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Abstract

L-functions are complex functions associated with number-theoretic objects such as number fields, elliptic curves,
modular forms, and automorphic representations. The general form of an L-function can be represented as a Dirichlet
series, an Euler product, or in terms of its analytic continuation and functional equation. One of the most famous
L-functions is the Riemann zeta function, defined as: ζ(s) = 1s + 2−s + 3−s + · · · =

∑∞
n=1 n

−s, where s is a complex
number. L- function plays a fundamental role in studying prime numbers and connects to important conjectures
like the Riemann Hypothesis. In this paper, we study the uniqueness of transcendental meromorphic functions and
L-function whose certain difference-differential polynomials share a small function and rational function with weight,
where L-function is a function that is Dirichlet series with the Riemann zeta function as the prototype. The Selberg
class S of L-functions is the set of all Dirichlet series L(s) =

∑∞
n=1 a(n)n

−s of a complex variable s = σ + it with
a(1) = 1.
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1 Introduction, Definitions and Results

In this paper, by L-functions we always mean L-functions that are Dirichlet series with the Riemann zeta function
ζ(s) =

∑∞
n=1 n

−s as the prototype. The Selberg class S of L-functions is the set of all Dirichlet series L(s) =∑∞
n=1 a(n)n

−s of a complex variable s = σ + it with a(1) = 1 ; satisfying the following axioms [13, 14]:

(i) Ramanujan hypothesis: a(n) << nϵ for every ϵ > 0.

(ii) Analytic continuation: There is a nonnegative integer m such that (s − 1)mL(s) is an entire function of
finite order.

(iii) Functional Equation: L satisfies a functional equation of type ΛL(s) = ωΛL(1− s), where ΛL(s) =

L(s)Qs
∏K

j=1 Γ(λjs+ vj) with positive real number Q,λj , and complex numbers vj , ω with Re(vj) ≥ 0 and |ω| = 1.

(iv) Euler product: logL(s) =
∑∞

n=1(
(b(n))
ns ), where b(n) = 0 unless n is a positive power of a prime and

b(n) << nθ for some θ < 1
2 .

The Ramanujan hypothesis implies that the Dirichlet series L converges absolutely in the half-plane Rel(s) > 1.

The degree of an L-function is defined as dL = 2
∑K

j=1 λj where K and λj are respectively the positive integers and
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positive real number as in axiom (iii) above. L-function can be analytically continued as a meromorphic function in
C.

In this paper, by meromorphic functions, we will always mean meromorphic functions in the complex plane. We
shall use Nevanlinna’s theory and adopt Nevanlinna’s theory’s standard notations to demonstrate the main findings
in the current work. Nevanlinna’s theory uses common notations like the characteristic function T (r; f), proximity
function m(r; f), counting function N(r; f), and reduced counting function N(r; f), which are detailed in [3, 6, 15, 16].
Any quantity satisfying S(r;h) = o(T (r;h)) is denoted by S(r;h) for a non-constant meromorphic function h as r → ∞
and r /∈ E. If T (r, a) = S(r, h), we say a is a small function concerning h. The order of growth of f is defined as

ρ(f) = lim
r→∞

sup
log T (r, f)

log r
. We say that f is a meromorphic function of finite order if ρ(f) < ∞. We require the

following definitions to prove our main result.

Definition 1.1. [5] Let f be a meromorphic function defined in the complex plane. Let n be a positive integer and
α ∈ C. By N(r, α; f | ≤ n), we denote the counting function of the α-points of f with multiplicity less than or equal
to n and by N(r, α; f | ≤ n) the reduced counting function. Also by N(r, α; f | ≥ n), we denote the counting function
of the α-points of f with multiplicity greater than or equal to n and by N(r, α; f | ≥ n) the reduced counting function.
We define Nn(r, α; f) = N(r, α; f) +N(r, α; f | ≥ 2) + ......+N(r, α; f | ≥ 2).

Definition 1.2. [4] Let f and g be two non-constant meromorphic functions share a value α IM. Denote by
N∗(r, α; f, g) the counting function of the α-points of f and g with different multiplicities,where each α-point is
counted only once.

In 2010, Li [9] considered a nonconstant L-function and meromorphic function and he obtained the following result.

Theorem 1.3. [9].Let a and b be two distinct finite values and f be a meromorphic function in the complex plane
with finitely many poles. If f and a nonconstant L-function L share a CM and b IM, then L ≡ f .

Recently, Liu-Li-Yi [7, 8] proved the following result.

Theorem 1.4. [7]. Let f be a nonconstant meromorphic function, let L be an L- function, and let n and k be two

positive integers. Suppose that (fn)
(k)

and (Ln)
(k)

share 1 CM. If n > 3k+ 6, then f ≡ tL for a constant t satisfying
tn = 1.

Theorem 1.5. [8]. Let f be a nonconstant meromorphic function, let L be an L-function, and let n and k be two
positive integers. Suppose that [fn(f − 1)](k) and [Ln(L− 1)](k) share 1 CM. If n > 3k + 9 and k ≥ 2, then f ≡ L.

In 2018, W. J. Hao and J. F. Chen [2] proved the following theorem.

Theorem 1.6. [2] Let f be a non-constant meromorphic function and L be an L-function such that [fn(f − 1)m](k)

and [Ln(L − 1)m](k) share (1,∞), where m,n, k are positive integers. If n > m + 3k + 6 and k ≥ 2, then f ≡ L or
fn(f − 1)m = Ln(L− 1)m.

Theorem 1.7. [2] Let f be a non-constant meromorphic function and L be an L-function such that [fn(f − 1)m](k)

and [Ln(L − 1)m](k) share (1, 0), where m,n, k are positive integers. If n > 4m + 7k + 11 and k ≥ 2, then f ≡ L or
fn(f − 1)m = Ln(L− 1)m.

We now state the following theorems, which are the main results of this paper.

Theorem 1.8. Let L be a non-constant L-function and f be a transcendental meromorphic function. Let k, n, d, µj(j =

1, 2, ..., d), λ =
∑d

j=1 µj be positive integers such that n > λ+ d(2k+ 4) + 4, and wj ∈ C\{0}, (j=1,2,...,d) be distinct

constants. Also let ρ2(L) < 1, ρ2(f) < 1. [LnP (L)
∏d

j=1 L(z+wj)
µ
j ]

(k) and [fnP (f)
∏d

j=1 f(z+wj)
µ
j ]

(k) share (ρ(z), l)
and f, L share (∞, 0), where ρ(z) is a small function of f and L. If l = 0 and n > λ+m− 1 + (7 + 5k)(m+ d+ 2) or
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l = 1 and n > m+ λ+ 1
2 (5k+9)(m+ d+2)− 1, where P (f) = a0f + a1f

(1) + ....+ amf (m), then one of the following
holds:

[LnP (L)

d∏
j=1

L(z + wj)
µ
j ]

(k) ≡ [fnP (f)

d∏
j=1

f(z + wj)
µ
j ]

(k); (1.1)

[LnP (L)

d∏
j=1

L(z + wj)
µ
j ]

(k)[fnP (f)

d∏
j=1

f(z + wj)
µ
j ]

(k) ≡ ρ2. (1.2)

Theorem 1.9. Let L be a non-constant L-function and f be a transcendental meromorphic function. Let k, n, d, µj(j =

1, 2..., d), λ =
∑d

j=1 µj be positive integer such that n > λ + d(2k + 4) + 4, and wj ∈ C\{0}, (j=1,2,...,d) be distinct

constants. Also let ρ2(L) < 1, ρ2(f) < 1. [LnP (L)
∏d

j=1 L(z+wj)
µ
j ]

(k) and [fnP (f)
∏d

j=1 f(z+wj)
µ
j ]

(k) share (R(z), l)
and f, L share (∞, 0) where R(z) is a rational function. If l = 0 and n > λ+m− 1+ (7+ 5k)(m+ d+2) or l = 1 and
n > m+ λ+ 1

2 (5k + 9)(m+ d+ 2)− 1 where P (f) = a0f + a1f
(1) + ....+ amf (m), then one of the following holds:

[LnP (L)

d∏
j=1

L(z + wj)
µ
j ]

(k) ≡ [fnP (f)

d∏
j=1

f(z + wj)
µ
j ]

(k); (1.3)

[LnP (L)

d∏
j=1

L(z + wj)
µ
j ]

(k)[fnP (f)

d∏
j=1

f(z + wj)
µ
j ]

(k) ≡ R(z)2. (1.4)

2 Lemmas

We denote H as H =
(

F ′′

F ′ − 2F ′

F−1

)
−
(

L′′

L′ − 2L′

L−1

)
. For the proof of our main results, we need the following lemmas.

Lemma 2.1. [15]. Let f be a non-constant meromorphic function and P (f) = a0+a1f+....+anf
n, where a0, a1, ..., an

are complex constants and an ̸= 0, then T (r, P (f)) = nT (r, f) + S(r, f).

Lemma 2.2. [17]. Let f be a transcendental meromorphic function of finite logarithmic order and q, η be two non-zero
complex constant. Then we have

T (r, f(qz + η)) = T (r, f) + S1(r, f),

N(r, f(qz + η)) = N(r, f) + S1(r, f),

N

(
r,

1

f(qz + η)

)
= N

(
r,

1

f

)
+ S1(r, f).

Lemma 2.3. [10]. Let L be an L-function. Then N(r,∞;L) = S(r, L) = ⃝(log r).

Lemma 2.4. [11] Let f be a non-constant meromorphic function and L be an L-function. If f and L share (∞, 0)
then N(r,∞; f) = S(r, L) = ⃝(log r).

Lemma 2.5. [14] Let L be an L-function with degree q. Then T (r, L) = q
π r log r +⃝(1).

Lemma 2.6. [12] Let F and G be two non-constant meromorphic functions sharing (1, 1) and (∞, 0). If H ̸≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) +
3

2
N(r, F ) +N(r,G) +N∗(r, F,G) +

1

2
N(r, 0;F ) + S(r, F ) + S(r,G).

Lemma 2.7. [12] Let F and G be two non-constant meromorphic functions sharing (1, 0) and (∞, 0). If H ̸≡ 0, then

T (r, F ) ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r, F ) + 2N(r,G) +N∗(r, F,G) + 2N(r, 0;F ) +N(r, 0;G)

+S(r, F ) + S(r,G);

T (r,G) ≤ N2(r, 0;F ) +N2(r, 0;G) + 3N(r,G) + 2N(r, F ) +N∗(r, F,G) + 2N(r, 0;G) +N(r, 0;F )

+S(r, F ) + S(r,G).
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Lemma 2.8. [15] Let F be a non-constant meromorphic function and k, p be two positive integers. Then

T (r, F (k)) ≤ T (r, F ) + kN(r, F ) + S(r, F );

Np(r, 0;F
(k)) ≤ T (r, F (k))− T (r, F ) +Np+k(r, 0;F ) + S(r, F );

Np(r, 0;F
(k)) ≤ Np+k(r, 0;F ) + kN(r, F ) + S(r, F );

N(r, 0;F (k)) ≤ N(r, 0;F ) + kN(r, F ) + S(r, F ).

3 Proof of the Theorem 1.8

Let F (z) =
F

(k)
1

ρ(z) and L∗(z) =
L

(k)
1

ρ(z) , where F1 = fnP (f)
∏d

j=1 f(z + wj)
µj and L1 = LnP (L)

∏d
j=1 L(z + wj)

µj ,

respectively. Then F,L share (1, l) and share (∞, 0) except for zeros and poles of ρ(z).

Now

(n+m+ 1)T (r, f) = T (r, fn+m+1)

= T (r, fnfm+1)

= T

(
r,

fm+1(z)F1(z)

P (f)
∏d

j=1 f(z + wj)µj

)

≤ T (r, F1(z)) + T (r, fm+1) + T (r, P (f)) + T (r,

d∏
j=1

f(z + wj)
µj )

≤ T (r, F1(z)) + (m+ 1)T (r, f) + (m+ 1)T (r, f) + λT (r, f) + S1(r, f)

≤ T (r, F1(z)) + (2m+ λ+ 2)T (r, f) + S1(r, f).

So we get

(n−m− λ− 1) T (r, f) + S1(r, f) ≤ T (r, F1(z)). (3.1)

By Lemma 2.5, L is a transcendental meromorphic function. We have from Lemma 2.8 and (3.1),

N2(r, 0;F ) ≤ N2(r, 0;F
(k)
1 ) + S(r, f)

≤ T (r, F
(k)
1 )− T (r, F1) +Nk+2(r, 0, F1) + S(r, f)

≤ T

(
r,

F k
1

ρ(z)

)
− (n− 1−m− λ)T (r, f) +Nk+2(r, 0, F1) + S(r, f),

i.e., (n− 1−m− λ) T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f). (3.2)

Similarly, we have

(n− 1−m− λ) T (r, L) ≤ T (r, L)−N2(r, 0;L) +Nk+2(r, 0, L1) + S(r, L). (3.3)

Now we have to consider the following two cases.

Case 1. Let H ̸≡ 0. In this case we have to consider the following two subcases.

Subcase 1.1. Let l = 0, hence by Lemmas 2.3, 2.4, and 2.7 and the inequality (3.2), we have

(n− 1−m− λ) T (r, f) ≤ T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f)

≤ N2(r, 0;F ) +N2(r, 0;L) + 3N(r,∞, F ) + 2N(r,∞;L) +N(r, 0, L)

−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, L)

≤ N2(r, 0;L
(k)
1 ) + 2N(r, 0;F

(k)
1 ) +N(r, 0;L

(k)
1 ) +Nk+2(r, 0;F1) + S(r, f) + S(r, L)

≤ Nk+2(r, 0;L1) + 2Nk+1(r, 0;F1) +Nk+1(r, 0;L1) +Nk+2(r, 0;F1)

+S(r, f) + S(r, L). (3.4)
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Now

Nk+2(r, 0;L1) ≤ (k + 2)N(r, 0;L1)

≤ (k + 2)N(r, 0;LnP (L)

d∏
j=1

L(z + wj)
µj )

≤ (k + 2)N(r, 0;Ln) + (k + 2)N(r, 0;

d∏
j=1

L(z + wj)
µj ) + (k + 2)N(r, 0;P (L))

≤ (k + 2)T (r, L) + (k + 2)dT (r, L) + (k + 2)(m+ 1)T (r, L). (3.5)

Using (3.5) in (3.4), we get

(n− 1−m− λ) T (r, f) ≤(k + 2)(m+ d+ 2)T (r, L) + (k + 1)(m+ d+ 2)T (r, L)

+ (3k + 4)(m+ d+ 2)T (r, f) + S(r, f) + S(r, L)

≤(2k + 3)(m+ d+ 2)T (r, L) + (3k + 4)(m+ d+ 2)T (r, f) + S(r, f) + S(r, L). (3.6)

Similarly, we have

(n− 1−m− λ) T (r, L) ≤ (2k + 3)(m+ d+ 2)T (r, f) + (3k + 4)(m+ d+ 2)T (r, L) + S(r, f) + S(r, L). (3.7)

From (3.6) and (3.7), we get

(n− 1−m− λ) {T (r, f) + T (r, L)} ≤ (5k + 7)(m+ d+ 2)T (r, f) + T (r, L) + S(r, f) + S(r, L),

which gives a contradiction as n > λ+m+ 1 + (5k + 7)(m+ d+ 2).

Subcase 1.2 Let l = 1. By Lemmas 2.3, 2.4 and 2.6 and the inequality (3.2), we have

(n− 1−m− λ) T (r, f) ≤T (r, F )−N2(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f)

≤N2(r, 0;L) +
3

2
N(r, F ) +N(r, L) +N∗(r,∞;F,L)

+
1

2
N(r, 0;F ) +Nk+2(r, 0;F1) + S(r, f) + S(r, L)

≤N2(r, 0;L
(k)
1 ) +

1

2
Nk+1(r, 0;F1) +Nk+2(r, 0;F1) + S(r, f) + S(r, L)

≤Nk+2(r, 0;L1) +
1

2
Nk+1(r, 0;F1) +Nk+2(r, 0;F1) + S(r, f) + S(r, L)

≤(k + 2)(m+ d+ 2)T (r, L) + [
1

2
(k + 1) + (k + 2)](m+ d+ 2)T (r, f) + S(r, f) + S(r, L)

≤(k + 2)(m+ d+ 2)T (r, L) +
1

2
(3k + 5)(m+ d+ 2)T (r, f) + S(r, f) + S(r, L). (3.8)

Similarly, we have

(n− 1−m− λ) T (r, L) ≤ (k + 2)(m+ d+ 2)T (r, f) +
1

2
(3k + 5)(m+ d+ 2)T (r, L) + S(r, f) + S(r, L). (3.9)

From (3.8) and (3.9), we arrive at a contradiction as n > m+ λ+ 1 + 1
2 (5k + 9)(m+ d+ 2).

Case 2. Let H ≡ 0. Then, we have

H =

(
F ′′

F ′ − 2F ′

F − 1

)
−
(
L′′

L′ − 2L′

L− 1

)
≡ 0.
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Integrating both sides we get

logF ′ − log(F − 1)2 − logL′ + log(L− 1)2 = log b

i.e.,
F ′(L− 1)2

(F − 1)2L′ = b

i.e.,
F ′

(F − 1)2
− bL′

(L− 1)2
= 0

i.e., (F − 1) =
(L− 1)

b− c(L− 1)
,

where b ̸= 0 and c are constants. Now we have to consider the following subcases.

Subcase 2.1 Let c = 0. Then from (3.9), we have

F − 1 =
L− 1

b
. (3.10)

If b ̸= 1, then from (3.10), we get

N(r, 0;F ) = N(r, 1− b;L). (3.11)

By lemma 2.3 and 2.8, using second fundamental theorem of Nevanlinna and from inequality (3.3), we have

(n− 1−m− λ) T (r, L) ≤ T (r, L)−N2(r, 0;L) +Nk+2(r, 0;L1) + S(r, L)

≤ N(r, 0;L) +N(r, 1− b;L) +N(r, L)−N2(r, 0;L) +Nk+2(r, 0;L1) + S(r, L)

≤ N(r, 0;L) +N(r, 0;F )−N2(r, 0;L) +Nk+2(r, 0;L1) + S(r, L)

≤ N(r, 0;L
(k)
1 ) +N(r, 0;F

(k)
1 )−N2(r, 0;L

(k)
1 ) +Nk+2(r, 0;L1) + S(r, L)

≤ (k + 1)(m+ d+ 2)T (r, L) + (k + 1)(m+ d+ 2)T (r, f) + S(r, f) + S(r, L). (3.12)

Similarly, we have

(n− 1−m− λ) T (r, f) ≤ (k + 1)(m+ d+ 2)T (r, f) + (k + 1)(m+ d+ 2)T (r, L) + S(r, f) + S(r, L). (3.13)

From the inequalities (3.12) and (3.13), we arrive at a contradiction as n > m+λ+1+2(k+1)(m+λ+2). Hence
b = 1 and therefore we get from (3.10),

[LnP (L)

d∏
j=1

L(z + wj)
µ
j ]

(k) = [fnP (f)

d∏
j=1

f(z + wj)
µ
j ]

(k).

Subcase 2.2 c ̸= 0 and b = c . If c = −1, then from (3.11) we have FL ≡ 1. Hence

[LnP (L)

d∏
j=1

L(z + wj)
µ
j ]

(k)[fnP (f)

d∏
j=1

f(z + wj)
µ
j ]

(k) ≡ ρ2.

If c ̸= −1, then from (3.10), we have 1
F = cL

(1+c)L−1 . Hence N(r, 0;F ) = N(r, 1
1+c ;L). Now proceeding as in

Subcase 2.1, we arrive at a contradiction.

Subcase 2.3. c ̸= 0 and b ̸= c. Then from (3.11), we have

L+
b− c

c
=

−b

c2
1

F − (1 + 1
c )

. (3.14)

As L has at most one pole z = 1 by (3.15), we have F − (1 + 1
c ) has at most one zero. By using the same method

as in Subcase 2.1, we arrive at a contradiction. This completes the proof of the Theorem 1.8.
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4 Proof of the Theorem 1.9

Since f and L are transcendental entire function and R(z) is a rational function, R(z) is a small function of f and
L. Hence by Theorem 1.1, we get the required result.

Acknowledgment

This study was funded by UGC India (MANF-2018-19-WES-97001). The authors are thankful to the anonymous
reviewers for their valuable suggestions.

References

[1] P.T.Y. Chern, On meromorphic functions with finite logarithmic order, Trans. Amer. Math. Soc. 358 (2006), no.
2, 473–489.

[2] W.J. Hao and J.F. Chen, Uniqueness of L-functions concerning certain differential polynomials, Discrete Dyn.
Nature Soc. 2018 (2018), no. 1, Article ID 4673165, 12 pages.

[3] W.K. Hayman, Meromorphic Functions, Clarendon Press, Oxford, 1964.

[4] I. Lahiri, Weighted sharing and uniqueness of meromorphic functions, Nagoya Math. J. 161 (2001), 193–206.

[5] I. Lahiri and N. Mandal, Small functions and uniqueness of meromorphic functions, J. Math. Anal. Appl. 340
(2008), no. 2, 780—792.

[6] I. Laine, Nevanlinna Theory and Complex Differential Equations, Walter de Gruyter, Berlin/New York, 1993.

[7] F. Liu, X.M. Li, and H.X. Yi, Value distribution of L-functions concerning shared values and certain differential
polynomials, Proc. Japan Acad. Ser. A Math. Sci. 93 (2017), no. 5, 41–46.

[8] X.M. Li, F. Liu, and H.X. Yi, Results on L-functions of certain differential polynomials sharing one finite value,
Filomat 33(2019), no. 18, 5767–5776.

[9] B.Q. Li, A result on value distribution of L-functions, Proc. Amer. Math. Soc. 138 (2010), no. 6, 2071–2077.

[10] N. Mandal and N.K. Datta, Uniqueness L-function and its certain differential monomial concerning small func-
tions, J. Math. Comput. Sci. 10 (2020), no. 5, 2155–2163,

[11] N. Mandal and N.K. Datta, Uniqueness of difference-differential polynomials of L-functions concerning weighted
sharing, Int. J. Appl. Math. 34 (2021), no. 3, 471–483.

[12] P. Sahoo, Meromorphic functions that share fixed points with finite weights, Bull. Math. Anal. 2 (2010), no. 4,
106–118

[13] A. Selberg, Old and new conjectures and results about a class of Dirichlet series, Proc. Amalfi Conf. Analytic
Number Theory (Maiori, 1989), E. Bombieri et al. (eds.), Collected papers, Vol. II, Springer-Verlag, 1991, pp.
47–63.

[14] J. Steuding, Value-Distribution of L-Functions, Lecture Notes in Mathematics, 1877, Springer, Berlin, 2007.

[15] C.C. Yang and H.X. Yi, Uniqueness Theory of Meromorphic Functions, Mathematics and its Applications, 557,
Kluwer Academic Publishers Group, Dordrecht, 2003.

[16] L. Yang, Value Distribution Theory, Springer-Verlag, Berlin Heidelberg, 1993.

[17] J. Xu and X. Zhang, The zeros of q-shift difference polynomials of meromorphic functions, Adv. Differ. Equ. 2012
(2012), 1–10.


	Introduction, Definitions and Results
	Lemmas
	Proof of the Theorem 1.8
	Proof of the Theorem 1.9

