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Abstract

Nowadays, proper management of water resources is essential due to the scarcity of freshwater resources and the
high cost of wastewater treatment. To control and optimize while avoiding human mistakes, it is necessary to design
and implement an intelligent automated system to minimize human intervention. On the other hand, inevitable
deficiencies in system equipment require fault detection and localization methods, all of which involve time and cost.
Nevertheless, these costs can be reduced by examining faults in the design phase before entering the implementation
phase. This article uses a simulated sample system to demonstrate the method’s effectiveness. In this way, system
faults in the design phase are predicted through machine learning methods. The system’s tolerance for dealing with
them is evaluated using fuzzy approaches. The proposed approach consists of a process-oriented framework comprising
offline and online phases.
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1 Introduction

In today’s world, given the limited nature of water resources, intelligent management methods are paramount. In
this regard, automated water consumption control has been highlighted for efficiency and targeted utilization. As a
fundamental basis for systematic consumption and storage, there is a need for physical equipment such as liquid-level
sensors, pumps, controllable valves, reservoirs, and control software systems to receive input data from sensors, process
them, and consequently issue commands to open or close valves. Therefore, faults, or defects in these equipments, are
inevitable. If these faults can be predicted and evaluated during the system design phase, the cost is much lower than
when the system is physically implemented. Predicting faults in the design phase provides a clear picture.
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However, machines’ expected stable performance diminishes due to inappropriate functionality and challenging
environments. Therefore, there is a continuous effort to develop Fault Detection and Diagnosis (FDD) techniques to
enable continuous and reliable system health monitoring during operations and daily maintenance [11].

Since faults are inherent in systems, fault detection and localization methods have been employed to prevent system
failures and breakdowns. This aims to enhance system reliability. Predicting potential faults before constructing a
system is challenging. This may lead to a system with a high failure rate and low reliability. Therefore, presenting
a solution in the design phase to predict and estimate the faults of the intended system is crucial to prevent the
construction of a system with high risks.

With the development of Artificial Intelligence (AI), extensive research has been conducted on rapid and efficient
fault detection based on intelligent methods [17]. Generally, the system’s condition can be categorized as normal or
faulty based on input data. Therefore, one of the tasks of the proposed solution is to detect the system’s current status
(normal or faulty) so that it can either proceed with its routine under typical conditions or halt in the presence of a
fault. However, if the system is halted by detecting any fault and becomes inaccessible, its reliability is compromised,
reducing its efficiency. Fuzzy methods and predefined threshold criteria evaluate system faults.

Based on such motivation, this study presents a comprehensive, process-oriented, and integrated approach that
includes prediction, fault classification focusing on a decision tree, and fault tolerance assessment based on ANFIS
during the system design phase. By doing so, a system with high failure rates is prevented, and its reliability is
enhanced.

The continuation of the article is organized as follows: Section 2 outlines previous works. Section 3 defines
fundamental concepts (related to Petri net and machine learning algorithms, including decision tree C5.0, CHAID,
QUEST, SVM, and adaptive neuro-fuzzy inference systems). Section 4 discusses the proposed method. Section 5
concludes and suggests future research directions.

2 Preliminaries

In [18], an approach was proposed for evaluating three-reservoir system performance using hybrid Petri net. The
model was examined based on structural features and constraint information for liquid-level processes. In [5] the
proposed method, the flexible job-shop scheduling problem systems was modeled by color Petri net and CPN tool and
then a scheduled job was programmed by GSA algorithm. In [1, 2, 3] Colored petri net (CPN) was used for modeling
to predict different modes of traffic management system and probable occurrences. In [4] the methodology of firewalled
LAN models construction in the form of Colored Petri Net was introduced and model the ACL (Access Control List) in
firewalls. In [16], an architecture was introduced and described for showing the mobile agent request process in mobile
environments. Hence, a model has been suggested using Stochastic Colored Petri Nets that encompasses two sections.
In [15], a machine-learning framework for predicting software faults was suggested. Seven classifiers were compared:
k-Nearest Neighbors, Naive Bayes, Linear Discriminant Analysis, Linear Regression, Decision Tree, Support Vector
Machine, and Random Forest. In [20], a High Impedance Fault (HIF) detection method based on Decision Trees (DTs)
is presented. HIF features, serving as inputs to the DTs, include known indicators such as root mean square (RMS),
current, second, third, and fifth harmonic magnitudes, and third harmonic phase.

In [10], a comprehensive review of various machine learning methods is presented, including a Naive Bayes classifier,
Decision Tree, Random Forest, k-Nearest Neighbors, Support Vector Machine, as well as artificial neural networks
such as Feedforward Neural Network, Convolutional Neural Network, and Adaptive Neuro-Fuzzy Inference System.
These methods are used to identify, classify, and localize faults on transmission lines. In [19], a survey of recent
machine learning-based techniques for fault detection, classification, and location estimation on transmission lines is
provided. This article offers a comprehensive overview of various machine learning methods, including Naive Bayes
classifier, Decision Tree, Random Forest, k-Nearest Neighbors, Support Vector Machine, as well as artificial neural
networks such as Feedforward Neural Network, Convolutional Neural Network, and Adaptive Neuro-Fuzzy Inference
System, used for the identification, classification, and localization of faults in transmission lines. In [23], the problem
of Fault Tolerant Control (FTC) is studied, specifically, an observer-based fully distributed event-triggered adaptive
fuzzy FTC for nonlinear Multi-Agent Systems (MASs) exposed to unknown actuator faults.

An innovative mechanism for compensating with a reconfigurable operator is adopted to cope with unknown actu-
ator faults. Then, based on the backstepping technique and the design of a dual-channel event-triggered mechanism, a
fault-tolerant approach that relies on fully distributed event-triggered development is devised. A fault-tolerant mech-
anism is introduced based on a Multi-Class Support Vector Machine (SVM) and an Adaptive Neuro-Fuzzy Inference
System (ANFIS). Multi-class SVM identifies and locates system fault states, and ANFIS estimates real sensor fault
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data. After estimation, the system compares the real sensor fault data with the estimated ANFIS data [22].

3 Definitions and Basic Concepts

This section explains the fundamental concepts of the topics discussed in the following sections. Basic definitions
of Petri net, decision trees, and ANFIS are provided.

3.1 Petri net

Below are some concepts and properties of colored Petri net. Further details can be found in [8] and [9].

Definition 3.1. A marked discrete Petri net denoted by the quintuple R = (P, T, Pre, Post,m0) is defined as follows:

P = {P1, P2, ...Pn} is a finite and non-empty set of places (represented by circles).

T = {T1, T2, ..., Tm} is a finite and non-empty set of transitions (represented by rectangular boxes).

P ∩ T = ∅, meaning that P and T are disjoint.

Pre : P × T → {0, 1} is the input incidence matrix

Post : P × T → {0, 1} is the output incidence matrix.

m0 : Pi → Zα is the initial marking of all places, where Z+ corresponds to the set of non-negative integers, and
→ indicates the assignment of Pi to Z+.

3.2 Decision Trees

Decision trees are among the best-studied and widely used tools in machine learning and data science. Decision tree
capabilities are one of the most practical methods extensively applied in data mining, particularly anomaly detection
[6, 7]. Data object classification is a data mining and knowledge management technique for grouping similar data
objects. While various classification algorithms exist in the literature, decision trees are the most common due to their
ease of implementation and straightforward understanding compared to other classification algorithms [21].

Decision trees (DT) are commonly used for identifying and classifying faults. DT models trained on datasets have
demonstrated high fault detection and fault classification accuracy in experimental sets [24].

3.3 Adaptive Neuro-Fuzzy Inference System (ANFIS)

The Adaptive Neuro-Fuzzy Inference System (ANFIS) is an artificial neural network built upon the Takagi-Sugeno
fuzzy inference system. This technique was developed in the early 1990s [12]. Since ANFIS combines both neural
network capabilities and fuzzy logic principles, it can simultaneously utilize both. Its inference system employs if-then
fuzzy rules to learn nonlinear functions’ approximation. Therefore, ANFIS is considered a universal approximator [13].
In the ANFIS structure, two distinct parameter groups exist: antecedent and consequent. Training ANFIS involves
determining these parameters using optimization algorithms. Jang’s initial ANFIS model proposed a hybrid learning
approach. ANFIS utilizes input-output pairs during training [14].

4 Proposed Methodology

In this section, the proposed approach is detailed. The approach consists of two phases: offline and online. In
the offline phase, a model of the studied system is created using stochastic hybrid Petri nets (SHPN). The dataset is
extracted during the system monitoring using a simulator. These datasets are labeled for training machine learning
algorithms in three stages (as per Section 4.1.1). In the next stage, the labeled datasets train machine learning
algorithms for fault detection, decision tree-based fault classification, and fault tolerance assessment based on ANFIS.

In the online phase, the trained models from the offline phase are utilized to process the streaming of real-world
data. Initially, the data (as the system states) is fed into the fault detection model based on the decision tree.

If this state is predicted as a fault, it enters the fault classification model based on the decision tree to identify the
location of the fault. Finally, the classified fault is input into the fault tolerance assessment model based on ANFIS.
This model predicts the fuzzy membership degree of fault tolerance within zero to one. A value of one represents high
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fault tolerance, while a value of zero indicates low fault tolerance. If the system state is normal, the system resumes
normal operation. To illustrate the effectiveness of the proposed solution, a case study related to the water resource
management domain has been utilized. The details of the proposed solution are discussed in the following sections.

Offline Phase

4.1 Simulation, Data Extraction, and Preprocessing

This section illustrates the studied system in Figure (1) and its simulation as a stochastic hybrid Petri net in Figure
(2).

Figure 1: The studied system.

Figure 2: Simulated system equivalent to Figure (1) using Petri net.

Figure 3: The simulated studied system in CPNTools.

Details related to the implementation of the studied system are presented in Tables (1) to (4).



Investigating fault using fuzzy approach 5

Table 1: Continuous Transitions and Places.

# Equivalent in petri net Equivalent to Figure 1 (volume/fluid output speed)

1 P1 Tank1 100 m3

2 P2 Tank2 80 m3

3 P3 Tank3 80 m3

4 T1 Valve1 20 m3/h
5 T1 Valve2 8 m3/h
6 T1 Valve3 14 m3/h
7 T1 Valve4 4 m3/h
8 T1 Valve5 7 m3/h

Table 2: Conditions of Valve Open or Closed (Continuous Transitions).

# Valve Closed conditions Open conditions

1 Valve1

The liquid volume of Tank 1 should

be less than 100m3

The liquid volume of Tank1

should be more than 100 m3

2 Valve2

The liquid volume of

Tank3 and Tank1 should be less
and more than 70m3 and 8m3 respectively

The liquid volume of Tank3

and Tank1 should be more
and less than 70m3 and 8m3 respectively

3 Valve3

The liquid volume of

Tank2 and Tank1 should be less
and more than 70m3 and 14m3 respectively

The Liquid jam Tank2

and Tank1 should be more
and less than 70m3 and 14m3 respectively

4 Valve4

The liquid volume of Tank 3 should

be less than 4m3

The liquid volume of

Tank 3 should be more than 4m3

5 Valve5

The liquid volume of

Tank3 and Tank2 should be less
and more than 70m3 and 7m3 respectively

The liquid volume of Tank3

and Tank2 should be more and
less than 70m3 and 7m3 respectively

Table 3: Discrete Transitions and Places.

# specification Control condition associated with the continuous transitions

1
Open1, Close1

c2, c2 T1

2
Open2, Close2

c6, c5 T2

3
Open3, Close3

c4, c3 T3

4
Open4, Close4

c11, c10 T4

5
Open5, Close5

c8, c7 T5

For transitions T1 to T5, five fault functions fT1 to fT5 can be considered sequentially, assuming the asynchrony
of faults (according to Figure (5)). For example, in the normal state, in a time interval of 60 hours, equivalent to
2.5 days (consistent with the time variable α2 with a random exponential distribution), the instantaneous speed of
T1 is considered constant at 20m3/h (according to Figure (5)(a)). After this period elapses, transition T1 incurs the
fault fT1, and the system enters the fault state (according to Figure (5)(b)). In this case, a time interval of 10 hours
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Table 4: Conditions of Valve Open or Closed (Continuous Transitions).

# specification description

1

Normal1, fault1
n1, f1

Discrete places and transitions with exponential

time distribution of 10 and 60 hours, respectively,

to simulate the normal and fault states for T1

2

Normal2, fault2
n2, f2

Discrete places and transitions with exponential

time distribution of 10 and 60 hours, respectively,

to simulate the normal and fault states for T2

3

Normal3, fault3
n3, f3

Discrete places and transitions with exponential

time distribution of 10 and 60 hours, respectively,

to simulate the normal and fault states for T3

4

Normal4, fault4
n4, f4

Discrete places and transitions with exponential

time distribution of 10 and 60 hours, respectively,

to simulate the normal and fault states for T4

5

Normal5, fault5
n5, f5

Discrete places and transitions with exponential

time distribution of 10 and 60 hours, respectively,

to simulate the normal and fault states for T5

Figure 4: (Upper figure) Function F1 for simulating fault states (red rectangle represents an exponential function with a time
variable of 10 hours) and normal states (green rectangle represents an exponential function with a time variable of 60 hours).
(Bottom figure) Function F1 associated with each continuous transition.

(consistent with the time variable α1 with a random exponential distribution) is considered. Therefore, the output
speed of T1 becomes zero (after this period elapses, the system returns to the normal state). The same assumptions
apply to the other transitions.

According to Figure (4), the function F1 simulates the fault of each transition according to the above definition.
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Figure 5: Various fault states in the five fault classes: fT1 to fT5 and the normal state.

4.1.1 Explanation of Concepts: Fault Detection, Fault Classification, and Fault Tolerance Evaluation

Fault Detection Concepts: For transition Ti, in this case, if the liquid volumes Pi and Pi+1 are respectively greater
and less than Vi and 70m3, and Vi = 0, then this state is considered an fault; otherwise, the system is in a normal
state.

∃Pi | Pi ⊂ {P1, P2, . . . , Pn}, i = 1; i, j ⊂ Z+

∃Tj | Tj ⊂ {T0, T1, . . . , Tn}, j = 0,

So : if (Vi = 0 andm(Pi) > Vi andm(Pi+1) < 70m3) then the state is fault else normal.

Classification Concepts for Fault fTi: For transition Ti, if the liquid volumes Pi and Pi+1 are respectively greater
and less than Vi and 70m3, and Vi = 0, then this state is considered a fault fTi; otherwise, the system is in a normal
state. If the following conditions are met, the fault is classified as a transition fault fTi.

∃Pi | Pi ⊂ {P1, P2, . . . , Pn}, 1 ≤ i < n; i, j ⊂ Z+

∃Tj | Tj ⊂ {T0, T1, . . . , Tn}, 0 < j < n, i = j,

So : if(Vi = 0 andm(Pi) > Vi andm(Pi+1) < 70m3) then fTi else normal.

Tolerance Concepts for Fault fTi: For transition Ti, if the liquid volume Pi is greater than Vi and the volume Pi+1

is between 50m3 and 70m3, and Vi = 0, then the fault is considered tolerable; otherwise, it is considered intolerable,
and the system must respond to it.

∃Pi | Pi ⊂ {P1, P2, . . . , Pn}, 1 ≤ i < n; i, j ⊂ Z+

∃Tj | Tj ⊂ {T0, T1, . . . , Tn}, 0 < j < n, i = j,

So : if(Vi = 0 andm(Pi) > Vi and 50m
3 < m(Pi+1) < 70m3) then

the fault is tolerable else fault is intolerable.

4.1.2 Decision Tree Training

In this section, considering the fault detection concept presented in 4.1.1, decision tree algorithms (C5.0, CHAID,
and QUEST) and SVM have been applied to 576 samples from the tested dataset. The decision tree algorithms,
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including nodes (C5.0, CHAID, and QUEST) and SVM nodes, were implemented in Clementine 12.0 software.

4.1.3 Numerical Results for a Fault Detection Model

Among the trained models, the designed C5.0 model accurately identified 97.65% of the samples in the test dataset.
However, the developed models CHAID and QUEST failed to classify 11 and 12 samples in the test dataset correctly.
The developed SVM model with the RBF kernel achieved 90.20% prediction accuracy in the test dataset. Details of
the identified faults and the accuracy values of the developed models using decision tree methods are provided in Table
(5). Table (5) results indicate that the parameters (Sensitivity, F1 measure, and Accuracy) in the proposed method
using the C5.0 decision tree outperform other machine learning methods in the case study.

Table 5: Comparison of Sensitivity, F1 measure, and Accuracy metrics for machine learning methods in fault detection.

4.1.4 Numerical Results for a Fault Classification Model

Among the trained models, the created model using C5.0 accurately classified 96.86% of the samples in the test
dataset. However, the developed CHAID and QUEST models failed to classify 24 and 49 samples in the test dataset
correctly. The developed SVM model with the RBF kernel achieved 91.37% prediction accuracy in the test dataset.
Details of the identified faults and the accuracy values of the developed models using decision tree methods are provided
in Table (6). The results in this table indicate that the parameters (Sensitivity, F1 measure, and Accuracy) in the
proposed approach using the C5.0 decision tree outperform other machine learning methods in the case study.

Table 6: Comparison of Sensitivity, F1 measure, and Accuracy metrics for machine learning methods in fault classification.

4.2 Training ANFIS for Fault Tolerance Assessment

In this section, considering the introduced concept of fault tolerance in 4.1.1, the ANFIS model has been trained
on the fault states of the dataset, which includes 258 training data samples and 118 test data samples. The training



Investigating fault using fuzzy approach 9

process is performed using MATLAB software. For system states identified as faults by the fault detection tree
and following the concept mentioned in 4.1.1, if the tolerance conditions for the identified faults are met, the fault
is characterized at three fuzzy levels of tolerance: high, medium, and low. Table (7) presents the features of the
neural-fuzzy model used in the proposed approach.

Table 7: Features of a neural fuzzy network.

Variable Name

Number of input 4
Number of membership function for each input 3, 2, 2, 2
Epoch number 3000
Learning data set 258
testing data set 118
Membership function type gbellmf

4.2.1 Numerical Results for the Fault Tolerance Assessment Model

The model demonstrates an average test fault of 0.16. Considering the well-matched predicted results of ANFIS,
it is observed that the expected output has been accurately obtained (according to Figure (6)).

Figure 6: (a) Comparison between test data and ANFIS output. (b) Comparison between training data and ANFIS output.

5 Conclusion

This article focuses on predicting and locating faults and evaluates the tolerance level of identified faults. This is at
the stages preceding the actual system construction and implementation. To achieve this, the decision tree algorithm
C5.0 is modeled for fault detection on the dataset obtained from the simulated system. This provides a high accuracy
estimate compared to other machine learning methods. Ultimately, the modeled ANFIS is used to assess identified
fault tolerance. The results demonstrate detection efficiency and fault tolerance evaluation. In future studies, an
attempt will be made to train the proposed hybrid method through online rather than offline learning. Unlike the
offline method, which requires an offline dataset, the dataset is continuously updated in real-time states in the online
method and is used for training at specified intervals. The advantage of this approach over the proposed method in
this study will be better adaptability to various system states and more accurate predictions.
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