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Abstract

The crux of this paper is to develop a new “Partial” randomized response model. Its properties are studied both
theoretically as well as empirically. The proposed model is proved to be more efficient than the randomized response
models studied by Eichhorn and Hayre [3] and the “Partial” randomized response model.
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1 Introduction

Social desirability response bias (SDB)is a major problem in survey research involving sensitive questions [2].
Warner [13] was the first to suggest an ingenious method to estimate the proportion of a sensitive character like
induced abortion, drug used, etc., through a randomization device such as deck of cards, spinners etc. such that
respondent’s privacy would be protected. Randomized response technique is one of several methods to partially
overcome SDB. Other methods involve use of bogus pipeline (BPL) [7] and a SBD scale [1]. A rich growth of literature
on randomized response techniques can be found in Fox and Tracy [4], Zaizai et al. [14], Singh and Tarry [11], Singh
et al. [9] and Singh and Singh [10]. Gupta and Thornton [6] have presented a comparison of BPL and RRT methods
using survey data. They have shown that a “Partial” RRT is at least as effective in circumventing SDB as BPL,
while being more friendly and portable. Below we give the “Full” RRT model due to Eichhorn and Hayre [3] and the
“Partial” RRT model of Mangat and Singh [8].

2 The “Full” and “Partial” RRT Models

Eichhorn and Hayre [3] proposed a multiplicative model to gather information on quantitative sensitive variables
like income, tax evasion, amount of drug used etc. In the “Full” RRT model of [3], each subject provides a scrambled
response. This model works as follows. Let X be a sensitive quantitative variable of interest with an unknown mean
of µx and an unknown variance of σ2

s . Let there be a deck of flash cards that follows a probability distribution S,
independent of X, with a known mean of µs(= θ) and a known variance of σ2

s .The respondent is asked to draw a card
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from the deck and is requested to report the scrambled response which is the product of the true response and the
number on the card, and divided by the mean of the scrambling variable. Therefore, the reported response Y is given
by

Y =
XS

θ
. (2.1)

The expected response, therefore, is given by E(Y ) = µx. This suggests estimating µx by µ̂xF , where µ̂xF = Y .
The variance of µ̂xF is given by

V ar(µ̂xF ) = V ar(Y ) =
Y

n
=

[
σ2
x + C2

s (σ
2
x + µ2

x)
]

n
=

µ2
x

n

[
C2

x(1 + C2
x)
]
C2

s . (2.2)

where C2
s = σ2

s/θ
2. In the “Partial” RRT model, a predetermined proportion of randomly selected respondents are

asked to provide a true response and the rest provide a scrambled response, just as in the “Full” RRT model. Mangat
and Singh [8] gave their “Partial “ RRT model for the binary response (Yes/No) case, but it can be easily adapted for
the quantitative response case also. If T is the proportion of respondents providing a true response, then the reported
response is given by

Y =

{
X with probability T
XS

θ
with probability (1− T ).

The expected response is given by

E(Y ) = µxT +
µxµs(1− T )

θ
= µx since µs = θ.

This suggests estimating µx by µ̂xP = Y . Obviously µ̂xP is an unbiased estimator of µx since Y is an unbiased
estimator of E(Y ). The variance of this estimator is given by

V ar(µ̂xP ) = V ar(Y ) =
Y

n
=

[
σ2
x + (1− T )C2

s (σ
2
x + µ2

x)
]

n
=

µ2
x

n

[
C2

x + (1− T )C2
s (1 + C2

x)
]
. (2.3)

From (2.3), we have

V ar(µ̂xF )− V ar(µ̂xP ) =
1

n

[
σ2
x + C2

s (σ
2
x + µ2

x)− σ2
x − (1− T )C2

s (σ
2
x + µ2

x)
]

=
TC2

s (σ
2
x + µ2

x)

n
(2.4)

which is always positive thus the variance of the estimator µ̂xP is smaller than the variance of the estimator of µ̂xF .

In this paper we suggested an improved estimator for the population mean µx and its properties are studied are
studied. We have compared the proposed estimator with that of Eichhorn and Hayre [3] and the estimator µ̂xP based
on “Partial” RRT model. It is found that the proposed estimator is more efficient than the estimator µ̂xF and µ̂xP .

3 The Suggested “Partial” RRT Model

We have suggested the following Partial RRT model :

Y =

 X with probability T

w

(
XS

θ

)
with probability (1− T ).

(3.1)

where w(0 < w < 1) is a constant to be determined such that variance of the estimator based on the model (3.1) is
minimum. The expected response is given by

E(Y ) = µxT +
wµxµs(1− T )

θ
= µx[T + w(1− T )] since µs = θ.
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Thus an unbiased estimator of µxis given by

µ̂xPw =
Y

{T + w(1− T )}
. (3.2)

The variance of µ̂xPw is given by

V (µ̂xPw) =
V (Y )

n [T + w(1− T )]
(3.3)

where

V (Y ) = E(Y 2)− (E(Y ))2

=
[
Tµ2

x(1 + C2
x) + (1− T )w2(1 + C2

x)(1 + C2
s )(µ

2
s/θ

2)− µ2
x {T + w(1− T )}2

]
= µ2

x

[
T (1 + C2

x) + (1− T )w2(1 + C2
x)(1 + C2

s )− {T + w(1− T )}2
]

= µ2
x

[
(1 + C2

x){T + (1− T )w2(1 + C2
s )} − {T + w(1− T )}2

]
(3.4)

Putting (3.4) in (3.3) we get the explicit expression of the variance of µ̂xPw as

V (µ̂xPw) =
µ2
x

n

[
(1 + C2

x)

{
T + w2(1− T )(1 + C2

s )
}

{T + w(1− T )}2
− 1

]

=
µ2
x

n

[
C2

x + (1 + C2
x)C

2
(T )

]
(3.5)

where

C2
(T ) =

[{
T + w2(1− T )(1 + C2

s )
}

{T + w(1− T )}2
− 1

]
. (3.6)

From (2.2) and (3.5) we have

V (µ̂xF )− V (µ̂xP ) =
µ2
x

n
(1 + C2

x)[C
2
s − C2

(T )]

which is possible if

C2
(T ) < C2

s

i.e. if
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s )
}
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− 1 < C2

s

i.e. if

{
T + w2(1− T )(1 + C2

s )
}

{T + w(1− T )}2
<

(
1 + C2

s

)
i.e. if

[
(1− T )(1 + C2

s )(1 + w2 − 2w)− C2
s

]
< 0

i.e. if

{
1−

√
C2

s

1− T )(1 + C2
s )

}
< w <

{
1 +

√
C2

s

1− T )(1 + C2
s )

}
. (3.7)

Thus, we established the following theorem.

Theorem 3.1. The proposed estimator µ̂xPw is better than Eichhorn and Hayre (1983) estimator µ̂xF if{
1−

√
C2

s

1− T )(1 + C2
s )

}
< w <

{
1 +

√
C2

s

1− T )(1 + C2
s )

}
.
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It is to be noted that if

{
1−

√
C2

s

1− T )(1 + C2
s )

}
< 0 then the proposed estimator µ̂xPw would be more efficient

than the estimator µ̂xF if

0 < w <

{
1 +

√
C2

s

1− T )(1 + C2
s )

}
. (3.8)

Now from (2.3) and (3.5) we have

V (µ̂xP )− V (µ̂xPw) =
µ2
x(1 + C2

x)

n
[(1− T )C2

s − C2
(T )]

which is possible if C2
(T ) < (1−T )C2

s , i.e. if

{
T + w2(1− T )(1 + C2

s )
}

{T + w(1− T )}2
− 1 < (1−T )C2

s , i.e. if 1−TC2
s +w2{1+ (2−

T )C2
s} − 2w{1 + (1− T )C2

s} < 0, i.e. if
1− TC2

s

{1 + (2− T )C2
s}

< w < 1. (3.9)

Thus we established the following theorem.

Theorem 3.2. The proposed estimator µ̂xPw is is more efficient than the estimator µ̂xF if

1− TC2
s

{1 + (2− T )C2
s}

< w < 1.

4 Optimum choice of the scalar ‘w′

Differentiating the variance of µ̂xPw at (3.5) with respect to ‘w′ we have

∂V (µ̂xPw)

∂w
=

µ2
x

n

[
0 + (1 + C2

x)

{(
0 + 2w(1− T )(1 + C2

s )
)

{T + w(1− T )}2
−

(
2(1− T )(T + w2(1− T )(1 + C2

s )
)

{T + w(1− T )}3

}]
. (4.1)

Putting
∂V (µ̂xPw)

∂w
= 0, we have

2w(1− T )(1 + C2
s )−

2(1− T )(T + w2(1− T )(1 + C2
s )

T + w(1− T )
= 0 or w =

1

(1 + C2
s )

. (4.2)

Differentiating (4.1) with respect to w we have

∂2V (µ̂xPw)

∂w2
=

2µ2
x(1 + C − x2)T (1− T )

n[T + w(1− T )]2
[3− 2T + TC2

s − 2w(1− T )(1 + C2
s )] > 0

if [3− 2T + TC2
s − 2w(1− T )(1 + C2

s )] > 0 i.e. if w <
1

(1 + C2
s )

[
1 +

(1 + TC2
s )

2(1− T )

]
.

It is observed from (4.2) that the equation
∂V (µ̂xPw)

∂w
= 0 yields w =

(
1 + C2

s

)−1
which is always less than upper

bound of the inequality (4.3) i.e.,
1

(1 + C2
s )

[
1 +

(1 + TC2
s )

2(1− T )

]
. Thus

(
1 + C2

s

)−1
is the optimum value of w which will

minimize the variance of the proposed estimator µ̂xPw i.e. the optimum value of w is

w =
(
1 + C2

s

)−1
= wopt (say). (4.3)

Substitution of (4.3) in (3.5) yields the minimum variance of the estimator µ̂xPw as

minV ar(µ̂xPw) =
µ2
x

n

[
C2

x + C2
s (1− T + C2

x)
]

(1 + TC2
s )

. (4.4)
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Substitution of (4.3) in (3.1) yields the optimum Partial RRT model as

Y ∗ =

 X with probability T

w

(
XS

θ (1 + C2
s )

)
with probability (1− T ).

(4.5)

The expected value of Y ∗ is given by

E(Y ∗) = TE(X) + (1− T )
1

θ (1 + C2
s )

E(XS) == µx

(
1 + TC2

s

)
(1 + C2

s )
. (4.6)

Thus the unbiased estimator of µx is given by

µ̂xPo =

(
1 + C2

s

)
(1 + TC2

s )
Y ∗. (4.7)

The variance of the unbiased estimator µ̂xPo is given by

V ar(µ̂xPo) =

(
1 + C2

s

)2
(1 + TC2

s )
2
n
V (Y ∗). (4.8)

The variance of Y ∗ is given by

V ar(Y ∗) = E(Y ∗2)− (E(Y ∗))2 = TE(X2) +
(1− T )

θ2 (1 + C2
s )

2E(X2S2)−
µ2
x

(
1 + TC2

s

)2
(1 + C2

s )
2

=
µ2
x

(
1 + TC2

s

)2
(1 + C2

s )
2

[
C2

x + C2
s (1− T + C2

x)
]

(4.9)

Putting (4.9) in (4.8), we get the variance of µ̂xPo as

V ar(µ̂xPo) =
µ2
x

[
C2

x + C2
s (1− T + C2

x)
]

n (1 + TC2
s )

2 . (4.10)

It is observed from (4.4) and (4.10) that

minV ar(µ̂xPw) = V ar(µ̂xPo). (4.11)

Thus the estimator µ̂xPo is an optimum estimator in the class of estimator µ̂xPw.

5 Efficiency Comparison

From (2.2), (2.3) and (4.10) we have

V ar(µ̂xF )− V ar(µ̂xPo) =
TC2

sµ
2
x(1 + C2

x)(1 + C2
s )

n (1 + TC2
s )

2 > 0. (5.1)

V ar(µ̂xP )− V ar(µ̂xPo) =
T (1− T )C4

sµ
2
x(1 + C2

x)

n (1 + TC2
s )

2 > 0. (5.2)

It is observed from (5.1) and (5.2) that the proposed optimum estimator µ̂xPo is more efficient than µ̂xF (Eichhorn
and Hyarein [3] estimator) and µ̂xP in Gupta and Shabbir [5]. Further from (2.4) and (5.2) we have the inequality:

V ar(µ̂xPo) < V ar(µ̂xP ) < V ar(µ̂xF ) (5.3)

The proposed optimum estimator µ̂xPo is more efficient than µ̂xF and µ̂xP . It is interesting to note that the
proposed optimum estimator µ̂xPo depends on the information (θ, C2

s ) associated with scrambled variable S which are
known in advance. Thus the proposed estimator µ̂xPo is recommended advantageously for its use in practice.
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6 Numerical illustration

Researchers in the domains of statistics, computer science, public policy, and other disciplines are creating new
ideas and methodologies. To reduce the danger of exposure, further ideas and techniques have been created, including
grouping, data swapping, synthetic data, l-diversity, and differential privacy. In our opinion, response randomisation
is one of the most fundamental and effective strategies for preserving privacy and data confidentiality. In particular,
we think there is plenty of room to create post-randomization techniques for the data secrecy approach. There has
long been discussion about the benefits of randomizing real replies to preserve respondent confidentiality and privacy.
However, it has not been widely utilized in actual surveys, presumably because there aren’t enough practical privacy
protections and good instructions for selecting the transition probabilities. Companies and computer scientists have
paid close attention to randomized response approaches recently in a new context, namely for privacy protection when
capturing data from diverse online activities. Newer studies have produced exact privacy principles, safeguards, and
rigorous procedures for calculating transition probabilities. Several of such advancements have been examined by us.
Newer studies have produced exact privacy principles, safeguards, and rigorous procedures for calculating transition
probabilities. Several of such advancements have been examined by us. Partial RRT surveys are comparable in
that both randomize true responses with predetermined probabilities and the transition probabilities control their
mathematical properties. The similarities between RR surveys and Partial RRT, however, lie in the fact that both
randomize genuine replies with a specified probability, and the mathematical features of both are governed by the
transition probabilities.

Using (3.7) and (3.9), the range of the scalar ‘w′ has been computed for various values of T = 0.1(0.1)0.9 and
Cs = 0.1(0.1)0.9 for which the suggested estimator µ̂xPw is better than Eichhorn and Hayre’s [3] estimator µ̂xF

and the estimator µ̂xP cited in Gupta and Shabbir [5]. The computed value of the ranges w have been compiled
in Tables 6.1 and 6.2. We have computed the percent relative efficiencies (PRE’s) of µ̂xPw with respect to µ̂xF and
µ̂xP for different values of Cs = 1.00, 1.50, 2.00, 2.50, 3.00, Cx = 1.50, 2.00, 2.50, 3.00, T = 0.10, 0.20, 0.30, 0.40, 0.50 and
w = 0.42, 0.44, 0.46 by using the formulae:

PRE(µ̂xPw, µ̂xF ) =
V ar(µ̂xF )

V ar(µ̂xPw)
× 100 =

{
C2

x + (1 + C2
x)C

2
s

}{
C2

x + (1 + C2
x)C

2
(T )

} . (6.1)

and

PRE(µ̂xPw, µ̂xF ) =
V ar(µ̂xP )

V ar(µ̂xPw)
× 100 =

{
C2

x + (1− T )C2
s (1 + C2

x)
}{

C2
x + (1 + C2

x)C
2
(T )

} . (6.2)

Finding are displayed in Tables 6.3 and 6.4. We have further computed the percent relative efficiencies (PREs) of
the proposed optimum estimator µ̂xPo with respect to µ̂xF and µ̂xP by using the following formulae:

PRE(µ̂xPo, µ̂xF ) =
V ar(µ̂xF )

V ar(µ̂xPo)
× 100 =

{
C2

x + (1 + C2
x)(1 + TC2

s )
}

{C2
x + (1− T + C2

x)C
2
s}

. (6.3)

and

PRE(µ̂xPo, µ̂xP ) =
V ar(µ̂xP )

V ar(µ̂xPo)
× 100 =

{
C2

x + (1− T )C2
s (1 + C2

x)
}
(1 + TC2

s )

{C2
x + (1− T + C2

x)C
2
s}

. (6.4)

Cs = 1.00, 1.50, 2.00, 2.50, 3.00, Cx = 1.50, 2.00, 2.50, 3.00 and T = 0.10, 0.20, 0.30, 0.40, 0.50. Findings are shown in
Tables 6.5 and 6.6. We have computed the range of w for different values of T and Cs and findings are made known
in Tables 6.1 and 6.2. Table 6.1 and 6.2 put on display that there is enough scope of selecting the value of scalar
\w” for obtaining the estimators superior than µ̂xP and µ̂xF respectively. To justify this we have computed the
PRE(µ̂xPw, µ̂xP ) and PRE(µ̂xPw, µ̂xF ) for chosen values of w,Cx, Cs and T and findings are displayed in Tables
6.3 and 6.4. It is observed from Tables 6.3 and 6.4 that the values of PRE(µ̂xPw, µ̂xP ) and PRE(µ̂xPw, µ̂xF ) are
greater than 100. It follows that the proposed estimator µ̂xPw is more efficient than the usual estimators µ̂xP and
the estimator µ̂xF with substantial gain in efficiency. We have also worked out the percent relative efficiencies of
the “Optimum” estimator µ̂xPo with respect to µ̂xF and µ̂xP and the results are shown in Tables 6.5 and 6.6. The
findings of the Tables 6.5 and 6.6 undoubtedly show that the proposed optimum estimator µ̂xPo is more efficient than
the estimator µ̂xF and µ̂xP with considerable gain in efficiency. Tables 6.5 and 6.6 also exhibit that the values of
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PRE(µ̂xPo, µ̂xP ) andµ̂xF and µ̂xP remain higher if the values of Cs increases. Thus, based on our theoretical and
simulation results, the use of the proposed estimators µ̂xPw and µ̂xPo over Eichhorn and Hayre [3] and the estimator
µ̂xP are recommended in practice.
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