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FURTHER GROWTH OF ITERATED ENTIRE FUNCTIONS IN
TERMS OF ITS MAXIMUM TERM

RATAN KUMAR DUTTA

Abstract. In this article we consider relative iteration of entire functions and
study comparative growth of the maximum term of iterated entire functions with
that of the maximum term of the related functions.

1. Introduction

Let f(z) =
∑∞

n=0 anz
n be an entire function defined in the open complex plane C.

Then M(r, f) = max|z|=r |f(z)| and µ(r, f) = maxn |an|rn are respectively called the
maximum modulus and maximum term of f(z) on |z| = r. The following definition
are well known.

Definition 1.1. The order ρf and lower order λf of an entire function f is defined
as

ρf = lim sup
r→∞

log logM(r, f)

log r
and

λf = lim inf
r→∞

log logM(r, f)

log r
.

Notation 1.2. [4] log[0]x = x, exp[0]x = x and for positive integer m, log[m]x =
log(log[m−1]x), exp[m]x = exp(exp[m−1]x).

A simple but useful relation between M(r, f) and µ(r, f) is the following theorem.

Theorem 1.3. [5] For 0 ≤ r < R,

µ(r, f) ≤M(r, f) ≤ R

R− r
µ(R, f).

Taking R = 2r, for all sufficiently large values of r,

µ(r, f) ≤M(r, f) ≤ 2µ(2r, f). (1.1)

Taking two times logarithms in (1.1) it is easy to verify that

ρf = lim sup
r→∞

log[2] µ(r, f)

log r

Date: Received: February 2011; Accepted: June 2011.
2000 Mathematics Subject Classification. 30D20.
Key words and phrases. Entire functions, Maximum term, Maximum modulus, Iteration, Order,

Lower order.
86



FURTHER GROWTH OF ITERATED ENTIRE FUNCTIONS ... 87

and

λf = lim inf
r→∞

log[2] µ(r, f)

log r
.

In 1997 Lahiri and Banerjee [3] form the iterations of f(z) with respect to g(z) as
follows:

f1(z) = f(z)

f2(z) = f(g(z)) = f(g1(z))

f3(z) = f(g(f(z))) = f(g2(z)) = f(g(f1(z)))

.... .... ....

fn(z) = f(g(f........(f(z) or g(z))........)),

according as n is odd or even,

and so

g1(z) = g(z)

g2(z) = g(f(z)) = g(f1(z))

g3(z) = g(f2(z)) = g(f(g(z)))

.... ....

gn(z) = g(fn−1(z)) = g(f(gn−2(z))).

Clearly all fn(z) and gn(z) are entire functions.

In this paper we study growth properties of the maximum term of iterated entire
functions as compared to the growth of the maximum term of the related function
to generalize some earlier results. Throughout the paper we denote by f(z), g(z)
etc. non-constant entire functions of order (lower order) ρf (λf ), ρg(λg) etc. We do
not explain the standard notations and definitions of the theory of entire functions
as those are available in [2], [6] and [7].

2. Lemmas

The following lemmas will be needed in the sequel.

Lemma 2.1. [1] If f and g are any two entire functions, for all sufficiently large
values of r,

M

(
1

8
M
(r

2
, g
)
− |g(0)|, f

)
≤M(r, fog) ≤M(M(r, g), f)

Lemma 2.2. If ρf and ρg are finite, then for any ε > 0,

log[n] µ(r, fn) ≤
{

(ρf + ε) logM(r, g) +O(1) when n is even
(ρg + ε) logM(r, f) +O(1) when n is odd

for all sufficiently large values of r.
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Proof. First suppose that n is even. Then in view of (1.1) and by Lemma 2.1 it
follows that for all sufficiently large values of r,

µ(r, fn) ≤ M(r, fn)

≤ M(M(r, gn−1), f)

i.e., log µ(r, fn) ≤ logM(M(r, gn−1), f)

≤ [M(r, gn−1)]
ρf+ε.

So, log[2] µ(r, fn) ≤ (ρf + ε) logM(r, g(fn−2))

≤ (ρf + ε)[M(r, fn−2)]
ρg+ε.

i.e., log[3] µ(r, fn) ≤ (ρg + ε) logM(r, fn−2) +O(1).

.... .... .... ....

.... .... .... ....

Therefore log[n] µ(r, fn) ≤ (ρf + ε) logM(r, g) +O(1).

Similarly if n is odd then for all sufficiently large values of r

log[n] µ(r, fn) ≤ (ρg + ε) logM(r, f) +O(1).

This proves the lemma. �

Lemma 2.3. If λf , λg are non-zero finite, then

log[n] µ(r, fn) >

{
(λf − ε) logM(r, g) +O(1) when n is even
(λg − ε) logM(r, f) +O(1) when n is odd.

Proof. First suppose that n is even. Let ε(> 0) be such that ε < min{λf , λg}. Now
we have from {[5], p-113} for all sufficiently large values of r,

µ(r, fog) > e[M(r,g)]
λf−ε

.

So, log µ(r, fog) > [M(r, g)]λf−ε. (2.1)

Now

log µ(r, fn) = log µ(r, f(gn−1))

> [M(r, gn−1)]
λf−ε using (2.1)

≥ [µ(r, gn−1)]
λf−ε from (1.1).

∴ log[2] µ(r, fn) > (λf − ε) log µ(r, g(fn−2))

> (λf − ε)[M(r, fn−2)]
λg−ε using (2.1).

∴ log[3] µ(r, fn) > (λg − ε) log[µ(r, fn−2)] +O(1)

> (λg − ε)[M(r, gn−3)]
λf−ε +O(1).

Taking repeated logarithms

log[n−1]µ(r, fn) ≥ (λg − ε)[M(r, g)]λf−ε +O(1).

∴ log[n] µ(r, fn) ≥ (λf − ε) logM(r, g) +O(1).

Similarly,

log[n] µ(r, fn) ≥ (λg − ε) logM(r, f) +O(1) when n is odd.
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This proves the lemma. �

3. Theorems

Theorem 3.1. Let f and g be two non constant entire functions such that 0 <
λf ≤ ρf <∞ and 0 < λg ≤ ρg <∞. Then for any positive number A and every real
number α

(i) lim
r→∞

log[n] µ(r, fn)

{log log µ(rA, f)}1+α
=∞,

and

(ii) lim
r→∞

log[n] µ(r, fn)

{log log µ(rA, g)}1+α
=∞.

Proof. If α ≤ −1 then the theorem is trivial. So we suppose that α > −1 and n
is even. Then from Lemma 2.3 we get for all sufficiently large values of r and any
ε (0 < ε <min{λf , λg})

log[n] µ(r, fn) ≥ (λf − ε) logM (r, g) +O(1)

≥ (λf − ε)rλg−ε +O(1). (3.1)

Again from Definition 1.1 it follows that for any ε > 0 and for all large values of r,

{log log µ(rA, f)}1+α < (ρf + ε)1+αA1+α(log r)
1+α

. (3.2)

From (3.1) and (3.2) we have for all large values of r and any ε (0 < ε <min{λf , λg})

log[n] µ(r, fn)

{log log µ(rA, f)}1+α
≥ (λf − ε)rλg−ε +O(1)

(ρf + ε)1+αA1+α(log r)1+α

≥ (λf − ε)
(ρf + ε)1+αA1+α

rλg−ε

(log r)1+α
+ o(1).

Since ε > 0 is arbitrary,

∴ lim
r→∞

log[n] µ(r, fn)

{log log µ(rA, f)}1+α
=∞. (3.3)

Similarly for odd n we get

log[n] µ(r, fn) ≥ (λg − ε)rλf−ε +O(1). (3.4)

So from (3.2) and (3.4) we have the equation (3.3) for odd n.
Therefore for all n the statement (i) follows.

Second part of this theorem follows similarly by using the following inequality
instead of (3.2)

{log log µ(rA, g)}1+α < (ρg + ε)1+αA1+α(log r)
1+α

for all large values of r and arbitrary ε > 0.
This proves the theorem. �
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Theorem 3.2. Let f and g be two entire functions of finite orders and λf , λg > 0.
Then for p > 0 and each α ∈ (−∞,∞)

(i) lim
r→∞

{log[n] µ(r, fn)}1+α

log log µ(exp(rp), f)
= 0 if p > (1 + α)ρg and n is even,

(ii) lim
r→∞

{log[n] µ(r, fn)}1+α

log log µ(exp(rp), f)
= 0 if p > (1 + α)ρf and n is odd.

Proof. If α ≤ −1 then the theorem is trivial. So we suppose that α > −1 and n
is even. Then from Lemma 2.2 we get for all sufficiently large values of r and any
ε > 0

log[n] µ(r, fn) ≤ (ρf + ε) logM(r, g) +O(1)

≤ (ρf + ε)rρg+ε +O(1). (3.5)

Again from Definition 1.1 it follows that for any 0 < ε < λf and for all large values
of r,

log log µ(exp(rp), f) > (λf − ε)rp. (3.6)

So from (3.5) and (3.6) we have for all large vales of r and any ε (0 < ε < λf )

{log[n] µ(r, fn)}1+α

log log µ(exp(rp), f)
≤ (ρf + ε)1+αr(1+α)(ρg+ε)

(λf − ε)rp
+ o(1).

Since ε > 0 is arbitrary, we can choose ε such that 0 < ε <min{λf , p
1+α
− ρg},

∴ lim
r→∞

{log[n] µ(r, fn)}1+α

log log µ(exp(rp), f)
= 0.

Similarly when n is odd then we get the second part of this theorem.
This proves the theorem. �

Theorem 3.3. Let f and g be two entire functions of finite orders and λf , λg > 0.
Then for p > 0 and each α ∈ (−∞,∞)

(i) lim
r→∞

{log[n] µ(r, fn)}1+α

log log µ(exp(rp), g)
= 0 if p > (1 + α)ρg and n is even,

(ii) lim
r→∞

{log[n] µ(r, fn)}1+α

log log µ(exp(rp), g)
= 0 if p > (1 + α)ρf and n is odd.
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