NON-ARCHIMEDEAN STABILITY OF CAUCHY-JENSEN TYPE FUNCTIONAL EQUATION

H. AZADI KENARY

Abstract

In this paper we investigate the generalized Hyers-Ulam stability of the following Cauchy-Jensen type functional equation $$
Q\left(\frac{x+y}{2}+z\right)+Q\left(\frac{x+z}{2}+y\right)+Q\left(\frac{z+y}{2}+x\right)=2[Q(x)+Q(y)+Q(z)]
$$ in non-Archimedean spaces .

1. Introduction

A classical question in the theory of functional equations is the following: When is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?
If the problem accepts a solution, we say that the equation is stable. The first stability problem concerning group homomorphisms was raised by Ulam [35] in 1940. In the next year, Hyres [11] gave a positive answer to the above question for additive groups under the assumption that the groups are Banach spaces. In 1978, Rassias [30] proved a generalization of Hyres's theorem for additive mappings. The result of Rassias has influenced the development of what is now called the Hyers-Ulam-Rassias stability problem for functional equations. In 1994, a generalization of Rassias's theorem was obtained by Gǎvruta [9] by replacing the bound $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\phi(x, y)$.
The functional equation

$$
Q(x+y)+Q(x-y)=2 Q(x)+2 Q(y)
$$

is called a quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a quadratic mapping. In 1983, a generalized Hyers-Ulam stability problem for the quadratic functional equation was proved by Skof [34] for mappings $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. In 1984, Cholewa [5] noticed that the theorem of Skof is still true if the relevant domain X is replaced by an Abelian group and, in 2002, Czerwik [6] proved the generalized Hyers-Ulam stability of the quadratic functional equation.

[^0]The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem ([1]- [4], [8], [12]-[15], [18]- [26],[28]- [24]).
In 1897, Hensel [10] has introduced a normed space which does not have the Archimedean property. It turned out that non-Archimedean spaces have many nice applications (see [7], [16], [17], [27]).

2. Preliminaries

A valuation is a function $|\cdot|$ from a field \mathbb{K} into $[0, \infty)$ such that 0 is the unique element having the 0 valuation, $|r s|=|r||s|$ and the triangle inequality holds, i.e.,

$$
|r+s| \leq \max \{|r|,|s|\} .
$$

A field \mathbb{K} is called a valued field if \mathbb{K} carries a valuation. The usual absolute values of \mathbb{R} and \mathbb{C} are examples of valuations.
Let us consider a valuation which satisfies a stronger condition than the triangle inequality. If the triangle inequality is replaced by

$$
|r+s| \leq \max \{|r|,|s|\}
$$

for all $r, s \in \mathbb{K}$, then the function $|\cdot|$ is called a non-Archimedean valuation and the field is called a non-Archimedean field. Clearly, $|1|=|-1|=1$ and $|n| \leq 1$ for all $n \geq 1$. A trivial example of a non-Archimedean valuation is the function $|\cdot|$ taking everything except for 0 into 1 and $|0|=0$.

Definition 2.1. Let X be a vector space over a field \mathbb{K} with a non-Archimedean valuation $|\cdot|$. A function $\|\cdot\|: X \rightarrow[0, \infty)$ is called a non-Archimedean norm if the following conditions hold:
(a) $\|x\|=0$ if and only if $x=0$ for all $x \in X$;
(b) $\|r x\|=|r|\|x\|$ for all $r \in \mathbb{K}$ and $x \in X$;
(c) the strong triangle inequality holds:

$$
\|x+y\| \leq \max \{\|x\|,\|y\|\}
$$

for all $x, y \in X$. Then $(X,\|\cdot\|)$ is called a non-Archimedean normed space.
Definition 2.2. Let $\left\{x_{n}\right\}$ be a sequence in a non-Archimedean normed space X.
(a) A sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ in a non-Archimedean space is a Cauchy sequence iff, the sequence $\left\{x_{n+1}-x_{n}\right\}_{n=1}^{\infty}$ converges to zero.
(b) The sequence $\left\{x_{n}\right\}$ is said to be convergent if, for any $\varepsilon>0$, there are a positive integer N and $x \in X$ such that

$$
\left\|x_{n}-x\right\| \leq \varepsilon
$$

for all $n \geq N$. Then the point $x \in X$ is called the limit of the sequence $\left\{x_{n}\right\}$, which is denote by $\lim _{n \rightarrow \infty} x_{n}=x$.
(c) If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-Archimedean Banach space.
Definition 2.3. Let X be a set. A function $d: X \times X \rightarrow[0, \infty]$ is called a generalized metric on X if d satisfies the following conditions:
(a) $d(x, y)=0$ if and only if $x=y$ for all $x, y \in X$;
(b) $d(x, y)=d(y, x)$ for all $x, y \in X$;
(c) $d(x, z) \leq d(x, y)+d(y, z)$ for all $x, y, z \in X$.

Theorem 2.4. Let (X, d) be a complete generalized metric space and $J: X \rightarrow X$ be a strictly contractive mapping with Lipschitz constant $L<1$. Then, for all $x \in X$, either

$$
\begin{equation*}
d\left(J^{n} x, J^{n+1} x\right)=\infty \tag{2.1}
\end{equation*}
$$

for all nonnegative integers n or there exists a positive integer n_{0} such that
(a) $d\left(J^{n} x, J^{n+1} x\right)<\infty$ for all $n_{0} \geq n_{0}$;
(b) the sequence $\left\{J^{n} x\right\}$ converges to a fixed point y^{*} of J;
(c) y^{*} is the unique fixed point of J in the set $Y=\left\{y \in X: d\left(J^{n_{0}} x, y\right)<\infty\right\}$;
(d) $d\left(y, y^{*}\right) \leq \frac{1}{1-L} d(y, J y)$ for all $y \in Y$.

In [25], Nejati introduced the following functional equation:

$$
\begin{equation*}
Q\left(\frac{x+y}{2}+z\right)+Q\left(\frac{x+z}{2}+y\right)+Q\left(\frac{z+y}{2}+x\right)=2[Q(x)+Q(y)+Q(z)] . \tag{2.2}
\end{equation*}
$$

In this paper, we prove the generalized Hyers-Ulam stability of functional equation (2.2) in non-Archimedean spaces.

3. Non-Archimedean Stability of Eq. (2.2): Direct Method

Theorem 3.1. Let $\zeta: G^{3} \rightarrow[0,+\infty)$ be a mapping such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right)=0 \tag{3.1}
\end{equation*}
$$

for all $x, y, z \in G$ and let for each $x \in G$ the limit

$$
\begin{equation*}
\Theta(x)=\lim _{n \rightarrow \infty} \max \left\{|2|^{k} \zeta\left(\frac{x}{2^{k}}, \frac{x}{2^{k}}, \frac{x}{2^{k}}\right) ; 0 \leq k<n\right\} \tag{3.2}
\end{equation*}
$$

exists. Suppose that $Q: G \rightarrow X$ is a mapping satisfies

$$
\begin{align*}
& \| Q\left(\frac{x+y}{2}+z\right)+Q\left(\frac{x+z}{2}+y\right) \tag{3.3}\\
& +Q\left(\frac{z+y}{2}+x\right)-2[Q(x)+Q(y)+Q(z)] \| \\
& \leq \zeta(x, y, z)
\end{align*}
$$

Then

$$
\begin{equation*}
\Im(x):=\lim _{n \rightarrow \infty} 2^{n} Q\left(\frac{x}{2^{n}}\right) \tag{3.4}
\end{equation*}
$$

exists for all $x \in G$ and defines an additive mapping $\Im: G \rightarrow X$ such that

$$
\begin{equation*}
\|Q(x)-\Im(x)\| \leq \Theta(x) \tag{3.5}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{|2|^{k} \zeta\left(\frac{x}{2^{k}}, \frac{x}{2^{k}}, \frac{x}{2^{k}}\right) ; j \leq k<n+j\right\}=0 \tag{3.6}
\end{equation*}
$$

then T is the unique additive mapping satisfying (3.5).
Proof. Putting $x=y=z$ in (3.11), we get

$$
\begin{equation*}
\left\|2 Q\left(\frac{x}{2}\right)-Q(x)\right\| \leq \zeta\left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right) \tag{3.7}
\end{equation*}
$$

for all $x \in G$. Replacing x by $\frac{x}{2^{n}}$ in (3.7), we obtain

$$
\begin{equation*}
\left\|2^{n+1} Q\left(\frac{x}{2^{n+1}}\right)-2^{n} Q\left(\frac{x}{2^{n}}\right)\right\| \leq|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{x}{2^{n}}, \frac{x}{2^{n}}\right) \tag{3.8}
\end{equation*}
$$

It follows from (3.1) and (3.8) that the sequence $\left\{2^{n} Q\left(\frac{x}{2^{n}}\right)\right\}_{n \geq 1}$ is a Cauchy sequence. Since X is complete, so $\left\{2^{n} Q\left(\frac{x}{2^{n}}\right)\right\}_{n \geq 1}$ is convergent. Set

$$
\Im(x):=\lim _{n \rightarrow \infty} 2^{n} Q\left(\frac{x}{2^{n}}\right) .
$$

Using induction one can show that

$$
\begin{equation*}
\left\|2^{n} Q\left(\frac{x}{2^{n}}\right)-Q(x)\right\| \leq \max \left\{|2|^{k} \zeta\left(\frac{x}{2^{k}}, \frac{x}{2^{k}}, \frac{x}{2^{k}}\right) ; 0 \leq k<n\right\} . \tag{3.9}
\end{equation*}
$$

for all $n \in \mathbb{N}$ and all $x \in G$. By taking n to approach infinity in (3.9), and using (3.2), one obtains (3.5). By (3.1) and (3.11), we get

$$
\begin{aligned}
& \left\|\Im\left(\frac{x+y}{2}+z\right)+\Im\left(\frac{x+z}{2}+y\right)+\Im\left(\frac{z+y}{2}+x\right)-2[\Im(x)+\Im(y)+\Im(z)]\right\| \\
= & \lim _{n \rightarrow \infty} \| 2^{n}\left[Q\left(\frac{x+y}{2^{n+1}}+\frac{z}{2^{n}}\right)+Q\left(\frac{x+z}{2^{n+1}}+\frac{y}{2^{n}}\right)+Q\left(\frac{z+y}{2^{n+1}}+\frac{x}{2^{n}}\right)\right] \\
- & 2^{n+1}\left[Q\left(\frac{x}{2^{n}}\right)+Q\left(\frac{y}{2^{n}}\right)+Q\left(\frac{z}{2^{n}}\right)\right] \| \\
\leq & \lim _{n \rightarrow \infty}|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right) \\
= & 0
\end{aligned}
$$

for all $x, y, z \in G$. Therefore the function $\Im: G \rightarrow X$ satisfies (2.2). To prove the uniqueness property of \Im, let $\Re: G \rightarrow X$ be another function satisfying (3.5). Then

$$
\begin{aligned}
\|\Im(x)-\Re(x)\| & =\lim _{n \rightarrow \infty}|2|^{n}\left\|\Im\left(\frac{x}{2^{n}}\right)-\Re\left(\frac{x}{2^{n}}\right)\right\| \\
& \leq \lim _{k \rightarrow \infty}|2|^{n} \max \left\{\left\|\Im\left(\frac{x}{2^{n}}\right)-Q\left(\frac{x}{2^{n}}\right)\right\|,\left\|Q\left(\frac{x}{2^{n}}\right)-\Re\left(\frac{x}{2^{n}}\right)\right\|\right\} \\
& \leq \lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{|2|^{k} \zeta\left(\frac{x}{2^{k}}, \frac{x}{2^{k}}, \frac{x}{2^{k}}\right) ; j \leq k<n+j\right\} \\
& =0
\end{aligned}
$$

for all $x \in G$. Therefore $\Im=\Re$, and the proof is complete.
Corollary 3.2. Let $\xi:[0, \infty) \rightarrow[0, \infty)$ be a mapping satisfying

$$
\begin{equation*}
\xi\left(|2|^{-1} t\right) \leq \xi\left(|2|^{-1}\right) \xi(t)(t \geq 0) \quad \xi\left(|2|^{-1}\right)<|2|^{-1} \tag{3.10}
\end{equation*}
$$

Let $\kappa>0$ and $Q: G \rightarrow X$ be a mapping satisfying

$$
\begin{align*}
& \| Q\left(\frac{x+y}{2}+z\right)+Q\left(\frac{x+z}{2}+y\right) \tag{3.11}\\
& +Q\left(\frac{z+y}{2}+x\right)-2[Q(x)+Q(y)+Q(z)] \| \\
& \leq \kappa(\xi(|x|)+\xi(|y|)+\xi(|z|)) .
\end{align*}
$$

for all $x, y, z \in G$. Then there exists a unique additive mapping $\Im: G \rightarrow X$ such that

$$
\begin{equation*}
\|Q(x)-\Im(x)\| \leq 3 \kappa \xi(|x|) \tag{3.12}
\end{equation*}
$$

Proof. Defining $\zeta: G^{3} \rightarrow[0, \infty)$ by $\zeta(x, y, z):=\kappa(\xi(|x|)+\xi(|y|)+\xi(|z|))$, then, we have

$$
\begin{align*}
\lim _{n \rightarrow \infty}|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right) & \leq \lim _{n \rightarrow \infty}\left(|2| \xi\left(|2|^{-1}\right)\right)^{n} \zeta(x, y, z) \tag{3.13}\\
& =0
\end{align*}
$$

for all $x, y, z \in G$. The last equality comes form fact that $|2| \xi\left(|2|^{-1}\right)<1$. On the other hand

$$
\begin{align*}
\Theta(x) & =\lim _{n \rightarrow \infty} \max \left\{|2|^{k} \zeta\left(\frac{x}{2^{k}}, \frac{x}{2^{k}}, \frac{x}{2^{k}}\right) ; 0 \leq k<n\right\} \tag{3.14}\\
& =\zeta(x, x, x) \\
& =3 \kappa \xi(|x|)
\end{align*}
$$

exists for all $x \in G$. Also

$$
\begin{aligned}
& \lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{|2|^{k} \zeta\left(\frac{x}{2^{k}}, \frac{x}{2^{k}}, \frac{x}{2^{k}}\right) ; j \leq k<n+j\right\} \\
& =\lim _{j \rightarrow \infty}|2|^{j} \zeta\left(\frac{x}{2^{j}}, \frac{x}{2^{j}}, \frac{x}{2^{j}}\right) \\
& =0
\end{aligned}
$$

Applying Theorem (3.1), we get desired result.
Theorem 3.3. Let $\zeta: G^{3} \rightarrow[0,+\infty)$ be a mapping such that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{\zeta\left(2^{n} x, 2^{n} y, 2^{n} z\right)}{|2|^{n}}=0 \tag{3.16}
\end{equation*}
$$

for all $x, y, z \in G$ and let for each $x \in G$ the limit

$$
\begin{equation*}
\Theta(x)=\lim _{n \rightarrow \infty} \max \left\{\frac{\zeta\left(2^{k} x, 2^{k} x, 2^{k} x\right)}{|2|^{k}} ; 0 \leq k<n\right\} \tag{3.17}
\end{equation*}
$$

exists. Suppose that $f: G \rightarrow X$ is a mapping satisfies

$$
\begin{align*}
& \| Q\left(\frac{x+y}{2}+z\right)+Q\left(\frac{x+z}{2}+y\right) \tag{3.18}\\
& +Q\left(\frac{z+y}{2}+x\right)-2[Q(x)+Q(y)+Q(z)] \| \\
& \leq \zeta(x, y, z) .
\end{align*}
$$

Then

$$
\begin{equation*}
T(x):=\lim _{n \rightarrow \infty} \frac{Q\left(2^{n} x\right)}{2^{n}} \tag{3.19}
\end{equation*}
$$

exists for all $x \in G$ and defines an additive mapping $\Im: G \rightarrow X$, such that

$$
\begin{equation*}
\|Q(x)-\Im(x)\| \leq \frac{1}{|2|} \Theta(x) \tag{3.20}
\end{equation*}
$$

for all $x \in G$. Moreover, if

$$
\begin{equation*}
\lim _{j \rightarrow \infty} \lim _{n \rightarrow \infty} \max \left\{\frac{\zeta\left(2^{k} x, 2^{k} x, 2^{k} x\right)}{|2|^{k}} ; j \leq k<n+j\right\}=0 \tag{3.21}
\end{equation*}
$$

then T is the unique mapping satisfying (3.20).

Proof. Putting $x=y=z$ in (3.18), we get

$$
\begin{equation*}
\left\|Q(x)-\frac{Q(2 x)}{2}\right\| \leq \frac{\zeta(x, x, x)}{|2|} \tag{3.22}
\end{equation*}
$$

for all $x \in G$. Replacing x by $2^{n} x$ in (3.22), we obtain

$$
\begin{equation*}
\left\|\frac{Q\left(2^{n} x\right)}{2^{n}}-\frac{Q\left(2^{n+1} x\right)}{2^{n+1}}\right\| \leq \frac{\zeta\left(2^{n} x, 2^{n} x, 2^{n} x\right)}{|2|^{n+1}} \tag{3.23}
\end{equation*}
$$

It follows from (3.16) and (3.23) that the sequence $\left\{\frac{Q\left(2^{n} x\right)}{2^{n}}\right\}_{n \geq 1}$ is convergent. Set $\Im(x):=\lim _{n \rightarrow \infty} \frac{Q\left(2^{n} x\right)}{2^{n}}$. On the other hand, it follows from (3.23) that

$$
\begin{aligned}
\left\|\frac{Q\left(2^{p} x\right)}{2^{p}}-\frac{Q\left(2^{q} x\right)}{2^{q}}\right\| & =\left\|\sum_{k=p}^{q-1} \frac{Q\left(2^{k} x\right)}{2^{k}}-\frac{Q\left(2^{k+1} x\right)}{2^{k+1}}\right\| \\
& \leq \max \left\{\left\|\frac{Q\left(2^{k} x\right)}{2^{k}}-\frac{Q\left(2^{k+1} x\right)}{2^{k+1}}\right\| ; p \leq k<q\right\} \\
& \leq \frac{1}{|2|} \max \left\{\frac{\zeta\left(2^{k} x, 2^{k} x, 2^{k} x\right)}{|2|^{k}} ; p \leq k<q\right\}
\end{aligned}
$$

for all $x \in G$ and all non-negative integers p, q with $q>p \geq 0$. Letting $p=0$ and passing the limit $q \rightarrow \infty$ in the last inequality and using (3.17), we obtain (3.20). The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.4. Let $\xi:[0, \infty) \rightarrow[0, \infty)$ be a mapping satisfying

$$
\begin{equation*}
\xi(|2| t) \leq \xi(|2|) \xi(t) \quad(t \geq 0), \quad \xi(|2|)<|2| . \tag{3.24}
\end{equation*}
$$

Let $\kappa>0$ and $f: G \rightarrow X$ be a mapping satisfying

$$
\begin{align*}
& \| Q\left(\frac{x+y}{2}+z\right)+Q\left(\frac{x+z}{2}+y\right) \tag{3.25}\\
& +Q\left(\frac{z+y}{2}+x\right)-2[Q(x)+Q(y)+Q(z)] \| \\
& \leq \kappa(\xi(|x|) \cdot \xi(|y|) \cdot \xi(|z|)) .
\end{align*}
$$

for all $x, y, z \in G$. Then, there exists a unique additive mapping $\Im: G \rightarrow X$ such that

$$
\begin{equation*}
\|Q(x)-\Im(x)\| \leq \frac{\kappa \xi^{3}(|x|)}{|2|} \tag{3.26}
\end{equation*}
$$

Proof. Define $\zeta: G^{3} \rightarrow[0, \infty)$ by $\zeta(x, y, z):=\kappa(\xi(|x|) \cdot \xi(|y|) \cdot \xi(|z|))$ and apply Theorem 3.3 to get the result.

4. Non-Archimedean Stability of Eq. (2.2): Fixed Point Method

Theorem 4.1. Let $\zeta: X^{3} \rightarrow[0, \infty)$ be a mapping such that there exists an $L<1$ with

$$
\begin{equation*}
\zeta(x, y, z) \leq \frac{L}{|2|} \zeta(2 x, 2 y, 2 z) \tag{4.1}
\end{equation*}
$$

for all $x, y, z \in X$. Let $Q: X \rightarrow Y$ be a mapping satisfying

$$
\begin{align*}
& \| Q\left(\frac{x+y}{2}+z\right)+Q\left(\frac{x+z}{2}+y\right) \tag{4.2}\\
& +Q\left(\frac{z+y}{2}+x\right)-2[Q(x)+Q(y)+Q(z)] \| \\
& \leq \zeta(x, y, z)
\end{align*}
$$

for all $x, y, z \in X$. Then there is a unique additive mapping $R: X \rightarrow Y$ such that

$$
\begin{equation*}
\|Q(x)-R(x)\| \leq \frac{L}{|2|-|2| L} \zeta(x, x, x) \tag{4.3}
\end{equation*}
$$

Proof. Putting $x=y=z$ in (4.2), we have

$$
\begin{equation*}
\left\|2 Q\left(\frac{x}{2}\right)-Q(x)\right\| \leq \zeta\left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right) \tag{4.4}
\end{equation*}
$$

for all $x \in X$. Consider the set

$$
\begin{equation*}
S:=\{g: X \rightarrow Y\} \tag{4.5}
\end{equation*}
$$

and the generalized metric d in S defined by

$$
\begin{equation*}
d(f, g)=\inf \left\{\mu \in \mathbb{R}^{+}:\|g(x)-h(x)\| \leq \mu \zeta(x, x, x), \forall x \in X\right\} \tag{4.6}
\end{equation*}
$$

where $\inf \emptyset=+\infty$. It is easy to show that (S, d) is complete (see [20], Lemma 2.1). Now, we consider a linear mapping $J: S \rightarrow S$ such that

$$
\begin{equation*}
J h(x):=2 h\left(\frac{x}{2}\right) \tag{4.7}
\end{equation*}
$$

for all $x \in X$. Let $g, h \in S$ be such that $d(g, h)=\epsilon$. Then

$$
\begin{equation*}
\|g(x)-h(x)\| \leq \epsilon \zeta(x, x, x) \tag{4.8}
\end{equation*}
$$

for all $x \in X$ and so

$$
\begin{aligned}
\|J g(x)-J h(x)\| & =\left\|2 g\left(\frac{x}{2}\right)-2 h\left(\frac{x}{2}\right)\right\| \\
& \leq|2| \epsilon \zeta\left(\frac{x}{2}, \frac{x}{2}, \frac{x}{2}\right) \\
& \leq|2| \epsilon \frac{L}{|2|} \zeta(x, x, x)
\end{aligned}
$$

for all $x \in X$. Thus $d(g, h)=\epsilon$ implies that $d(J g, J h) \leq L \epsilon$. This means that

$$
\begin{equation*}
d(J g, J h) \leq L d(g, h) \tag{4.9}
\end{equation*}
$$

for all $g, h \in S$. It follows from (4.4) that

$$
\begin{equation*}
d(Q, J Q) \leq \frac{L}{|2|} \tag{4.10}
\end{equation*}
$$

By Theorem 2.4, there exists a mapping $R: X \rightarrow Y$ satisfying
(1) R is a fixed point of J, that is,

$$
\begin{equation*}
R\left(\frac{x}{2}\right)=\frac{1}{2} R(x) \tag{4.11}
\end{equation*}
$$

for all $x \in X$. The mapping R is a unique fixed point of J in the set

$$
\begin{equation*}
\Omega=\{h \in S: d(g, h)<\infty\} . \tag{4.12}
\end{equation*}
$$

This implies that R is a unique mapping satisfying (4.11) such that there exists $\mu \in(0, \infty)$ satisfying

$$
\begin{equation*}
\|Q(x)-R(x)\| \leq \mu \zeta(x, x, x) \tag{4.13}
\end{equation*}
$$

for all $x \in X$.
(2) $d\left(J^{n} Q, R\right) \rightarrow 0$ as $n \rightarrow \infty$. This implies the equality

$$
\begin{equation*}
\lim _{n \rightarrow \infty} 2^{n} Q\left(\frac{x}{2^{n}}\right)=Q(x) \tag{4.14}
\end{equation*}
$$

for all $x \in X$.
(3) $d(Q, R) \leq \frac{d(Q, J Q)}{1-L}$ with $f \in \Omega$, which implies the inequality

$$
\begin{equation*}
d(f, C) \leq \frac{L}{|2|-|2| L} \tag{4.15}
\end{equation*}
$$

This implies that the inequality (4.3) holds.
By (3.45),

$$
\begin{aligned}
& \left\|R\left(\frac{x+y}{2}+z\right)+R\left(\frac{x+z}{2}+y\right)+R\left(\frac{z+y}{2}+x\right)-2[R(x)+R(y)+R(z)]\right\| \\
\leq & \lim _{n \rightarrow \infty}|2|^{n} \zeta\left(\frac{x}{2^{n}}, \frac{y}{2^{n}}, \frac{z}{2^{n}}\right) \\
\leq & \lim _{n \rightarrow \infty}|2|^{n} \cdot \frac{L^{n}}{|2|^{n}} \zeta(x, y, z)
\end{aligned}
$$

for all $x, y, z \in X$ and $n \in \mathbb{N}$. So

$$
\left\|R\left(\frac{x+y}{2}+z\right)+R\left(\frac{x+z}{2}+y\right)+R\left(\frac{z+y}{2}+x\right)-2[R(x)+R(y)+R(z)]\right\|=0
$$

for all $x, y, z \in X$. Thus, the mapping $R: X \rightarrow Y$ is additive, as desired.
Corollary 4.2. Let $\theta \geq 0$ and r be a real number with $0<r<1$. Let $Q: X \rightarrow Y$ be a mapping satisfying

$$
\begin{align*}
& \| Q\left(\frac{x+y}{2}+z\right)+Q\left(\frac{x+z}{2}+y\right) \tag{4.16}\\
& +Q\left(\frac{z+y}{2}+x\right)-2[Q(x)+Q(y)+Q(z)] \| \\
& \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)
\end{align*}
$$

for all $x, y, z \in X$. Then

$$
\begin{equation*}
R(x)=\lim _{n \rightarrow \infty} 2^{n} Q\left(\frac{x}{2^{n}}\right) \tag{4.17}
\end{equation*}
$$

exists for all $x \in X$ and $R: X \rightarrow Y$ is a unique additive mapping such that

$$
\begin{equation*}
\|Q(x)-R(x)\| \leq \frac{3|2| \theta\|x\|^{r}}{\left|2^{r+1}-\right| 2^{2}} \tag{4.18}
\end{equation*}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 4.1 by taking

$$
\begin{equation*}
\zeta(x, y, z)=\theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \tag{4.19}
\end{equation*}
$$

for all $x, y, z \in X$. In fact, if we choose $L=|2|^{1-r}$, then we get the desired result.

Theorem 4.3. Let $\zeta: X^{3} \rightarrow[0, \infty)$ be a function such that there exists an $L<1$ with

$$
\begin{equation*}
\zeta(2 x, 2 y, 2 z) \leq|2| L \zeta(x, y, z) \tag{4.20}
\end{equation*}
$$

for all $x, y, z \in X$. Let $Q: X \rightarrow Y$ be a mapping satisfying

$$
\begin{align*}
& \| Q\left(\frac{x+y}{2}+z\right)+Q\left(\frac{x+z}{2}+y\right) \tag{4.21}\\
& +Q\left(\frac{z+y}{2}+x\right)-2[Q(x)+Q(y)+Q(z)] \| \\
& \leq \zeta(x, y, z)
\end{align*}
$$

for all $x, y, z \in X$. Then, there is a unique additive mapping $R: X \rightarrow Y$ such that

$$
\begin{equation*}
\|Q(x)-R(x)\| \leq \frac{1}{|2|-|2| L} \zeta(x, x, x) \tag{4.22}
\end{equation*}
$$

Proof. It follows from (3.22) that

$$
\begin{equation*}
\left\|Q(x)-\frac{Q(2 x)}{2}\right\| \leq \frac{\zeta(x, x, x)}{|2|} \tag{4.23}
\end{equation*}
$$

for all $x \in X$. The rest of the proof is similar to the proof of Theorem 4.1.

Corollary 4.4. Let $\theta \geq 0$ and r be a real number with $r>\frac{1}{3}$. Let $Q: X \rightarrow Y$ be a mapping satisfying

$$
\begin{align*}
& \| Q\left(\frac{x+y}{2}+z\right)+Q\left(\frac{x+z}{2}+y\right) \tag{4.24}\\
& +Q\left(\frac{z+y}{2}+x\right)-2[Q(x)+Q(y)+Q(z)] \| \\
& \leq \theta\left(\|x\|^{r} \cdot\|y\|^{r} \cdot\|z\|^{r}\right)
\end{align*}
$$

for all $x, y, z \in X$. Then

$$
\begin{equation*}
R(x)=\lim _{n \rightarrow \infty} \frac{Q\left(2^{n} x\right)}{2^{n}} \tag{4.25}
\end{equation*}
$$

exists for all $x \in X$ and $R: X \rightarrow Y$ is a unique additive mapping such that

$$
\begin{equation*}
\|Q(x)-R(x)\| \leq \frac{\theta\|x\|^{3 r}}{|2|-|2|^{3 r}} \tag{4.26}
\end{equation*}
$$

for all $x \in X$.
Proof. The proof follows from Theorem 4.3 by taking

$$
\begin{equation*}
\zeta(x, y, z)=\theta\left(\|x\|^{r} \cdot\|y\|^{r} \cdot\|z\|^{r}\right) \tag{4.27}
\end{equation*}
$$

for all $x, y, z \in X$. In fact, if we choose $L=|2|^{3 r-1}$, then we get the desired result.

References

1. L. M. Arriola and W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Anal. Exchange 31 (2005/06), 125-132. 1
2. H. A. Kenary, Hyres-Rassias stability of the Pexiderial functional equation, to appear in Ital. J. Pure Appl. Math.
3. H. A. Kenary, The probabilistic stability of a Pexiderial functional equation in random normed spaces, to appear in Rend. Del Circolo Math. Di Palermo.
4. Y. S. Cho and H. M. Kim, Stability of functional inequalities with Cauchy-Jensen additive mappings, Abstr. Appl. Anal. (2007), Article ID 89180, 13 pages. 1
5. P. W. Cholewa, Remarks on the stability of functional equations, Aequat. Math. 27(1984), 76-86. 1
6. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002. 1
7. D. Deses, On the representation of non-Archimedean objects, Topology Appl. 153 (2005), 774-785. 1
8. W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequat. Math. 71 (2006), 149-161. 1
9. P. Gǎvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436. 1
10. K. Hensel, Ubereine news Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein 6 (1897), 83-88. 1
11. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. USA 27 (1941), 222-224. 1
12. D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhüser, Basel, 1998. 1
13. K. Jun and H. Kim, On the Hyers-Ulam-Rassias stability problem for approximately k-additive mappings and functional inequalities, Math. Inequal. Appl. 10 (2007), 895-908.
14. S. M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001.
15. S. M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), 3137-3143. 1
16. A. K. Katsaras and A. Beoyiannis, Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J. 6 (1999), 33-44. 1
17. A. Khrennikov, Non-Archimedean Analysis: quantum paradoxes, dynamical systems and biological models, Mathematics and its Applications, 427. Kluwer Academic Publishers, Dordrecht, 1997. 1
18. Z. Kominek, On a local stability of the Jensen functional equation, Demon. Math. 22 (1989), 499-507. 1
19. L. Li, J. Chung and D. Kim, Stability of Jensen equations in the space of generalized functions, J. Math. Anal. Appl. 299 (2004), 578-586.
20. D. Mihet and V. Radu, On the stability of the additive Cauchy functional equation in random normed spaces, J. Math. Anal. Appl. 343(2008), 567-572. 4
21. A. K. Mirmostafaee, M. Mirzavaziri and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), 730-738.
22. A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159 (2008), 720-729.
23. A. K. Mirmostafaee, Approximately Additive Mappings in Non-Archimedean Normed Spaces, Bull. Korean Math. Soc. 46(2009), 387-400.
24. M. S. Moslehian and T. M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math. 1 (2007), 325-334. 1
25. A. Nejati and C. Park, Stability of a Generalized Euler-Lagrange Type Additive Mapping and Homomorphisms in C^{*}-Algebra II, J. Nonlinear Sci. Appl. 3(2010), no. 2., 123-143. 2
26. A. Najati and A.Rahimi, Homomorphisms Between C^{*}-Algebras and Thier Stabilities, Acta Univ., Apulensis, No 19/2009. 1
27. P. J. Nyikos, On some non-Archimedean spaces of Alexandrof and Urysohn, Topology Appl. 91 (1999), 1-23. 1
28. C. Park, Fuzzy stability of a functional equation associated with inner product spaces, Fuzzy Sets and Sysyems 160(2009), 1632-1642. 1
29. J. C. Parnami and H. L. Vasudeva, On Jensen's functional equation, Aequat. Math. 43 (1992), 211-218.
30. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300. 1
31. J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequat. Math. 66 (2003), 191-200.
32. R. Saadati, M. Vaezpour and Y. J. Cho, A note to paper "On the stability of cubic mappings and quartic mappings in random normed spaces", J. Ineq. Appl., Volume 2009, Article ID 214530, doi: 10.1155/2009/214530.
33. B. Schewizer and A. Sklar, Probabilistic Metric Spaces, North-Holland Series in Probability and Applied Mathematics, North-Holland, New York, USA, 1983.
34. F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129. 1
35. S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley and Sons, 1964. 1

Department of Mathematics, Yasouj University,, Yasouj 75914-353, Iran.
E-mail address: azadi@mail.yu.ac.ir

[^0]: Date: Received: January 2011; Revised: May 2011.
 2000 Mathematics Subject Classification. Primary 39B22, 39B82; Secondary 46S10.
 Key words and phrases. generalized Hyers-Ulam stability, non-Archimedean spaces, fixed point method
 *: Corresponding author.

