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NON-ARCHIMEDEAN STABILITY OF CAUCHY-JENSEN TYPE
FUNCTIONAL EQUATION

H. AZADI KENARY

Abstract. In this paper we investigate the generalized Hyers-Ulam stability of
the following Cauchy-Jensen type functional equation
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= 2[Q(x) + Q(y) + Q(z)]

in non-Archimedean spaces .

1. Introduction

A classical question in the theory of functional equations is the following: When
is it true that a function which approximately satisfies a functional equation must be
close to an exact solution of the equation?.
If the problem accepts a solution, we say that the equation is stable. The first sta-
bility problem concerning group homomorphisms was raised by Ulam [35] in 1940.
In the next year, Hyres [11] gave a positive answer to the above question for ad-
ditive groups under the assumption that the groups are Banach spaces. In 1978,
Rassias [30] proved a generalization of Hyres’s theorem for additive mappings. The
result of Rassias has influenced the development of what is now called the Hyers-
Ulam-Rassias stability problem for functional equations. In 1994, a generalization of
Rassias’s theorem was obtained by Gǎvruta [9] by replacing the bound ε(‖x‖p+‖y‖p)
by a general control function φ(x, y).
The functional equation

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y)

is called a quadratic functional equation. In particular, every solution of the qua-
dratic functional equation is said to be a quadratic mapping. In 1983, a generalized
Hyers-Ulam stability problem for the quadratic functional equation was proved by
Skof [34] for mappings f : X → Y , where X is a normed space and Y is a Banach
space. In 1984, Cholewa [5] noticed that the theorem of Skof is still true if the
relevant domain X is replaced by an Abelian group and, in 2002, Czerwik [6] proved
the generalized Hyers-Ulam stability of the quadratic functional equation.
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The stability problems of several functional equations have been extensively inves-
tigated by a number of authors and there are many interesting results concerning
this problem ([1]- [4], [8], [12]-[15], [18]- [26],[28]- [24]).
In 1897, Hensel [10] has introduced a normed space which does not have the Archimedean
property. It turned out that non-Archimedean spaces have many nice applications
(see [7], [16], [17], [27]).

2. Preliminaries

A valuation is a function | · | from a field K into [0,∞) such that 0 is the unique
element having the 0 valuation, |rs| = |r||s| and the triangle inequality holds, i.e.,

|r + s| ≤ max{|r|, |s|}.
A field K is called a valued field if K carries a valuation. The usual absolute values
of R and C are examples of valuations.
Let us consider a valuation which satisfies a stronger condition than the triangle
inequality. If the triangle inequality is replaced by

|r + s| ≤ max{|r|, |s|}
for all r, s ∈ K, then the function | · | is called a non-Archimedean valuation and the
field is called a non-Archimedean field. Clearly, |1| = | − 1| = 1 and |n| ≤ 1 for all
n ≥ 1. A trivial example of a non-Archimedean valuation is the function | · | taking
everything except for 0 into 1 and |0| = 0.

Definition 2.1. Let X be a vector space over a field K with a non-Archimedean
valuation | · |. A function ‖ · ‖ : X → [0,∞) is called a non-Archimedean norm if
the following conditions hold:

(a) ‖x‖ = 0 if and only if x = 0 for all x ∈ X;
(b) ‖rx‖ = |r|‖x‖ for all r ∈ K and x ∈ X;
(c) the strong triangle inequality holds:

‖x+ y‖ ≤ max{‖x‖, ‖y‖}
for all x, y ∈ X. Then (X, ‖ · ‖) is called a non-Archimedean normed space.

Definition 2.2. Let {xn} be a sequence in a non-Archimedean normed space X.
(a) A sequence {xn}∞n=1 in a non-Archimedean space is a Cauchy sequence iff, the

sequence {xn+1 − xn}∞n=1 converges to zero.
(b) The sequence {xn} is said to be convergent if, for any ε > 0, there are a

positive integer N and x ∈ X such that

‖xn − x‖ ≤ ε

for all n ≥ N . Then the point x ∈ X is called the limit of the sequence {xn}, which
is denote by limn→∞ xn = x.

(c) If every Cauchy sequence in X converges, then the non-Archimedean normed
space X is called a non-Archimedean Banach space.

Definition 2.3. Let X be a set. A function d : X × X → [0,∞] is called a
generalized metric on X if d satisfies the following conditions:

(a) d(x, y) = 0 if and only if x = y for all x, y ∈ X;
(b) d(x, y) = d(y, x) for all x, y ∈ X;
(c) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X.
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Theorem 2.4. Let (X,d) be a complete generalized metric space and J : X → X be
a strictly contractive mapping with Lipschitz constant L < 1. Then, for all x ∈ X,
either

d(Jnx, Jn+1x) =∞ (2.1)

for all nonnegative integers n or there exists a positive integer n0 such that
(a) d(Jnx, Jn+1x) <∞ for all n0 ≥ n0;
(b) the sequence {Jnx} converges to a fixed point y∗ of J ;
(c) y∗ is the unique fixed point of J in the set Y = {y ∈ X : d(Jn0x, y) <∞};
(d) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

In [25], Nejati introduced the following functional equation:
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= 2[Q(x) +Q(y) +Q(z)]. (2.2)

In this paper, we prove the generalized Hyers-Ulam stability of functional equation
(2.2) in non-Archimedean spaces.

3. Non-Archimedean Stability of Eq. (2.2): Direct Method

Theorem 3.1. Let ζ : G3 → [0,+∞) be a mapping such that

lim
n→∞

|2|nζ
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)
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for all x, y, z ∈ G and let for each x ∈ G the limit
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exists. Suppose that Q : G→ X is a mapping satisfies∥∥∥Q(x+ y
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Then
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2nQ
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)
(3.4)

exists for all x ∈ G and defines an additive mapping = : G→ X such that

||Q(x)−=(x)|| ≤ Θ(x) (3.5)

for all x ∈ G. Moreover, if

lim
j→∞
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n→∞

max
{
|2|kζ
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,
x
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)
; j ≤ k < n+ j

}
= 0 (3.6)

then T is the unique additive mapping satisfying (3.5).

Proof. Putting x = y = z in (3.11), we get∥∥∥2Q
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for all x ∈ G. Replacing x by x
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It follows from (3.1) and (3.8) that the sequence
{

2nQ
(

x
2n

)}
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quence. Since X is complete, so
{
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is convergent. Set
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Using induction one can show that∥∥∥2nQ
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for all n ∈ N and all x ∈ G. By taking n to approach infinity in (3.9), and using
(3.2), one obtains (3.5). By (3.1) and (3.11), we get∥∥∥=(x+ y
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for all x, y, z ∈ G. Therefore the function = : G → X satisfies (2.2). To prove the
uniqueness property of =, let < : G→ X be another function satisfying (3.5). Then∥∥∥=(x)−<(x)
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for all x ∈ G. Therefore = = <, and the proof is complete. �

Corollary 3.2. Let ξ : [0,∞)→ [0,∞) be a mapping satisfying

ξ(|2|−1t) ≤ ξ(|2|−1)ξ(t) (t ≥ 0) ξ(|2|−1) < |2|−1. (3.10)

Let κ > 0 and Q : G→ X be a mapping satisfying∥∥∥Q(x+ y
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for all x, y, z ∈ G. Then there exists a unique additive mapping = : G → X such
that

||Q(x)−=(x)|| ≤ 3κξ(|x|). (3.12)
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Proof. Defining ζ : G3 → [0,∞) by ζ(x, y, z) := κ(ξ(|x|) + ξ(|y|) + ξ(|z|)), then, we
have

lim
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Applying Theorem (3.1), we get desired result. �

Theorem 3.3. Let ζ : G3 → [0,+∞) be a mapping such that
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then T is the unique mapping satisfying (3.20).
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Proof. Putting x = y = z in (3.18), we get∥∥∥Q(x)− Q(2x)

2
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for all x ∈ G and all non-negative integers p, q with q > p ≥ 0. Letting p = 0 and
passing the limit q → ∞ in the last inequality and using (3.17), we obtain (3.20).
The rest of the proof is similar to the proof of Theorem 3.1. �

Corollary 3.4. Let ξ : [0,∞)→ [0,∞) be a mapping satisfying

ξ(|2|t) ≤ ξ(|2|)ξ(t) (t ≥ 0), ξ(|2|) < |2|. (3.24)
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for all x, y, z ∈ G. Then, there exists a unique additive mapping = : G → X such
that
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|2|
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Proof. Define ζ : G3 → [0,∞) by ζ(x, y, z) := κ(ξ(|x|).ξ(|y|).ξ(|z|)) and apply The-
orem 3.3 to get the result. �

4. Non-Archimedean Stability of Eq.(2.2): Fixed Point Method

Theorem 4.1. Let ζ : X3 → [0,∞) be a mapping such that there exists an L < 1
with

ζ(x, y, z) ≤ L

|2|
ζ(2x, 2y, 2z) (4.1)
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for all x, y, z ∈ X. Let Q : X → Y be a mapping satisfying∥∥∥Q(x+ y
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Proof. Putting x = y = z in (4.2), we have∥∥∥2Q
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for all x ∈ X. Consider the set

S := {g : X → Y } (4.5)

and the generalized metric d in S defined by

d(f, g) = inf
{
µ ∈ R+ : ‖g(x)− h(x)‖ ≤ µζ(x, x, x),∀x ∈ X

}
, (4.6)

where inf ∅ = +∞. It is easy to show that (S, d) is complete (see [20], Lemma 2.1).
Now, we consider a linear mapping J : S → S such that

Jh(x) := 2h
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for all x ∈ X. Let g, h ∈ S be such that d(g, h) = ε. Then
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for all x ∈ X. Thus d(g, h) = ε implies that d(Jg, Jh) ≤ Lε. This means that

d(Jg, Jh) ≤ Ld(g, h) (4.9)

for all g, h ∈ S. It follows from (4.4) that

d(Q, JQ) ≤ L

|2|
. (4.10)

By Theorem 2.4, there exists a mapping R : X → Y satisfying
(1) R is a fixed point of J , that is,

R
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1

2
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for all x ∈ X. The mapping R is a unique fixed point of J in the set

Ω = {h ∈ S : d(g, h) <∞}. (4.12)
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This implies that R is a unique mapping satisfying (4.11) such that there exists
µ ∈ (0,∞) satisfying

‖Q(x)−R(x)‖ ≤ µζ(x, x, x) (4.13)

for all x ∈ X.
(2) d(JnQ,R)→ 0 as n→∞. This implies the equality
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2nQ
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for all x ∈ X.
(3) d(Q,R) ≤ d(Q,JQ)

1−L with f ∈ Ω, which implies the inequality

d(f, C) ≤ L

|2| − |2|L
. (4.15)

This implies that the inequality (4.3) holds.
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for all x, y, z ∈ X and n ∈ N. So∥∥∥R(x+ y
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∥∥∥ = 0

for all x, y, z ∈ X. Thus, the mapping R : X → Y is additive, as desired. �

Corollary 4.2. Let θ ≥ 0 and r be a real number with 0 < r < 1. Let Q : X → Y
be a mapping satisfying∥∥∥Q(x+ y

2
+ z
)

+Q
(x+ z

2
+ y
)

(4.16)

+Q
(z + y

2
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for all x, y, z ∈ X. Then
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)
(4.17)

exists for all x ∈ X and R : X → Y is a unique additive mapping such that

‖Q(x)−R(x)‖ ≤ 3|2|θ‖x‖r

|2|r+1 − |2|2
(4.18)

for all x ∈ X.

Proof. The proof follows from Theorem 4.1 by taking

ζ(x, y, z) = θ(‖x‖r + ‖y‖r + ‖z‖r) (4.19)

for all x, y, z ∈ X. In fact, if we choose L = |2|1−r, then we get the desired result. �
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Theorem 4.3. Let ζ : X3 → [0,∞) be a function such that there exists an L < 1
with

ζ(2x, 2y, 2z) ≤ |2|Lζ(x, y, z) (4.20)

for all x, y, z ∈ X. Let Q : X → Y be a mapping satisfying∥∥∥Q(x+ y
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)

+Q
(x+ z

2
+ y
)
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for all x, y, z ∈ X. Then, there is a unique additive mapping R : X → Y such that

‖Q(x)−R(x)‖ ≤ 1

|2| − |2|L
ζ(x, x, x). (4.22)

Proof. It follows from (3.22) that∥∥∥Q(x)− Q(2x)

2

∥∥∥ ≤ ζ(x, x, x)

|2|
(4.23)

for all x ∈ X. The rest of the proof is similar to the proof of Theorem 4.1. �

Corollary 4.4. Let θ ≥ 0 and r be a real number with r > 1
3
. Let Q : X → Y be a

mapping satisfying ∥∥∥Q(x+ y

2
+ z
)

+Q
(x+ z
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+ y
)

(4.24)

+Q
(z + y

2
+ x
)
− 2[Q(x) +Q(y) +Q(z)]

∥∥∥
≤ θ(‖x‖r.‖y‖r.‖z‖r)

for all x, y, z ∈ X. Then

R(x) = lim
n→∞

Q(2nx)

2n
(4.25)

exists for all x ∈ X and R : X → Y is a unique additive mapping such that

‖Q(x)−R(x)‖ ≤ θ‖x‖3r

|2| − |2|3r
(4.26)

for all x ∈ X.

Proof. The proof follows from Theorem 4.3 by taking

ζ(x, y, z) = θ(‖x‖r.‖y‖r.‖z‖r) (4.27)

for all x, y, z ∈ X. In fact, if we choose L = |2|3r−1, then we get the desired
result. �
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