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STRONGLY [V2, λ2,M, P ]−SUMMABLE DOUBLE SEQUENCE
SPACES DEFINED BY ORLICZ FUNCTION

AYHAN ESI

Abstract. In this paper we introduce strongly [V2, λ2,M, p]−summable double
vsequence spaces via Orlicz function and examine some properties of the result-
ing these spaces. Also we give natural relationship between these spaces and
Sλ2
−statistical convergence.

1. Introduction

Before we enter the motivation for this paper and the presentation of the main
results we give some preliminaries.

By the convergence of a double sequence we mean the convergence on the Pring-
sheim sense that is, a double sequence x = (xk,l) has Pringsheim limit L (denoted by
P − limx = L) provided that given ε > 0 there exists n ∈ N such that |xk,l − L| < ε
whenever k, l > n, [1]. We shall write more briefly as ”P−convergent”.

The double sequence x = (xk,l) is bounded if there exists a positive number M
such that |xk,l| < M for all k and l. Let lıı∞ the space of all bounded double such
that

‖xk,l‖(∞,2) = sup
k,l
|xk,l| <∞.

Recall in [8] that an Orlicz function M is continuous, convex, nondecreasing
function define for x > 0 such that M(0) = 0 and M(x) > 0. If convexity of
Orlicz function is replaced by M(x + y) ≤ M (x) + M (y) then this function is
called the modulus function and characterized by Ruckle [10]. An Orlicz function
M is said to satisfy ∆2−condition for all values u, if there exists K > 0 such that
M(2u) ≤ KM(u), u ≥ 0.

Let λ = (λr) be a nondecreasing sequence of positive numbers tending to infinity
and λr+1 ≤ λr + 1, λ1 = 1. The generalized de la Vallee-Poussin mean is defined by

tr (x) =
1

λr

∑
k∈Ir

xk, Ir = [r − λr + 1, r] .

A single sequence x = (xk) is said to be (V, λ)−summable to a number L if
tr (x) → L as r → ∞, [4]. If λr = r, then the (V, λ)−summability is reduced
to (C, 1)−summability, [5, 9].
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Using these notations we now present the following new definitions:

2. Definitions and Results

Definition 2.1. The double sequence λ2 = (λm,n) of positive real numbers tending
to infinity such that

λm+1,n ≤ λm,n + 1, λm,n+1 ≤ λm,n + 1,

λm,n − λm+1,n ≤ λm,n+1 − λm+1,n+1, λ1,1 = 1,

and

Im,n = {(k, l) : m− λm,n + 1 ≤ k ≤ m, n− λm,n + 1 ≤ l ≤ n} .
The generalized double de Vallee-Poussin mean is defined by

tm,n = tm,n (xk,l) =
1

λm,n

∑
(k,l)∈Im,n

xk,l.

A double number sequence x = (xk,l) is said to be (V2, λ2)−summable to a number
L if P − limm,n tm,n = L. If λm,n = mn, then the (V2, λ2)−summability is reduced
to (C, 1, 1)−summability, [2]. We write

[V2, λ2] =

x = (xk,l) : P − lim
m,n

1

λm,n

∑
(k,l)∈Im,n

|xk,l − L| = 0, for some L


for sets of double sequences x = (xk,l). We say that x = (xk,l) is strongly
[V2, λ2]−summable to L, that is x = (xk,l)→ L ([V2, λ2]).

Definition 2.2. A double number sequence x = (xk,l) is Sλ2−P−convergent to L
if provided that for every ε > 0

P − lim
m,n

1

λm,n
|{(k, l) ∈ Im,n : |xk,l − L| ≥ ε}| = 0.

We will denote the set of all double Sλ2 − P − convergent sequences by Sλ2 .

Let M be an Orlicz function and p = (pk,l) be any factorable double sequence of
strictly positive real numbers, we define the following sequence spaces:

[V2, λ2,M, p]o =

x = (xk,l) : P − lim
m,n

1

λm,n

∑
(k,l)∈Im,n

[
M

(
|xk,l|
ρ

)]pk,l
= 0,

for some ρ > 0
}

,

[V2, λ2,M, p] =

x = (xk,l) : P − lim
m,n

1

λm,n

∑
(k,l)∈Im,n

[
M

(
|xk,l − L|

ρ

)]pk,l
= 0,

for some ρ > 0 and L
}

,
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and

[V2, λ2,M, p]∞ =

x = (xk,l) : sup
m,n

1

λm,n

∑
(k,l)∈Im,n

[
M

(
|xk,l|
ρ

)]pk,l
<∞,

for some ρ > 0
}

.

We shall denote [V2, λ2,M, p]o, [V2, λ2,M, p] and [V2, λ2,M, p]∞ as [V2, λ2,M ]o,
[V2, λ2,M ] and [V2, λ2,M ]∞, respectively when pk,l = 1 for all k and l. Also note
that if M(x) = x and pk,l = 1 for all k and l, then [V2, λ2,M, p]o = [V2, λ2]o,
[V2, λ2,M, p] = [V2, λ2] and [V2, λ2,M, p]∞ = [V2, λ2]∞ and M(x) = x then
[V2, λ2,M, p]o = [V2, λ2, p]o, [V2, λ2,M, p] = [V2, λ2, p] and [V2, λ2,M, p]∞ = [V2, λ2, p]∞.

The proof of the first theorem is standard thus we omitted.

Theorem 2.3. For any Orlicz function M a bounded factorable positive double num-
ber sequence p = (pk,l), the spaces [V2, λ2,M, p]o, [V2, λ2,M, p] and [V2, λ2,M, p]∞ are
linear spaces.

Before the proof of below theorem we need the following lemma.

Lemma 2.4. Let M be an Orlicz function which satisfies ∆2 − condition and let
0 < δ < 1. Then for each x ≥ δ, we have M(x) < Kδ−1M (2) for some constant
K > 0.

Theorem 2.5. For any Orlicz function M which satisfies ∆2 − condition we have
[V2, λ2, p] ⊂ [V2, λ2,M, p].

Proof. Let x = (xk,l) ∈ [V2, λ2, p], then

Am,n = P − lim
m,n

1

λm,n

∑
(k,l)∈Im,n

|xk,l − L|pk,l for some L. (2.1)

Let ε > 0 and choose δ with 0 < δ < 1 such that M (t) < ε for 0 ≤ t ≤ δ. Write
yk,l = |xk,l − L| and consider∑

(k,l)∈Im,n

[M (yk,l)]
pk,l =

∑
(k,l)∈Im,n:yk,l≤δ

[M (yk,l)]
pk,l +

∑
(k,l)∈Im,n:yk,l>δ

[M (yk,l)]
pk,l .

Since M is continuous ∑
(k,l)∈Im,n:yk,l≤δ

[M (yk,l)]
pk,l < ε

and for yk,l > δ, we use the fact that

yk,l <
yk,l
δ

< 1 +
yk,l
δ

.

Since M is nondecreasing and convex, it follows that

M (yk,l) < M
(

1 +
yk,l
δ

)
<

1

2
M (2) +

1

2
M

(
2yk,l
δ

)
.

Since M satisfies ∆2 − condition, therefore

M (yk,l) <
1

2
K
yk,l
δ
M (2) +

1

2
K
yk,l
δ
M (2) = K

yk,l
δ
M (2) .
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Hence ∑
(k,l)∈Im,n:yk,l>δ

[M (yk,l)]
pk,l < max

(
1, Kδ−1M (2)

)H
Am,n

where H = supk,l pk,l. This and from (2.1), we obtain [V2, λ2, p] ⊂ [V2, λ2,M, p]. �

3. λ2−Statistical Convergence

The notion of statistical convergence for single sequences was introduced by
Fast [3] and studied by various authors. Mursaleen [6] introduced the concept of
λ−statistical convergence as follows: A sequence x = (xk) is said to be λ−statistically
convergent or Sλ−convergent to L if for every ε > 0,

lim
r

1

λr
|{k ∈ Ir : |xk − L| ≥ ε}| = 0, Ir = [r − λr + 1, r] ,

where the vertical bars indicate the number of elements in the enclosed set.
Now we extend this definition for double sequences.

Definition 3.1. The double number sequence x = (xk,l) is called Sλ2 − P −
convergent to the number L provided that for every ε > 0

P − lim
m,n

1

λm,n
|{(k, l) ∈ Im,n : |xk,l − L| ≥ ε}| = 0.

In this case we write Sλ2− limx = L and we say that the double sequence x = (xk,l)
is λ2 − statistically convergent to L. If λm,n = mn for all m and n, we obtain all
P−statistical convergent double sequence space st2 which was defined by Mursaleen
and Edely [7].

Theorem 3.2. Let M be an Orlicz function. For double λ2 sequence [V2, λ2,M ] ⊂
Sλ2 and the inclusion is strict.

Proof. Suppose that x = (xk,l) ∈ [V2, λ2,M ] and ε > 0. Then we obtain the following
for every m and n,

1

λm,n

∑
(k,l)∈Im,n

M

(
|xk,l − L|

ρ

)
1

λm,n

∑
(k,l)∈Im,n:|xk,l−L|≥ε

M

(
|xk,l − L|

ρ

)

≥
M
(
ε
ρ

)
λm,n

|{(k, l) ∈ Im,n : |xk,l − L| ≥ ε}| .
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Hence x = (xk,l) ∈ Sλ2 . To show this inclusion is strict, we can establish an example
as follows: Let M (x) = x and

xk,l =



1 2 3 ...
[

3
√
λm,n

]
0 0 ...

2 2 3 ...
[

3
√
λm,n

]
0 0 ...

.
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3
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3
√
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3
√
λm,n
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0 0 0 ... 0 0 0 ...
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.


and

P − lim
m,n

1

λm,n
|{(k, l) ∈ Im,n : |xk,l − L| ≥ ε}| = P − lim

m,n

[
3
√
λm,n

]
λm,n

= 0.

Therefore Sλ2 − limx = 0 and x = (xk,l) ∈ Sλ2 . But

P − lim
m,n

1

λm,n

∑
(k,l)∈Im,n

|xk,l| = P − lim
m,n

[
3
√
λm,n

] ([
3
√
λm,n

] ([
3
√
λm,n

]
+ 1
))

2λm,n
=

1

2
.

Therefore x = (xk,l) /∈ [V2, λ2,M ]. This completes the proof. �

Theorem 3.3. [V2, λ2,M ] = Sλ2 if and only if the Orlicz function M is bounded.

Proof. Suppose that M is bounded and x = (xk,l) ∈ Sλ2 . Since M is bounded then
there exists an integer K such that M (x) ≤ K for all x ≥ 0. Then for each m and
n, we have

1

λm,n

∑
(k,l)∈Im,n

[
M

(
|xk,l − L|

ρ

)]
=

1

λm,n

∑
(k,l)∈Im,n:|xk,l−L|≥ε

[
M

(
|xk,l − L|

ρ

)]

+
1

λm,n

∑
(k,l)∈Im,n:|xk,l−L|<ε

[
M

(
|xk,l − L|

ρ

)]

≤ K

λm,n
|{(k, l) ∈ Im,n : |xk,l − L| ≥ ε}|+M (ε)

and thus the Pringsheim limit on m and n grant us the result.
Conversely, suppose that M is unbounded so that there is a positive double

sequence (zmn) with M (zmn) = (λm,n)2 for m,n = 1, 2, . . .. Now the sequence
x = (xk,l) defined by xk,l = zmn if k, l = (λm,n)2 for m,n = 1, 2, . . . and xk,l = 0,
otherwise. Then we have

1

λm,n
|{(k, l) ∈ Im,n : |xk,l − L| ≥ ε}| ≤

√
λm,n

λm,n
→ 0, as m,n→∞.

Hence xk,l → L = 0 (Sλ2). But x = (xk,l) /∈ [V2, λ2,M ], contradicting [V2, λ2,M ] =
Sλ2 . This completes the proof. �

In the next theorem we prove the following relation.
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Theorem 3.4. x = (xk,l) ∈ st2 implies x = (xk,l) ∈ Sλ2 if

lim inf
m,n

1

λm,n
> 0. (3.1)

Proof. For given ε > 0, we have

{(k, l) ∈ Im,n : k ≤ m and l ≤ n, |xk,l − L| ≥ ε} ⊃ {(k, l) ∈ Im,n : |xk,l − L| ≥ ε} .

Therefore
1

mn
|{(k, l) ∈ Im,n : k ≤ m and l ≤ n, |xk,l − L| ≥ ε}|

≥ 1

mn
|{(k, l) ∈ Im,n : |xk,l − L| ≥ ε}| = λm,n

mn
.

1

λm,n
|{(k, l) ∈ Im,n : |xk,l − L| ≥ ε}| .

Taking the Pringsheim limit on m and n and using (3.1), we get desired result. This
completes the proof. �
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