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Abstract

The wave equations are one of the most important equations in engineering and physics, which are usually formulated
as hyperbolic partial differential equations with special boundary conditions. In this paper, a numerical method
for solving these equations based on Bernstein polynomials is introduced. The properties of Bernstein polynomial
operational matrices turn this differential equation and its boundary conditions into a system of algebraic equations.
Some numerical examples illustrate the accuracy, validity, and applicability of the new technique.

Keywords: Bernstein polynomial, two dimensions Bernstein polynomial, Best approximation, Operational matrices,
Kronecker products, Hyperbolic Partial differential equation
2020 MSC: 65M99

1 Introduction

Second-order hyperbolic equations are one of the most widely used equations in mathematics, physics, and engi-
neering. Some wave equations are modelled in the form of second-order hyperbolic equations. The application of these
partial differential equations has caused their solution to be taken into consideration and different methods to solve
them have been proposed, see [16, 22, 34, 39]. Methods to solve this problem which strongly depends on the boundary
conditions of the problem. Hyperbolic partial differential equations with local and non-local boundary conditions are
applied in the mathematical modelling of many physical and engineering problems. Therefore, recently, researchers
have conducted many studies on the condition of the existence of the solution, the uniqueness of the solution, develop-
ment literature, analysis, and implementation of exact methods for the numerical solution of time-dependent partial
differential equations, see [17, 23, 30, 42, 43]. Consider the following second-order hyperbolic equation called the wave
equation with the given boundary conditions:

∂2u

∂t2
− c2

∂2u

∂x2
= k(x, t) a < x < b 0 < t < T (1.1)

with the initial conditions
u(x, 0) = f(x) a < x < b (1.2)
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ut(x, 0) = g(x) a < x < b (1.3)

and local boundary conditions
u(a, t) = h(t) 0 < t < T (1.4)

u(b, t) = r(t) 0 < t < T (1.5)

where k(x, t) ∈ l2([a, b] × [a, b]) and f(x), g(x), h(t), r(t) ∈ l2([a, b]) are known functions and u(x, t) is an unknown
function defined on ([a, b] × [a, b]) which be determined. The continuity of these functions is determined by the
conditions of the problem. If these functions are piecewise continuous, numerical methods for solving these equations
can be obtained by using multi-scaling functions. In this paper without reducing the generality of the problem let
[a, b] = [0, 1] , T = 1 and c = 1.

In recent decades, the development of numerical techniques for solving such problems has been an important
research topic in many fields of applied science and engineering. There are various methods have been proposed by
researchers in this regard. Such as finite difference methods ([10, 19]), the Galerkin techniques ([7, 9, 12, 38, 44]),
finite element methods ([1, 16, 26, 40]), spectral techniques ([15, 47]), and so on (see [2, 4, 11, 13, 21, 24, 36] and
their references). This paper is divided into the following sections. The second section includes a brief introduction to
Bernstein functions and the function’s approximation to them. The numerical schemes for the solution of (1.1) with
the mentioned conditions (1.2) to (1.5) are also described in Section 3. Section 4 is dedicated to operational metrics
and how to calculate them. The results of numerical experiments are given in Section 5. In Section 6, the method is
implemented for non-local boundary conditions and an illustrative example confirms accuracy of the method . The
last section consists of a brief conclusion.

2 Preliminaries

Bernstein polynomials are one of the most famous and important polynomials. These polynomials were defined
by Sergei Natanovich Bernstein and used in the constructive proof of the Weierstrass approximation theorem [5].
This polynomial found many applications in other sciences and trends. Computer-aided design, scientific computing,
probability distribution, interpolation, and approximation are a few examples of the use of these polynomials. These
polynomials define as follows:

Definition 2.1. Let mbe a positive integer number, ith Bernstein polynomial with degree m on the interval [a, b] is
defined as follows:

Bi,m =

(
m

i

)
(x− a)

i
(b− x)

m−i

(b− a)
m

where 0 ≤ i ≤ m and Bi,m(x) = 0 for i > m.

It is obvious there are m + 1 polynomials with degree m. Namely for unit interval Bi,m(x) =
(
m
i

)
xi(1 − x)m−i.

Bernstein polynomials have many interesting properties but it is not necessary to express them in this article. For
example, they have non-negativity and partition-of-unity properties. The avid reader can see [27, 31, 32, 33, 35, 41,
45, 46, 47]. These polynomials are linearly independent and any given polynomial can be expanded with Bernstein
polynomials. Also, these polynomials for two positive integers numbers, m and n, can be defined on two-dimensional
real space like the following definition. The following definition is used for approximation of any two variables function.
In this paper, our variables are length and time, which are shown by x and t, respectively.

Definition 2.2. 2-dimensional Bernstein polynomials are defined on [a, b]× [a, b] as follows:

β(i,m),(j,n)(x, y) =

(
m

i

)(
n

j

)
(x− a)i(y − a)j(b− x)m−i(b− y)n−j

(b− a)m+n
,

where i = 0, 1, · · · ,m and j = 0, 1, · · · , n. If m = n Bernstein polynomial denote by β(i,j)(x, y). Similar to the one-
dimensional case, there are some properties. For example, the positivity property, disjointness, and partition-of-unity
are held. In other words:

1)β(i,m)(j,n)(x, y) ⩾ 0.



A numerical solution for second order PDE based on 2D Bernstein polynomials 109

2)β(i,m)(j,n)(x, y) = Bi,m(x)Bj,n(y).

3)

m∑
i=0

n∑
j=0

β(i,m)(j,n)(x, y) = 1.

Indeed, many properties can be generalized to two-dimensional. For more details see [6, 8, 14, 18, 28, 29, 37]. Let
X = l2([a, b]) and Y = Span{B0,m(x), B1,m(x), . . . , Bm,m(x)} be a subspace of X. Kreyszig proved some lemmas and
theorems to show there exists a unique best approximation for any f ∈ Xfrom Y . Also, if y0 denotes the unique best
approximation, the following important result is shown in [20]:

∀f ∈ X : ⟨f − y0, φ⟩ = 0

where φ ∈ Y and ⟨f, g⟩ =
∫ b

a
f(t)gT (t)dt. So, it is easy to see:

⟨f, φ⟩ = ⟨y0, φ⟩.

Since φ ∈ Y , there are unique coefficients like c0, c1, . . . , cm such that:

f ≃
m∑
i=0

ciBi,m(x) = CTΦ (2.1)

where C =
[
c0 c1 · · · cm

]T
and Φ =

[
B0,m B1,m · · · Bm,m

]T
. For determining c0, c1, . . . , cm notice:

⟨f,Φ⟩ =
〈
CTΦ,Φ

〉
= CT ⟨Φ,Φ⟩ = CTQ

where Q = ⟨Φ,Φ⟩ is an (m+ 1)× (m+ 1) symmetric matrix which named dual matrix. Therefore, CT = Q−1⟨f,Φ⟩.
Now, consider a two-dimensional space l2([a, b]× [a, b]), for f(x, y), g(x, y) ∈ l2([a, b]× [a, b]), inner products are defined
as follows:

⟨f(x, y), g(x, y)⟩ =
∫ b

a

∫ b

a

f(x, y)g(x, y)dxdy.

Suppose that k(x, y) be an arbitrary function in l2([a, b]× [a, b]), then it can be expanded in terms of two-dimensional
Bernstein polynomials as follows:

k(x, y) ≃
m∑
i=0

n∑
j=0

Ki,jψi,j = KTΨ(x, y) (2.2)

where K and Ψ(x, y) are two (m+ 1)(n+ 1)× 1 vectors given by

K(x, y) =
[
K00 . . . K0n · · · Km1 . . . Kmn

]T
and

Ψ(x, y) = Φ(x)⊗ Φ(y) =
[
ψ00(x, y) ψ01(x, y) . . . ψ0n(x, y) · · · ψm0(x, y) ψm1(x, y) . . . ψmn(x, y)

]T
,

where ⊗ denotes the Kronecker product and ψi,j = β(i,m),(j,n). For a two-dimensional function like k(x, t), the unique
expansion computed as follows:

⟨k,Ψ⟩ =
〈
KTΨ,Ψ

〉
= KT ⟨Ψ,Ψ⟩ = KT Q̄,

where Q̄ = ⟨Ψ,Ψ⟩ is an (m+1)(n+1)×(m+1)(n+1) matrix which named Dual matrix. Now, to check the convergence
of these expansions, another form of this approximation is presented. Considering the importance and age of these
polynomials, various reviews can be found regarding all the features of these convergences[20]. For a given function f
on [0, 1], the Bernstein polynomial, for each positive integer m, is also obtained from the following equation:

Bm(f ;x) =

m∑
i=0

(
m

i

)
f(

i

m
)xi(1− x)m−i.

The following theorem says for a continuous functionf on [0, 1] the Bernstein polynomials Bm(f ;x) converges
uniformly tofon [0, 1].
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Theorem 2.3 ([6, 27, 35, 41]). suppose f ∈ C[0, 1] and for anyϵ > 0, there exists an integer N such that

∀n ≥ N 0 < x < 1 |f(x)−Bm(f ;x)| < ϵ

Theorem 2.4 ([6, 27, 35, 41]). If f ∈ Cp[0, 1], for some integer p ≥ 0, then B
(p)
m (f ;x) converges uniformly to

f (p)(x) on [0, 1].

As we have just seen, not only the Bm(f ;x) converges to f , but its derivatives converge to derivatives of f . For
the function f(x, y) ∈ l2([0, 1] × [0, 1]), the two-dimensional Bernstein polynomial of degree (m,n), corresponding to
the function f , is defined by

Bm,n(f ;x, y) =

m∑
i=0

n∑
j=0

f(
i

m
,
j

n
)β(i,m),(j,n)(x, y) ==

m∑
i=0

n∑
j=0

f(
i

m
,
j

n
)Bi,m(x)Bj,n(y).

Lemma 2.5. ([18, 28]) if f is continuous in l2([0, 1]× [0, 1]), and Bm,nf is the Bernstein polynomial of f , then

|Bm,n(f ;x, y)− f(x, y)| ≤ 3

2

[
ω(1)(f ;n−

1
2 + ω(2)(f ;m− 1

2 )
]
≤ 3

2
ω(f ;n−

1
2 ,m− 1

2 ),

where partial moduli of continuity of f are denoted by ω(i)(f ; δ), that means:

ω(1)(f ; δ) = Sup
y

Sup
|x1−x2|≤δ

|f(x1, y)− f(x2, y)|

ω(2)(f ; δ) = Sup
x

Sup
|y1−y2|≤δ

|f(x, y1)− f(x, y2)|

and ω(f ; δ, ϵ) is the complete modulus of continuity of f .

Lemma 2.6 ([18, 28]). If all the partial derivatives of f(x, y) of order less than p exist and are continuous in
[0, 1] × [0, 1], then ∂p

∂xq∂yp−qBm,n(f ;x, y) uniformly converges to ∂p

∂xq∂yp−q f(x, y) in [0, 1] × [0, 1] as n and m approach
infinity in any manner whatever.

3 Operational matrices

In this section, operational matrices of Bernstein polynomials of the 1-dimensional and 2-dimensional are stud-
ied and reviewed. For one-dimensional functions, there are articles in which researchers have provided accurate or
approximate matrices. We mention these matrices briefly, you can refer to sources for how to find and calculate them.

Lemma 3.1. [31, 32, 33, 45, 46] Operational matrices of integration is an (m+ 1)× (m+ 1) matrix such that∫ x

0
Φ(t)dt = PΦ(x).

In the mentioned references, this matrix has been calculated in two different ways.

Corollary 3.2.
∫ 1

0
Φ(t)dt = PΦ(1).

Lemma 3.3. [31, 32, 33, 45, 46] operational matrix of the derivative is an (m+1)× (m+1) matrix which is denoted
by D and defines as follows:

d

dx
Φ(x) = DΦ(x).

Corollary 3.4.
dn

dn
Φ(x) = DnΦ(x).

Lemma 3.5. [31, 32, 33, 45, 46] Let C be an (m+ 1)- vector, then:



A numerical solution for second order PDE based on 2D Bernstein polynomials 111

Φ(x)ΦT (x)C = ĈΦ(x),

where Ĉ is an (m+ 1)× (m+ 1) matrix.

Lemma 3.6. [31, 32, 33, 45, 46]consider an (m + 1) × (m + 1) square matrix M , It can be proved that there exists
M̃ , an (m+ 1)–vector, such that

ΦT (x)MΦ(x) = M̃TΦ(x),

Now, consider Ψ(x, y) = Φ(x)⊗Φ(y) as a two-dimensional Bernstein polynomial. We want to compute operational
matrices in two-dimensional cases. At first, consider Ψ(x, y) and its partial derivative.

Theorem 3.7. ∂
∂xΨ(x, y) = D̄Ψ(x, y).

Proof . In this proof, we will use Lemma 3.3. Also, [1] is denoted a 1× 1 matrix.

∂

∂x
Ψ(x, y) =

∂

∂x
(Φ(x)⊗ Φ(y))

=
∂

∂x
Φ(x)⊗ Φ(y)

= DΦ(x)⊗ Φ(y)

= (D ⊗ [1])(Φ(x)⊗ Φ(y))

= D̄Ψ(x, y).

So, D̄ = (D ⊗ [1]) and the proof is completed. □

Theorem 3.8. ∂
∂yΨ(x, y) = ¯̄DΨ(x, y).

Proof . The proof is similar to the theorem 3.7.

∂

∂y
Ψ(x, y) =

∂

∂y
(Φ(x)⊗ Φ(y))

= (Φ(x)⊗ ∂

∂y
Φ(y))

= (Φ(x)⊗DΦ(y))

= ([1]⊗D)(Φ(x)⊗ Φ(y))

= ¯̄DΨ(x, y).

Therefore, ¯̄D = [1]⊗D . The proof is completed. □

Theorem 3.9.
∫ x

0
Ψ(t, y)dt = P̄Ψ(x, y).

Proof . in this proof lemma 3.1 are applied.

∫ x

0

Ψ(t, y)dt =

∫ x

0

(Φ(t)⊗ Φ(y))dt

=

∫ x

0

(Φ(t)dt)⊗ Φ(y)

= PΦ(x)⊗ Φ(y)

= (P ⊗ [1])(Φ(x)⊗ Φ(y))

= P̄Ψ(x, y).

Therefore, P̄ = P ⊗ [1], where P is a Bernstein operational matrix of integration and proof is completed. □
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Theorem 3.10.
∫ y

0
Ψ(x, t)dt = ¯̄PΨ(x, y).

Proof . Proof is similar to theorem 3.9.∫ y

0

Ψ(x, t)dt = (Φ(x)⊗
∫ y

0

Φ(t)dt)

= Φ(x)⊗ (

∫ y

0

Φ(t)dt)

= Φ(x)⊗ PΦ(y)

= ([1]⊗ P )(Φ(x)⊗ Φ(y))

= ([1]⊗ P )(Φ(x)⊗ Φ(y))

= ¯̄PΨ(x, y).

Therefore, ¯̄P = [1]⊗ P , where P is a Bernstein operational matrix of integration and proof is completed. □

In the next theorem, we use Kronecker decomposition for an arbitrary matrix. Kronecker decomposition is so
important in Image processing and there are several approximate methods to do this [3, 25].

Theorem 3.11. Suppose u is an (m + 1)2 × 1 vector so that there are two (m + 1)-vector like u1, u2 such that
u = u1 ⊗ u2. Now, Ψ(x, y)ΨT (x, y)u = ũΨ(x, y), where ũ is an (m+ 1)× (m+ 1) matrix.

Proof . The definition of Ψ(x, y) and Kronecker products features imply:

Ψ(x, y)ΨT (x, y)u = (Φ(x)⊗ Φ(y))(ΦT (x)⊗ ΦT (y))(u1 ⊗ u2)

= (Φ(x)⊗ Φ(y))(ΦT (x)u1)⊗ (ΦT (y)u2)

= (Φ(x)ΦT (x)u1 ⊗ (Φ(y)ΦT (y)u2),

Now, Lemma 3.5 implies = (ũ1 ⊗ ũ2)(Φ(x)⊗ Φ(y)). It is enough to let ũ = ũ1 ⊗ ũ2 and so proof is completed. □

Theorem 3.12. Suppose M is an (m+ 1)2 × (m+ 1)2 matrix, Then there is an (m+ 1)2–vector like M̃ such that:

ΨT (x, y)MΨ(x, y) = M̃TΨ(x, y).

Proof . The proof has the same procedure as the previous theorem.

ΨT (x, y)MΨ(x, y) =(ΦT (x)⊗ ΦT (y))M(Φ(x)⊗ Φ(y))

=(ΦT (x)⊗ ΦT (y))M1.M2(Φ(x)⊗ Φ(y)),

which M =M1.M2 is an arbitrary decomposition. Now according to the properties of Kronecker matrix product and
using lemma 3.6

=(ΦT (x)M1 ⊗ ΦT (y)M2)(Φ(x)⊗ Φ(y))

=((ΦT (x)M1Φ(x))⊗ (ΦT (y)M2 ⊗ Φ(y))

=(M̃1
T
Φ(x))⊗ (M̃2

T
Φ(y))

=(M̃1
T ⊗ M̃2

T
)(Φ(x))⊗ Φ(y))

=M̃TΨ(x, y).

where M̃ = M̃1 ⊗ M̃2, and proof is completed. □

4 Implementation of method

In this section, consider the main equation and its initial boundary conditions. We try to convert this equation to
an integrodifferential equation involving initial boundary conditions. Without reducing the generality of the problem
and for simplicity, suppose a = 0, b = 1, c = 1. Consider (1.1) as follows:
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uxx(x, t) = utt(x, t)− k(x, t)

so with an integration:

ux(x, t) = ux(0, t) +

∫ x

0

(utt(s, t)− k(s, t))ds. (4.1)

Repeating the same action gives results:

u(x, t) = u(0, t) +

∫ x

0

ux(s, t)ds = h(t) + xux(0, t) +

∫ x

0

∫ s

0

(utt(x, t)− k(s, t))dsds

put x = 1 and obtain:

ux(0, t) = r(t)− h(t)−
∫ 1

0

∫ s

0

(utt(s, t)− k(s, t))dsds. (4.2)

Now, replacing (4.2) in (4.1) gives:

u(x, t) = (1− x)h(t) + xr(t)− x

∫ 1

0

∫ s

0

(utt(s, t)− k(s, t))dsds+

∫ x

0

∫ s

0

(utt(s, t)− k(s, t))dsds (4.3)

differentiation twice both sides of (4.3), implies

∂2

∂t2
u(x, t) =

∂2

∂t2

[
(1− x)h(t) + xr(t)− x

∫ 1

0

∫ s

0

(utt(s, t)− k(s, t))dsds+

∫ x

0

∫ s

0

(utt(s, t)− k(s, t))dsds

]
. (4.4)

Now, integration of (4.4) with respect to t, gives

∂

∂t
u(x, t) = g(x)+

∫ t

0

(
∂2

∂t2

[
(1− x)h(t) + xr(t)− x

∫ 1

0

∫ s

0

(utt(s, t)− k(s, t))dsds+

∫ x

0

∫ s

0

(utt(s, t)− k(s, t))dsds

])
dt.

(4.5)

Again, integration of (4.5) with respect to t, results

u(x, t) = f(x) + tg(x) (4.6)

+

∫ t

0

∫ t

0

∂2

∂t2
((1− x)h(t) + xr(t)) dtdt (4.7)

−
∫ t

0

∫ t

0

∂2

∂t2

[
x

∫ 1

0

∫ s

0

(utt(s, t)− k(s, t))dsds

]
dtdt (4.8)

+

∫ t

0

∫ t

0

∂2

∂t2

[∫ x

0

∫ s

0

(utt(s, t)− k(s, t))dsds

]
dtdt. (4.9)

Now, we use the approximation of functions by using the Bernstein polynomials. (2.1) and (2.2) imply

u(x, t) = UTΨ(x, t) (4.10)

k(x, t) = KTΨ(x, t) (4.11)

f(x) = FTΨ(x, t) (4.12)

tg(x) = GTΨ(x, t) (4.13)

(1− x)h(t) = HTΨ(x, t) (4.14)

xr(t) = RTΨ(x, t) (4.15)

x = ϕT (x)X (4.16)



114 Mohamadi, Shahmari, Eshaghi Kenari

where U is an unknown (m+1)2 vector which must be determined and F,K,G,H,R are (m+1)2− vectors and X is
an (m+ 1)− vector. By (4.10) and (4.11) and using theorem 3.8 conclude:

utt(x, t)− k(x, t) = UT ∂2

∂t2
Ψ(x, t)−KTΨ(x, t) = (UT ¯̄D2 −KT )Ψ(x, t). (4.17)

For convenience, put
NT

U = (UT ¯̄D2 −KT ). (4.18)

Consider (4.7), theorems 3.8, 3.10, and equations (4.14) and (4.15) give∫ t

0

∫ t

0

∂2

∂t2
((1− x)h(t) + xr(t))dtdt = (HT +RT )

∫ t

0

∫ t

0

∂2

∂t2
Ψ(x, t)dtdt

= (HT +RT ) ¯̄D2

∫ t

0

∫ t

0

Ψ(x, t)dtdt

= (HT +RT ) ¯̄D2 ¯̄P 2Ψ(x, t). (4.19)

For the approximation of (4.8), at first, we notice (4.17) and (4.18)

utt(x, t)− k(x, t) = NT
UΨ(x, t) = ϕT (x)Nϕ(t),

where NU is the vectorization operator applied on N . Next,∫ t

0

∫ t

0

∂2

∂t2

[
x

∫ 1

0

∫ s

0

ϕT (x)Nϕ(t)dsds

]
dtdt =

∫ t

0

∫ t

0

∂2

∂t2
[
ϕT (x)XP 2Nϕ(1)Nϕ(t)

]
dtdt

=

∫ t

0

∫ t

0

∂2

∂t2
[
V er(XP 2Nϕ(1))T .Ψ(x, t)

]
dtdt

= V er(XP 2Nϕ(1))T ¯̄D2 ¯̄P 2Ψ(x, t) (4.20)

Finally, for the (4.9), applying theorems 3.9, 3.8 and 3.10 implies:∫ t

0

∫ t

0

∂2

∂t2

[∫ x

0

∫ x

0

NT
UΨ(x, t)dsds

]
dtdt =

∫ t

0

∫ t

0

∂2

∂t2
NT

U P̄
2Ψ(x, t)dtdt

=

∫ t

0

∫ t

0

NT
U P̄

2 ¯̄D2Ψ(x, t)dtdt

= NT
U P̄

2 ¯̄D2 ¯̄P 2Ψ(x, t) (4.21)

Now equations (4.12), (4.13), (4.19), (4.20), and (4.21) give:

UT = FT +GT +HT ¯̄D2 ¯̄P 2 +RT ¯̄D2 ¯̄P 2 + V er(XP 2Nϕ(1))T ¯̄D2 ¯̄P 2 +NT
U P̄

2 ¯̄D2 ¯̄P 2. (4.22)

To simplify let’s

AT = FT +GT +HT ¯̄D2 ¯̄P 2 +RT ¯̄D2 ¯̄P 2, BT
U = V er(XP 2Nϕ(1))T ¯̄D2 ¯̄P 2 +NT

U P̄
2 ¯̄D2 ¯̄P 2.

Therefore the final algebraic equation is U −BU = A.

5 Numerical examples

In this section, we present several different numerical examples to express the accuracy and efficiency of the method.
It is tried to select the examples in such a way that their exact or analytical answer is clear.
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Example 5.1. Consider the following homogenous wave equation with the exact solution u(x, t) = x2 + t2.

∂2u

∂t2
=
∂2u

∂x2
, 0 < x < 1, t > 0

u(x, 0) = x2, 0 < x < 1

ut(x, 0) = 0, 0 < x < 1

u(0, t) = t2, t > 0

u(1, t) = t2 + 1, t > 0.

For m = 3 the solution is exact.

Example 5.2. The exact solution of the following equation is u(x, t) = sin(xt).

∂2u

∂t2
=
∂2u

∂x2
+ (x2 − t2) sin(xt), 0 < x < 1, t > 0

u(x, 0) = 0, 0 < x < 1

ut(x, 0) = x, 0 < x < 1

u(0, t) = 0, t > 0

u(1, t) = sin t, t > 0.

Table 1: Absolute error in some points for m = 1, 2, 3.

(x0, y0) E1(x0, t0) E2(x0, t0) E3(x0, t0)

(0.1,0.1) 0.001736416786 0.000160330466 0.000258390165732311
(0.2,0.2) 0.00059992569 0.00224914910 0.00154544635840923
(0.3,0.3) 0.00331951992 0.00586763159 0.00347681411315022
(0.4,0.4) 0.0096726483 0.0100148802 0.00432352017280749
(0.5,0.5) 0.0175551123 0.0133836809 0.00163465523755768
(0.6,0.6) 0.0251053380 0.0147626546 0.00653777723474636
(0.7,0.7) 0.0290201849 0.0135205969 0.0198360528449574
(0.8,0.8) 0.0240361705 0.0101252540 0.0332637102946646
(0.9,0.9) 0.0024575763 0.0066152159 0.0344036463896897

As can be seen in the table, the absolute error has been calculated at some arbitrary points. These values listed in
the table indicate that due to the small degree of the polynomials, the answers have acceptable accuracy. By increasing
the value of m, more favorable answers can be obtained. This is shown in the next example. Figure 1 shows absolute
error for m = 2.

Example 5.3. u(x, t) = e−(x/10+t/9) is the exact solution of the

∂2u

∂t2
=
∂2u

∂x2
+

19

8100
e−( x

10+
t
9 ), 0 < x < 1, t > 0

u(x, 0) = e
−x
10 , 0 < x < 1

ut(x, 0) =
−1

9
e

−x
10 , 0 < x < 1

u(0, t) = e−
t
9 , t > 0

u(1, t) = e
−t
9 − 1

10 , t > 0.

In the Table 2, the absolute error at some specific points for two different values of the degree of polynomials is
calculated. In Figure 2, the absolute error for m = 2 are shown.
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Figure 1: Absolut error for m = 2.

Table 2: Absolute errors in some points

(x0, t0) E2(x0, t0) E8(x0, t0)

(0.1,0.1) 4.6885× 10−6 4.04833855× 10−11

(0.2,0.2) 3.0379× 10−6 4.04833855× 10−11

(0.3,0.3) 3.7753× 10−6 6.548123013× 10−11

(0.4,0.4) 1.1108× 10−6 9.666058332× 10−11

(0.5,0.5) 9.4812× 10−6 1.03958177× 10−11

(0.6,0.6) 1.84194× 10−6 8.206985246× 10−11

(0.7,0.7) 2.42276× 10−6 4.091960184× 10−11

(0.8,0.8) 2.24229× 10−6 2.00247131× 10−11

(0.9,0.9 ) 7.7339× 10−6 1.1948086× 10−11

Figure 2: Absolut error for m = 2.

6 Nonlocal Boundary conditions

In the simulation of some partial differential equations, boundary conditions appear in the form of integral equa-
tions. The method presented in this article can solve these problems. In nonlocal boundary conditions, equations
(1.2) and (1.3) convert to

u(0, t) =

∫ 1

0

ρ(x)u(x, t)dx (6.1)

u(1, t) =

∫ 1

0

ω(x)u(x, t)dx. (6.2)
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First, we need to find a relationship between the expansion of one-variable functions in one-variable and two-
variables spaces.

Lemma 6.1. Let f(x) ∈ l2([0, 1]) is an arbitrary function with unique expansion f(x) = FTϕ(x). Also, this function
has a unique expansion with respect to Ψ(x, y) as follows:

f(x) = FT
1 Ψ(x, y),

where F1 = F ⊗Om+1 and Om+1 is an (m+ 1)-vector whose all elements are equal to one.

Proof . With respect to (2.1), we have

f(x) =FTΦ(x)

=FTΦ(x)⊗ [1]

=FTΦ(x)⊗Om+1Φ(y)

=(FT ⊗Om+1)(Φ(x)⊗ Φ(y))

=FT
1 Ψ(x, y).

□

According to the expansion of the functions can be written:

ρ(x) = ΛTΨ(x, t) and ω(x) = ΩTΨ(x, t)

where Λ,Ω are two (m+ 1)2-vectors. Now consider (6.1), Kronecker product properties imply:

u(0, t) =

∫ 1

0

ρ(x)u(x, t)dx =
∫ 1

0
ΛTΦ(x)ΦT (x)UΦ(t)dx = ΛT (

∫ 1

0

Φ(x)ΦT (x)dx)UΦ(t).

Now, Dual matrix and Lemma 6.1 give:

ΛTQUΦ(t) = ((UTQΛ)⊗Om+1)Ψ(x, t).

With the same argument, a similar result holds for the equation (6.2):

u(1, t) =
∫ 1

0
ω(x)u(x, t)dx = ((UTQΩ)⊗Om+1)Ψ(x, t)

Now, by substituting the obtained results in place of f(x) and g(x) in (4.12) and (4.13) respectively, the solution
of the equation can be obtained for non-local boundary conditions.

Example 6.2. Consider the following equation with exact solution u(x, t) = x2t2.

∂2u

∂t2
− ∂2u

∂x2
= 2(x2 − t2)

u(x, 0) = 0
ut(x, 0) = 0
u(0, t) = 0

u(1, t) =
∫ 1

0
3u(x, t)dx.

Table 3, shows the absolute error in some points for m = 1, 2, 3. Considering the amount of calculated error in some
points, the accuracy of the method is acceptable. Figure 6 and Figure 7 show estimate solution and exact solution for
m = 2, respectively.
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Table 3: Absolute errors in some points

(x0, t0) E1(x0, t0) E2(x0, t0) E3(x0, t0)

(0.1,0.1) 0.0000676666667 0.00001200000000 0.000002337502040
(0.2,0.2) 0.0000506666666 0.0001066666667 0.00001672394016
(0.3,0.3) 0.0003189999999 0.0003360000001 0.00004895588570
(0.4,0.4) 0.0006773333332 0.0007040000002 0.00009584639990
(0.5,0.5) 0.001041666666 0.001166666667 0.0001452380952
(0.6,0.6) 0.001304000000 0.001632000001 0.0001789784815
(0.7,0.7) 0.001332333333 0.001960000001 0.0001788575998
(0.8,0.8) 0.000970666666 0.001962666668 0.0001355079399
(0.9,0.9 ) 0.000039000000 0.001404000002 0.0000602666449

Figure 3: Absolut error for m = 2.

7 Conclusion

In this paper, Bernstein’s polynomials and the operational matrices for integration, differentiations, products,
and the dual were reviewed. Then, by using them and the features of Kronecker’s product, the necessary operational
matrices for two-dimensional Bernstein functions were calculated. Operational matrices obtained from two-dimensional
Bernstein polynomials were used to change solving the hyperbolic differential equation to the solution of algebraic
equations. The method presented in this paper can readily be generalized to other appropriate partial differential
equations. The method is general, easy to implement, low cost, and very accurate. illustrative examples using the
method developed in this article show that the new method produces accurate and acceptable results. Also, the
suggested upper bound for error is proof of this claim. It convergence to the exact solution when m increases to
infinity. It is worth noting that the new technique developed in the current paper can be extended to solve similar
problems in higher dimensions.
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