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COMMON FIXED POINTS OF FOUR MAPS USING
GENERALIZED WEAK CONTRACTIVITY AND

WELL-POSEDNESS

MOHAMED AKKOUCHI 1 ∗

Abstract. In this paper, we introduce the concept of generalized φ-contractivity
of a pair of maps w.r.t. another pair. We establish a common fixed point result for
two pairs of self-mappings, when one of these pairs is generalized φ-contraction
w.r.t. the other and study the well-posedness of their fixed point problem. In
particular, our fixed point result extends the main result of a recent paper of
Qingnian Zhang and Yisheng Song.

1. Introduction

The concept of the weak contraction was defined by Alber and Guerre-Delabriere
[1] in 1997. Actually in [1], the authors defined such mappings for single-valued
maps on Hilbert spaces and proved the existence of fixed points.

Definition 1.1. Let (X, d) be a metric space and S be self-mapping of X. Let
φ : [0,∞) → [0,∞) be a function such that φ(0) = 0 and φ is positive on (0,∞).
We say that T is a φ-weak contraction if we have

d(Tx, Ty) ≤ d(fx, fy)− φ(d(fx, fy)) (1.1)

for all x, y in X

Rhoades [9] showed that most results of [1] are still true for any Banach space.
Also Rhoades [9] proved the following important fixed point theorem which is one
of generalizations of the Banach contraction principle [3], because it contains con-
tractions as special case (φ(t) = (1− k)t).

Theorem 1.2. (Rhoades [[9], Theorem 2]). Let (X, d) be a complete metric space,
and let T be a φ-weak contraction on X. If φ : [0,∞) → [0,∞) is a continuous and
nondecreasing function such that φ(0) = 0 and φ is positive on (0,∞), then T has
a unique fixed point.

Two generalizations of this result were given by I. Beg and M. Abbas in [4] and
by A. Azam and M. Shakeel in [2].
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Recently, this theorem was recently extended by Qingnian Zhang and Yisheng
Song (see [12]) to the context of generalized weak contractions. More precisely, the
following result was established in [12].

Theorem 1.3. ([12]) Let (X, d) be a complete metric space and S, T : X → X be
self-mappings of X such that

d(Tx, Sy) ≤ N(x, y)− φ(N(x, y)), ∀ x, y ∈ X, (1.2)

where φ : [0,∞) → [0,∞) is a lower semi-continuous function with φ(t) > 0 for all
t ∈ (0,∞) and φ(0) = 0 and

N(x, y) = max{d(x, y), d(Tx, x), d(Sy, y),
1

2
[d(y, Tx) + d(x, Sy)]}.

Then there exists a unique point u ∈ X such that u = Tu = Su.

In this paper, we introduce the concept of a pair of mappings which is generalized
weakly contractive w.r.t. another pair of mappings by means of a function φ in
the class Φ of functions considered in Theorem 1.3. We establish a common fixed
point result for two pairs of self-mappings, when one of these pairs is generalized
φ-contraction w.r.t. the other and study the well-posedness of their fixed point
problem. In particular, our fixed point result (see Theorem 2.4 below) extends
Theorem 1.3 of Qingnian Zhang and Yisheng Song (see [12]).

The main result of the second section is Theorem 2.4.

In the third section, we study the well-posedness of the common fixed point prob-
lem for two pairs of self-mappings of a metric space such that one of them is φ-weakly
contractive w.r.t. the other. The main result of this section is Theorem 3.3.

2. Coincidence and common fixed points

We start with some definitions.

Definition 2.1. Let X be a nonempty set and S, T self-mappings on X.
A point x ∈ X is called a coincidence point of S and T if Sx = Tx.
A point w ∈ X is called a point of coincidence of S and T if there exists a

coincidence point x ∈ X of S and T such that w = Sx = Tx.
S and T are weakly compatible if they commute at their coincidence points, that

is if STx = TSx, whenever Sx = Tx.

We recall that the concept of weak compatibility was introduced by Jungck and
Rhoades [6].

Definition 2.2. Let Φ be the set of functions φ : [0,∞) → [0,∞) satisfying the
following properties:
(φ1): φ is lower semi-continuous.
(φ2): φ(0) and φ(t) > 0 for all t > 0.

Definition 2.3. Let (X, d) be a metric space. Let S, T, I, J : X → X be four
self-mappings of X.

Let φ ∈ Φ. The pair (S, T ) is called generalized φ-weakly contractive with respect
to the pair (I, J) if we have

d(Sx, Ty) ≤ M(x, y)− φ(M(x, y)), (2.1)
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for all x, y in X, where

M(x, y) := max{d(Ix, Jy), d(Ix, Sx), d(Jy, Ty),
1

2
[d(Ix, Ty) + d(Jy, Sx)]}.

The pair (S, T ) is called generalized weakly contractive with respect to the pair
(I, J) if it is generalized φ-weakly contractive with respect to (I, J) with some φ ∈ Φ.

We observe that if I = J = IdX is the identity mapping, then N(x, y) = M(x, y)
for all x, y ∈ X.

The main result of this section reads as follows.

Theorem 2.4. Let (X, d) be a metric space and let S, T, I, J be four self-mappings
of X. Let φ ∈ Φ.

We suppose that:
(H1) : The pair (S, T ) is generalized φ-weakly contractive with respect to the pair
(I, J), that is

d(Sx, Ty) ≤ M(x, y)− φ(M(x, y)), (2.2)

for all x, y in X.
(H2) : S(X) ⊂ J(X) and T (X) ⊂ I(X).
(H3) : One of the subsets S(X), T (X), I(X) or J(X) is a complete subspace of X.

Then,
a) the pair {S, I} has a point of coincidence,
b) the pair {T, J} has a point of coincidence.
Moreover, if the pairs {S, I} and {T, J} are weakly compatible, then the mappings

S, T, I and J have a unique common fixed point in X.

Proof. Let x0 be an arbitrary point in X. Set y0 = Sx0. Since S(X) ⊂ J(X), then
we can find a point x1 ∈ X such that y0 = Sx0 = Jx1. Set y1 = Tx1. Since
T (X) ⊂ I(X), then there exists a point x2 ∈ X such that y1 = Tx1 = Ix2.
By induction, we construct two sequences (xn) and (yn) in X satisfying for each
nonnegative integer n,

y2n = Sx2n = Jx2n+1 and y2n+1 = Tx2n+1 = Ix2n+2 (2.3)

To simplify notation, for each non negative integer n, we set tn := d(yn, yn+1).

For all nonnegative integer n we have

t2n+1 = d(y2n+2, y2n+1) = d(Sx2n+2, Tx2n+1)

≤ M(x2n+2, x2n+1)− φ(M(x2n+2, x2n+1))

= max{t2n, t2n+1,
1

2
d(y2n, y2n+2)} − φ(max{t2n, t2n+1,

1

2
d(y2n, y2n+2)}). (2.4)

Since 1
2
d(y2n, y2n+2) ≤ 1

2
(t2n + t2n+1), then

max{t2n, t2n+1,
1

2
d(y2n, y2n+2)} = max{t2n, t2n+1}.

Suppose that t2n < t2n+1. Then by (2.4) we obtain

0 < t2n+1 ≤ t2n+1 − φ(t2n+1) < t2n+1,

a contradiction. Thus t2n ≥ t2n+1, and

0 < t2n+1 ≤ t2n − φ(t2n).
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By similar arguments, we obtain

t2n+2 ≤ t2n+1 − φ(t2n+1) ≤ t2n+1.

We conclude that for all nonnegative integer n, we have

tn+1 ≤ tn − φ(tn) ≤ tn. (2.5)

The sequence {tn} is nonincreasing, so it converges to a limit (say) t ≥ 0. Since φ
is lower semi-continuous, then

φ(t) ≤ lim inf
n→∞

φ(tn) ≤ lim
n→∞

(tn − tn+1) = 0.

Thus 0 ≤ φ(t) ≤ 0, which implies that φ(t) = 0. By property (φ2), we obtain t = 0.

Let us show that {yn} is a Cauchy sequence. Since limn→∞ d(yn, yn+1) = 0, then
we need only to show that {y2n} is a Cauchy sequence. To get a contradiction, let
us suppose that there is a number ε > 0 and two sequences {2n(k)}, {2m(k)} with
2k ≤ 2m(k) < 2n(k), (k ∈ N) verifying

d(y2n(k), y2m(k)) > ε. (2.6)

For each integer k, we shall denote 2n(k) the least even integer exceeding 2m(k) for
which (2.6) holds. Then we have

d(y2m(k), y2n(k)−2) ≤ ε and d(y2m(k), y2n(k)) > ε. (2.7)

For each integer k, we set pk := d(y2m(k), y2n(k)), then we have

ε < pk = d(y2m(k), y2n(k))

≤ d(y2m(k), y2n(k)−2) + d(y2n(k)−2, y2n(k)−1) + d(x2n(k)−1, y2n(k))

≤ ε + t2n(k)−2 + t2n(k)−1. (2.8)

Since the sequence {tn} converges to 0, we deduce from (2.8) that {pk} converges
to ε. For every integer k ∈ N we set

qk := d(y2m(k)+1, y2n(k)+2), rk := d(y2m(k), y2n(k)+1),

sk := d(y2m(k)+1, y2n(k)+1), vk := d(y2m(k), y2n(k)+2).

By using the triangle inequality, for all integer k, we obtain the following estimates:

| rk − pk | ≤ t2n(k) ≤ tk,

| rk − sk | ≤ t2m(k) ≤ tk,

| sk − qk | ≤ t2n(k)+1 ≤ tk,

| vk − qk | ≤ t2m(k) ≤ tk.

Since the sequence {tn} converges to 0, we deduce that the sequences: {qk}, {rk},
{sk} and {vk} converge to ε.

For all nonnegative integer k, we have

M(x2n(k)+2, x2m(k)+1)

= max{d(y2n(k)+1, y2m(k)), d(y2n(k)+1, y2n(k)+2),

d(y2m(k), y2m(k)+1), d(y2n(k)+1, y2m(k)+1), d(y2m(k), y2n(k)+2)}
= max{rk, t2n(k)+1, t2m(k), sk, vk}.
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Then, by using the condition (2.1), for every non negative integer k, we have the
following estimates:

qk = d(y2n(k)+2, y2m(k)+1) = d(Sx2n(k)+2, Tx2m(k)+1)

≤ M(x2n(k)+2, x2m(k)+1)− φ(M(x2n(k)+2, x2m(k)+1))

≤ max{rk, t2n(k)+1, t2m(k), sk, vk} − φ(max{rk, t2n(k)+1, t2m(k), sk, vk}).

Then, we obtain

φ(max{rk, t2n(k)+1, t2m(k), sk, vk}) ≤ max{rk, t2n(k)+1, t2m(k), sk, vk} − qk.

Letting k tend to ∞ and using the lower semicontinuity of φ, we get

φ(ε) ≤ lim inf
k→∞

φ(max{rk, t2n(k)+1, t2m(k), sk, vk})

≤ lim
k→∞

(max{rk, t2n(k)+1, t2m(k), sk, vk} − qk) = 0,

which implies φ(ε) = 0 a contradiction to property (φ2). Thus {yn} is a Cauchy
sequence.

Suppose that J(X) is a complete subspace of X, Since M is complete, then the
sequence {yn} converges to a point (say) z ∈ J(X). Thus we have

z = lim
n→∞

Sx2n = lim
n→∞

Jx2n+1 = lim
n→∞

Tx2n+1 = lim
n→∞

Ix2n. (2.9)

Let u ∈ X such that z = Ju. By inequality (2.1), we obtain

d(y2n, Tu) = d(Sx2n, Tu)

≤ M(x2n, u)− φ(d(x2n, u))

= max{d(Ix2n, z), d(Ix2n, Sx2n), d(z, Tu),
1

2
[d(Ix2n, Tu) + d(z, Sx2n)]}

− φ(max{d(Ix2n, z), d(Ix2n, Sx2n), d(z, Tu),
1

2
[d(Ix2n, Tu) + d(z, Sx2n)]}),

from which, we get

φ(max{d(Ix2n, z), d(Ix2n, Sx2n), d(z, Tu),
1

2
[d(Ix2n, Tu) + d(z, Sx2n)]})

≤ max{d(Ix2n, z), d(Ix2n, Sx2n), d(z, Tu),
1

2
[d(Ix2n, Tu) + d(Sx2n, z)]}− d(y2n, Tu).

By letting n tend to infinity and using lower semi-continuity, we obtain

φ(d(z, Tu))

≤ lim inf
n→∞

φ(max{d(Ix2n, z), d(Ix2n, Sx2n), d(z, Tu),
1

2
[d(Ix2n, Tu) + d(z, Sx2n)]})

≤ φ(d(z, Tu))− d(z, Tu),

which implies that d(z, Tu). Hence we have z = Ju = Tu. Since T (X) ⊂ I(X),
then there exists w ∈ X such that z = Tu = Iw. By using inequality (2.1), we have

d(Sw, z) = d(Sw, Tu) ≤ M(w, u)− φ(M(w, u)).
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Since

M(w, u)

= max{d(Iw, Ju), d(Iw, Sw), d(Ju, Tu),
1

2
[d(Iw, Tu) + d(Ju, Sw)]}

= max{0, d(z, Sw), 0,
1

2
[d(z, Sw)]}

= d(z, Sw).

We deduce that

d(Sw, z) ≤ d(z, Sw)− φ(d(z, Sw)),

from which, we get φ(d(z, Sw)) = 0, which implies that d(Sw, z) = 0, thus z =
Sw = Iw. We conclude that

Sw = Iw = z = Ju = Tu. (2.10)

So the conclusions a) and b) are obtained. By similar arguments, the same conclu-
sions will be obtained if we suppose that one of S(X), T (X) or I(X) is a complete
subspace of X.

Suppose that the pairs {S, I} and {T, J} are weakly compatible, then by (2.10),
we have

Sz = Iz and Tz = Jz.

Since

M(w, z)

= max{d(Iw, Jz), d(Iw, Sw), d(Jz, Tz),
1

2
[d(Iw, Tz) + d(Jz, Sw)]}

= max{d(z, Jz), 0, 0,
1

2
[d(z, Tz) + d(Jz, z)]}

= d(z, Tz),

then by inequality (2.1), we obtain

d(z, Tz) = d(Sw, Tz) ≤ M(w, z)− φ(M(w, z)) = d(z, Tz)− φ(d(z, Tz)),

which implies that φ(d(z, Tz)) = 0. Thus, by property (φ2), we obtain d(z, Tz) = 0.
So we have z = Tz = Jz.

Again, by inequality (2.1), we obtain

d(Sz, z) = d(Sz, Tz) ≤ M(z, z)− φ(M(z, z)) = d(Sz, z)− φ(d(Sz, z)).

Hence φ(d(Sz, z)) = 0, which by property (φ2), implies that d(Sz, z) = 0. So we
have z = Sz = Iz. Thus z is a common fixed point of the mappings S, T, I and J .

Let q be another common fixed point of the mappings S, T, I and J . Then, by
using the inequality (2.1), we obtain

d(z, q) = d(Sz, Tq) ≤ M(z, q)− φ(d(z, q)) = d(z, q)− φ(d(z, q)),

which gives φ(d(z, q)) = 0. By property (φ2), we conclude that z = q. This com-
pletes the proof. �
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3. Well-posedness

The notion of well-posednes of a fixed point problem has evoked much interest
to a several mathematicians, for examples, F.S. De Blasi and J. Myjak (see [5]), S.
Reich and A. J. Zaslavski (see [8]), B.K. Lahiri and P. Das (see [7]) and V. Popa
(see [10] and [11]).

Definition 3.1. Let (X, d) be a metric space and T : (X, d) → (X, d) a mapping.
The fixed point problem of T is said to be well posed if:

(a) T has a unique fixed point z in X;
(b) for any sequence {xn} of points in X such that limn→∞ d(Txn, xn) = 0, we

have limn→∞ d(xn, z) = 0.

For a set of mappings, it is natural to introduce the following definition.

Definition 3.2. Let (X, d) be a metric space and let T be a set of self-mappings
of X. The fixed point problem of T is said to be well-posed if:

(a) T has a unique fixed point z in X;
(b) for any sequence {xn} of points in X such that

lim
n→∞

d(Txn, xn) = 0, ∀T ∈ T ,

we have limn→∞ d(xn, z) = 0.

Concerning the well-posedness of the common fixed point problem for four map-
pings satisfying the conditions of Theorem 2.4, we have the following result.

Theorem 3.3. Let (X, d) be a metric space and let S, T, I, J be four self-mappings
of X. Let φ ∈ Φ.

We suppose that:
(H1) : The pair (S, T ) is φ-weakly contractive with respect to the pair (I, J), that is

d(Sx, Ty) ≤ M(x, y)− φ(M(x, y)), (3.1)

for all x, y in X.
(H2) : S(X) ⊂ J(X) and T (X) ⊂ I(X).
(H3) : The pairs {S, I} and {T, J} are weakly compatible.
(H4) : One of the subsets S(X), T (X), I(X) or J(X) is a complete subspace of X.
(H5) : The function φ is nondecrasing on [0,∞).

Then, the common fixed point problem for the set of mappings {S, T, I, J} is well-
posed.

Proof. We know, by Theorem 2.4, that the mappings S, T, I and J have a unique
common fixed point (say) z ∈ X. Let {xn} of points in X such that

lim
n→∞

d(Sxn, xn) = lim
n→∞

d(Txn, xn) = lim
n→∞

d(Ixn, xn) = lim
n→∞

d(Txn, xn) = 0. (3.2)

We observe that for all nonnegative integer n, we have

M(z, xn)

= max{d(z, Jxn), d(Jxn, Txn), 1
2
[d(z, Txn) + d(Jxn, z)]}

≤ d(z, xn) + d(xn, Jxn) + d(xn, Txn).



80 MOHAMED AKKOUCHI

By the triangle inequality and inequality (3.1), we have

d(z, xn) ≤ d(Sz, Txn) + d(Txn, xn)

≤ M(z, xn)− φ(M(z, xn)) + d(Txn, xn)

≤ d(z, xn) + d(xn, Jxn) + 2d(Txn, xn)− φ(M(z, xn)).

We deduce that
φ(M(z, xn)) ≤ d(xn, Jxn) + 2d(Txn, xn). (3.3)

Thus we have
lim

n→∞
φ(M(z, xn)) = 0. (3.4)

To get a contradiction, let us suppose that the sequence {xn} does not converge to
z. Then the sequence {Jxn} does not converge to z. Then, there exists a positive
number ε > 0 and a subsequence {xnk

} such that

d(z, Jxnk
) ≥ ε, for all integer k. (3.5)

Since φ is nondecreasing, from (3.3) and (3.5), we obtain

φ(ε) ≤ φ(d(z, Jxnk
)) ≤ φ(M(z, Jxnk

)) ≤ d(xnk
, Jxnk

) + 2d(Txnk
, xnk

).

By letting k to infinity, we get
φ(ε) = 0,

a contradiction to the property (φ2). This completes the proof. �

As a consequence, we have the following improvement to Theorem 1.3 of [12].

Corollary 3.4. Let (X, d) be a complete metric space and S, T : X → X be self
mappings of X such that

d(Tx, Sy) ≤ N(x, y)− φ(N(x, y)), ∀ x, y ∈ X. (1.2)

where φ : [0,∞) → [0,∞) is a lower semi-continuous function with φ(t) > 0 for all
t ∈ (0,∞) and φ(0) = 0 and

N(x, y) = max{d(x, y), d(Tx, x), d(Sy, y),
1

2
[d(y, Tx) + d(x, Sy)]}.

Then, there exists a unique point u ∈ X such that u = Tu = Su.
Moreover, if φ is nondcreasing then the common fixed point problem for the pair

{S, T} is well-posed.
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