the article, and in the second part,
the dynamic equations of the nonlinear IFS are given, and the effect of the fault of the actuator in the form of
multiplication and addition is shown in the mentioned equations. In the third part, the modeling of the system was
done using the RBF neural network, and in the second part of the same part, the inverse modeling of the IFS was
done using the neural network. This inverse modeling is used as a controller. It is done in two ways and both methods
are designed online. In the fourth section, the results of the simulations of these two control methods are given, and
in the final section, five conclusions are presented

2 NONLINEAR IFS WITH ACTUATOR FAULT

Because the power supply of the induction furnace includes a rectifier, inverter and capacitive bank, there is a
possibility of a fault in the actuator of this nonlinear model of the induction furnace. In this section, a healthy system
is modeled by the RBF neural network, a fault occurs in 10th second, and it is observed that this fault has affected
the system performance. Figure (1) shows the structure of the non-linear system of the induction furnace where the
failure of the actuator occurs in the power part.

2.1 Nonlinear IFS Modeling

A current is generated through the winding core by passing a current through a coil and developing a magnetic
field. Induction furnace state-space equations are expressed as follows [28]:
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x1 = θ is the temperature of the induction furnace, x2 = Icoil is the magnitude of the current through the induction
coil, u = v is the amplitude of the input voltage to the induction furnace, and d is the perturbation value. L,R,KG
and KP are respectively equivalent to inductance, resistance, set point gain and PWM gain, and finally m is the mass
value of the work piece. The furnace’s power supply consists of a rectifier (diode bridge), an inverter (dc to ac), and a
capacitor bank. The presence of these elements in the power supply greatly increases the likelihood of actuator faults
occurring in the nonlinear system of the induction furnace. A fault-tolerant controller for the nonlinear induction
furnace system was therefore needed.
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Figure 1: nonlinear induction furnace system (IFS)(24)

2.2 IFS with Actuator Fault Modeling

An actuator fault can occur because the power supply in an induction furnace is also known as the actuator. This
actuator fault is represented as the equation (2.2):
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αf ∈ [0, 1) is the effect of the actuator fault. This equation can be rewritten as follows:{
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It is evident that the performance of the faulty system has changed, and the output temperature is lower than
the output temperature of the health system when the fault was present. The dynamics of mentioned system can be
considered as {

ẋ1 = (x, u) d

y = x1

(2.4)

A neural network inverse controller is being investigated to address this issue to improve the system’s performance.

3 Neuro-modelling of the nonlinear IFS

In neural networks, the modeling can be done directly or in reverse, which is the case here since inverse control
is used. The system and the inverse model are connected in this type of design. According to Figure (2), a signal is
given as input to the inverse model of the system, and it is also inverse as output. The inverse model behaves in the
same way as the system itself.

Fault-tolerant controllers must be able to maintain closed-loop system stability despite a fault. When a fault
occurs, the difference between the reference input and the system output should be minimized. Inverse controllers
meet this requirement to a large extent. The direct model of the system is examined first, followed by the inverse
model and design of the inverse controller.

3.1 Direct Neuro-Modeling

In a direct model, inputs are used to train a neural network so that outputs can be generated. In the induction
furnace system, past outputs and past and present inputs are used to determine the output because it is a nonlinear and
dynamic system. In this case, the neural network is analogous to an induction furnace. Training the neural network
and updating its parameters is done by comparing the neural network’s output to the system’s output. Equations
(2.4) describe the model structure of the nonlinear induction furnace.

ŷ(k) = f̂(u(k), u(k − 1), u(k − 2), y(k − 1), y(k − 2)) (3.1)
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Figure 2: Inverse control scheme

f̂ represents the input map to the output of the RBF neural network, u(k) is current input and u(k − 1), u(k − 2)
are the first and second delayed inputs, y(k − 1), y(k − 2) are the first and second delayed outputs respectively and
represents the output value predicted by the neural network as follows. Therefore:

ŷk =
∑
j

wjφ (|| Xk − Ck ||) (3.2)

where cj stands for the middle layer Gaussian centers calculated by the K-min algorithm, Wj are the weights of the
neural network, φ(.) is the radial function of RBF neural network. ŷk shows the neural network outputs and

xk = [u(k), u(k − 1), u(k − 2), y(k − 1), y(k − 2)]T .

The figure 2 illustrates this type of system training and modelling. Consider the following output error as below

e = y − ŷ. (3.3)

And consequently, we consider the cost function in equation (3.2)
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Weights are updated using Error Back Propagation (BP) as below:

w(k) = w(k − 1) + η
∂J

∂W
. (3.5)

The derivative of J with respect to w is written as (3.6):

∂J
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=
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∂ŷ

∂ŷ
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Consequently, we have

∂J

∂W
= (yk − ŷk)(−1)φ(·). (3.7)

The final updating law is depicted as (3.8).

w(k) = w(k − 1) + η(yk − ŷk)(−1)φ(·). (3.8)

w is the weights of the middle layer of the RBF neural network, J is the least-squares error, which is the same as the
modeling error and η shows the learning rate.
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Figure 3: Direct neural network training

3.2 Inverse Neuro-Modeling

In inverse modeling, the neural network system is arranged in series. They are designed with two modeling and
control methods in this article.

3.2.1 First Approach: The Neuro-Model Procedure

A neural network is used to model the inverse dynamics during training, known as inverse modeling. The training
is dynamic. Five inputs are used to train the neural network and reverse model the induction furnace system online:
the temperature, the first delayed time, and the second temperature. The first and second delays of the induction
furnace system voltage are also inputs to this neural network. Voltage and temperature are the inputs and outputs
of the induction furnace system, respectively. RBF neural network parameters are trained and updated using reverse
modeling error signals. This type of training is illustrated in Figure 4. In the induction furnace input to the RBF
neural network, temperature and the first and second temperature delays correspond to the first and second voltage
delays.The inverse dynamics are given by equation (3.9):

Figure 4: Online Inverse controller (first method)

ˆu(k) = ˆf−1(u(k − 1), u(k − 2), y(k), y(k − 1), y(k − 2), yd(k)). (3.9)

There are f̂−1 reverse mapping systems in this method. The difference between the output of the inverse neural
network and the input of the induction furnace system is used as a training signal. Therefore, the system can be
considered a layer within the neural network [37]. Based on the inverse dynamic structure mentioned in figure 4, the
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structure of the system can be represented as:

y(k) = f(û(k), û(k − 1), û(k − 2), y(k − 1), y(k − 2)). (3.10)

In this paper, the RBF neural network is used for modeling. The system is the fourth layer in this type of neural
network, and it cannot be modified. The output error must now be reduced to a minimum. Therefore

e = (y − yd) (3.11)

and the cost function is candidate as below.
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y and yd represent the desired output and an induction furnace system output, respectively. The updating law of
weighting parameters

w(k) = w(k − 1)− µef̂(û)g (3.13)

where µ shows learning rate and consequently, ∂Jmse

∂W can be rewritten as

∂J −mse

∂W
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The û represents the neural network output, which is the value of the control input. This means that the induction
furnace system is considered as the last layer of the neural network so that a term containing can be created in formula
(3.8);
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∂û
=
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∂û
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Equation (3.9) is rewritten using Equation (3.8):

∂e

∂û
= (y − yd)

∂y

∂û
. (3.16)

Therefore, the derivatives of each term in Equation (3.12) can be written as follows:

∂J −mse

∂W
= e× 1× f̂(û)× g. (3.17)

Finally, the updating law for the weights is written as:

w(k) = w(k − 1)− µ(e× 1× f̂(û)× g) (3.18)

g displays the Gaussian functions at the middle layer of the RBF neural network and w to the weights. As a result,
the inverse model of the system can be trained correctly, and the inverse model is used as a controller to hide the
activator fault in the system. The results of this controller are presented next. The inverse model of the system is
trained using its sign instead of f̂ , and it is used as a controller to hide the activator fault. This controller will be
discussed in the next section.

3.2.2 Second Approach: The Neuro-Model Procedure

It is performed in the same way as the first method, with the difference being the input for neural network training.
In this case, in addition to the inputs associated with the method before the error e, the error derivative and error
integral are also used for training. This method reduces the overshoot and enhances the controller’s performance.

û(k) = f̂−1(u(k − 1), u(k − 2), y(k), y(k − 1), y(k − 1), e(k), de(k), se(k)) (3.19)

where se(k) and de(k) stand for the error integral, and derivative, consequently. that the e(k), de(k) and se(k) signals
in the inverse neural network system are only used as learning signals and are not part of the inverse signals and play
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the role of limiting training for the inverse neural network. The neural network uses a PID methodology to update
weights. Figure 5 illustrates this procedure. The design softens the existing overshoot, whose results are described in
the next section. It is easily seen from the figure that in the first method for training the RBF neural network, we
had six inputs, of which one is the output error, but in the second method, in addition to the same six inputs as in
the first method, there were two other inputs added. One is the error derivative and the other is the error integral.
This method reduces the modeling error. Due to the derivative and integral effect of the error. In the second method,
the overshoot has been decreased compared to the first one.

Figure 5: Online Inverse controller (second method)

Table 1: The values of the nonlinear IFS parameters

Parameters Value

U 0-15 volt
KG 0.256
KPWM 28.02
Req 0.0481
Leq 2.721*10−4

4 Results and Discussion

The non-linear system of the induction furnace consists of three parts: the actuator, the sensor, and the main
structure. There will be a possibility of failure in all three sub-systems, but according to the block diagram of the
induction furnace system in Figure (1) and the components of the actuator, there is a possibility of occurrence The
fault in the actuator is more than the other two subsystems. Therefore, in this article, we have studied the fault of the
actuator. In order not to need additional hardware for re-tracking and the system does not stop due to being faulty
during actuator, we use the inverse of the system online and intelligently, which is modeled using the RBF neural
network, and In this way, the controller is the inverse model of the system and will fix the problem in a short time

4.1 Neuro-Modeling of IFS

Modeling of this type is done online. This was discussed in the previous section. Model output and the actual
output of the induction furnace are negligible to zero. Therefore, the model is accurate.

As shown in Figure 6, the system and modeling output have the same value. Based on the modeling error as shown
in figure 7, the truth of this statement is shown.
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Figure 6: Modeling of induction furnace system

Figure 7: Modeling error

4.2 Comparison of Healthy And Faulty Systems

The activator fault is used here. The fault is applied from 10 to 30 seconds. Figure (8) shows that the output
temperature of the system has dropped during this period, while the difference between the faulty and healthy system
outputs has grown significantly. The system will malfunction if an activator fault occurs, so a tolerable fault controller
is required to fix it.

Figure 8: Comparison between healthy system and defective system

So, as can be seen in Figure 8, the actuator fault caused the system to deviate from its normal operating mode.
Consequently, the temperature of the faulty furnace system is drastically reduced in association with the healthy one.
This leads to the design proper Neuro inverse dynamical controller in the following section.

4.3 Design of Neuro-Inverse Dynamical FTC

In this design, the inverse model of the induction furnace system is used for the controller. The inverse model is
obtained online using an RBF neural network, and the system is placed in series with the neural network. As the last



68 Torabi, Ghasemi

layer of a neural network, the system is fixed and unchangeable. In this layer, induction furnaces are used to train
the neural network by updating the weights with the error propagation algorithm and the Gaussian centers with the
K-mean algorithm. As discussed in the previous section, there are two methods of teaching. Given the overshot, the
first method is also suggested. In the second method, the derivative and integral errors in the input vector are used to
reduce the overshoot value, as can be seen in Figures (9) and (10), respectively. Figure (10) shows that the overshot
has been reduced to Figure (9).

Figure 9: Hiding fault with online inverse controller (first method)

Figure 10: Hiding fault with online inverse controller (second method)

The results of two hiding fault controllers are presented in this section:

1) As shown in Figure 9, the first method uses six inputs for the neuro-system. In this case, the actuator fault is
well fixed, but the temperature in the faulty system has a large overshoot that is unacceptable in this system.

2) According to Figure 10, the reverse dynamic is taught using eight inputs and is used as a fault-tolerant controller.
The two inputs are also the same derivative and error integral for the first method. By using this method, both
overshoot and settling time are reduced.

5 Conclusion

Fault tolerance control can control and restore a faulty system to its optimal state. An active tolerable control
method based on inverse strategy is presented in this paper. To implement the inverse strategy, RBF neural networks
are used. An activator fault is applied to the system, and the fault-tolerant system returns to its ideal state and
optimal performance in less than one second. To reach this conclusion, two different approaches were used, and the
second method, using a PID controller in the neural network, was able to reduce overshoot. Within 10 to 30 seconds,
an actuator fault is applied to the induction furnace system, which, without the fault-tolerant controller, causes the
system’s output to go out of the desired state. However, using the fault-tolerant controller, which is the reverse model
of the system, this actuator fault leads to a fixed system malfunction. This inverse model of the induction furnace
system is taught in two ways. The first method uses five inputs for inverse modeling, and the second method uses five
inputs in addition to five inputs in the first method. This method reduces overshot compared to the first case with
output error, derivative error, and integer error. An extension of this method to recurrent neural network to improve
results and practical implementations of our approach can be considered in future studies.
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