# MAXIMUM MODULUS OF THE DERIVATIVES OF A POLYNOMIAL 

AHMAD ZIREH

Abstract. For an arbitrary entire function $f(z)$, let $M(f, R)=\max _{|z|=R}|f(z)|$ and $m(f, r)=\min _{|z|=r}|f(z)|$. If $P(z)$ is a polynomial of degree $n$ having no zeros in $|z|<k, k \geq 1$, then for $0 \leq r \leq \rho \leq k$, it is proved by Aziz et al. that

$$
\begin{aligned}
M\left(P^{\prime}, \rho\right) \leq & \frac{n}{\rho+k}\left\{\left(\frac{\rho+k}{k+r}\right)^{n}\left[1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right) n}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{k+\rho}\right)\left(\frac{k+r}{k+\rho}\right)^{n-1}\right] M(P, r)\right. \\
& \left.-\left[\frac{\left(n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|\right)(r+k)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|} \times\left[\left(\left(\frac{\rho+k}{r+k}\right)^{n}-1\right)-n(\rho-r)\right]\right] m(P, k)\right\}
\end{aligned}
$$

In this paper, we obtain a refinement of the above inequality. Moreover, we obtain a generalization of above inequality for $M\left(P^{\prime}, R\right)$, where $R \geq k$.

## 1. Introduction and preliminaries

For an arbitrary entire function $f(z)$, let $M(f, R)=\max _{|z|=R}|f(z)|$ and $m(f, r)=$ $\min _{|z|=r}|f(z)|$. Let $P(z)$ be a polynomial of degree $n$, then according to a famous result known as Bernstein's inequality on the derivative of a polynomial, we have

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \leq n M(P, 1) . \tag{1.1}
\end{equation*}
$$

The result is best possible and equality holds for the polynomials having all its zeros at the origin.
For polynomials having no zeros in $|z|<1$, Erdös conjectured and later Lax [6] proved that if $P(z) \neq 0$ in $|z|<1$, then (1.1) can be replaced by

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \leq \frac{n}{2} M(P, 1) . \tag{1.2}
\end{equation*}
$$

With equality for those polynomials, which have all their zeros on $|z|=1$. As an extension of (1.2) Malik [7] proved that if $P(z) \neq 0$ in $|z|<k, k \geq 1$ then

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \leq \frac{n}{1+k} M(P, 1) . \tag{1.3}
\end{equation*}
$$

The result is best possible and equality holds for the polynomial $P(z)=(z+k)^{n}$.

Date: Received:January 2011; Revised: June 2011.
2000 Mathematics Subject Classification. Primary 30A10; Secondary 30C10, 30D15.
Key words and phrases. Polynomial, Inequality, Maximum modulus, Restricted zeros.
This work was partially supported by a research grant from Shahrood University of Technology.

Dewan and Bidkham [2] obtained a generalization of inequality (1.3) for the class of polynomials $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ having no zeros in $|z|<k, k \geq 1$, by proving

$$
\begin{equation*}
M\left(P^{\prime}, \rho\right) \leq n \frac{(\rho+k)^{n-1}}{(1+k)^{n}} M(P, 1) \tag{1.4}
\end{equation*}
$$

where $1 \leq \rho \leq k$. The result is best possible and equality holds for the polynomial $P(z)=(z+k)^{n}$.

Further, as a generalization of (1.4) Dewan and Mir [3] proved that if $P(z)=$ $\sum_{j=0}^{n} a_{j} z^{j}$ having no zeros in $|z|<k, k \geq 1$ then for $0 \leq r \leq \rho \leq k$,

$$
\begin{equation*}
M\left(P^{\prime}, \rho\right) \leq n \frac{(\rho+k)^{n-1}}{(k+r)^{n}}\left\{1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right) n}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|} \frac{(\rho-r)(k+r)^{n-1}}{(k+\rho)^{n}}\right\} M(P, r) . \tag{1.5}
\end{equation*}
$$

The result is best possible and equality holds for the polynomial $P(z)=(z+k)^{n}$. Recently Aziz and Zargar [1] obtained a generalization of (1.5) and proved if $P(z)=$ $\sum_{j=0}^{n} a_{j} z^{j}$ having no zeros in $|z|<k, k \geq 1$ then for $0 \leq r \leq \rho \leq k$,

$$
\begin{align*}
M\left(P^{\prime}, \rho\right) \leq & \frac{n}{\rho+k}\left\{\left(\frac{\rho+k}{k+r}\right)^{n}\left[1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right) n}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{k+\rho}\right)\left(\frac{k+r}{k+\rho}\right)^{n-1}\right] M(P, r)\right. \\
& \left.-\left[\frac{\left(n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|\right)(r+k)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|} \times\left\{\left(\left(\frac{\rho+k}{r+k}\right)^{n}-1\right)-n(\rho-r)\right\}\right] m(P, k)\right\} . \tag{1.6}
\end{align*}
$$

The result is best possible and equality holds for the polynomial $P(z)=(z+k)^{n}$. In this paper, first we obtain the following result which is a refinement of inequality (1.6).

Theorem 1.1. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n$, having no zeros in $|z|<k, k \geq 1$ then for $0 \leq r \leq \rho \leq k$,

$$
\begin{align*}
M\left(P^{\prime}, \rho\right) \leq & \frac{n\left(n\left|a_{0}\right| \rho^{2}+k^{2} \rho\left|a_{1}\right|\right)}{\rho\left(\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|\right)} \times \\
& \left\{\left(\frac{\rho+k}{k+r}\right)^{n}\left[1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right) n}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{k+\rho}\right)\left(\frac{k+r}{k+\rho}\right)^{n-1}\right] M(P, r)\right.  \tag{1.7}\\
& \left.-\left[\frac{\left(n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|\right)(r+k)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|} \times\left[\left(\left(\frac{\rho+k}{r+k}\right)^{n}-1\right)-n(\rho-r)\right]\right] m(P, k)\right\} .
\end{align*}
$$

The result is best possible and equality holds for the polynomial $P(z)=(z+k)^{n}$.
Remark. Theorem 1.1 is, in general, an improvement of inequality (1.6). To see this, we note that for a polynomial $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ such that does not vanish in $|z|<k, k \geq 1$ and $0 \leq r \leq \rho \leq k$, by using lemma 2.5 inequality $\frac{\left(n\left|a_{0}\right| \rho^{2}+k^{2} \rho\left|a_{1}\right|\right)}{\rho\left(\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|\right)} \leq \frac{1}{\rho+k}$ is true.

If we take $\rho=k$ in Theorem 1.1, then we have

Corollary 1.2. If $P(z)$ be a polynomial of degree $n$, having no zeros in $|z|<k$, $k \geq 1$ then for $0 \leq r \leq k$, we have

$$
\begin{equation*}
M\left(P^{\prime}, k\right) \leq \frac{n}{2 k}\left\{\left(\frac{2 k}{k+r}\right)^{n} M(P, r)-\frac{r+k}{2 k}\left[\left(\frac{2 k}{r+k}\right)^{n}-1-n(k-r)\right] m(P, k)\right\} \tag{1.8}
\end{equation*}
$$

Next we prove the following interesting result which is a generalization of inequality (1.6) for radius greater than $k$.
Theorem 1.3. If $P(z)$ is a polynomial of degree $n$, having no zeros in $|z|<k$, $k \geq 1$ then for $0 \leq r \leq k \leq R$

$$
\begin{align*}
& M\left(P^{\prime}, R\right) \leq \frac{n R^{n-1}}{2 k^{n}} \times\left\{\left(\frac{2 k}{k+r}\right)^{n} M(P, r)-\right.  \tag{1.9}\\
& \left.\frac{r+k}{2 k}\left[\left(\frac{2 k}{r+k}\right)^{n}-1-n(k-r)\right] m(P, k)\right\}
\end{align*}
$$

If we take $R=k$ in Theorem 1.3, then we have inequality (1.8) again,
Corollary 1.4. If $P(z)$ is a polynomial of degree $n$, having no zeros in $|z|<k$, $k \geq 1$ then for $0 \leq r \leq k$, we have

$$
M\left(P^{\prime}, k\right) \leq \frac{n}{2 k}\left\{\left(\frac{2 k}{k+r}\right)^{n} M(P, r)-\frac{r+k}{2 k}\left[\left(\frac{2 k}{r+k}\right)^{n}-1-n(k-r)\right] m(P, k)\right\}
$$

## 2. Lemmas

For the proof of theorems, we need the following lemmas. The first lemma is due to Govil, Rahman and Schmeisser [5].
Lemma 2.1. Let $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ be a polynomial of degree $n$, having no zeros in $|z| \leq k, k \geq 1$, then

$$
\begin{equation*}
M\left(P^{\prime}, 1\right) \leq n\left\{\frac{n\left|a_{0}\right|+k^{2}\left|a_{1}\right|}{n\left|a_{0}\right|\left(1+k^{2}\right)+2 k^{2}\left|a_{1}\right|}\right\} M(P, 1) . \tag{2.1}
\end{equation*}
$$

Lemma 2.2. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$ is a polynomial of degree $n$, having no zeros in $|z|<k, k \geq 1$, then for $0 \leq r \leq \rho \leq k$,

$$
\begin{align*}
M(P, \rho) \leq & \left(\frac{\rho+k}{k+r}\right)^{n}\left[1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right) n}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{k+\rho}\right)\left(\frac{k+r}{k+\rho}\right)^{n-1}\right] M(P, r)  \tag{2.2}\\
& -\left[\frac{\left(n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|\right)(r+k)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|} \times\left[\left(\left(\frac{\rho+k}{r+k}\right)^{n}-1\right)-n(\rho-r)\right]\right] m(P, k)
\end{align*}
$$

The above lemma is due to Aziz and Zargar [1].

Lemma 2.3. Let $F(z)$ be a polynomial of degree $n$, having all its zeros in the closed disk $|z| \leq 1$. Furthermore, let $f(z)$ be a polynomial of degree at most $n$ such that $|f(z)| \leq|F(z)|$ for $|z|=1$, then $\left|f^{\prime}(z)\right| \leq\left|F^{\prime}(z)\right|$ for $|z| \geq 1$.

You can find the proof of Lemma 2.3 in [8].
Lemma 2.4. If $P(z)$ is a polynomial of degree $n$ and $Q(z)=z^{n} \overline{P(1 / \bar{z})}$, then for $|z| \geq 1$ we have

$$
\begin{equation*}
\left|P^{\prime}(z)\right|+\left|Q^{\prime}(z)\right| \leq n|z|^{n-1} M(P, 1) \tag{2.3}
\end{equation*}
$$

Proof. Since $|P(z)| \leq M(P, 1)$, where $|z| \leq 1$. Then by using Rouche's theorem it follows the polynomial

$$
G(z)=P(z)-\lambda M(P, 1),
$$

does not vanish in $|z| \leq 1$, for $\lambda$ with $|\lambda|>1$. Now consider

$$
H(z)=z^{n} \overline{G(1 / \bar{z})}=Q(z)-\bar{\lambda} M(P, 1) z^{n}
$$

Then the polynomial $H(z)$ has all its zeros in $|z| \leq 1$, and $|H(z)|=|G(z)|$, where $|z|=1$.

Therefore on applying Lemma 2.3 to polynomials $G(z)$ and $H(z)$, we have for $|z| \geq 1$,

$$
\begin{equation*}
\left|P^{\prime}(z)\right| \leq\left|Q^{\prime}(z)-n \bar{\lambda} M(P, 1) z^{n-1}\right| . \tag{2.4}
\end{equation*}
$$

Since $M(Q, 1)=M(P, 1)$, then again we can apply Lemma 2.3 to polynomials $Q(z)$ and $M(P, 1) z^{n}$, and we obtain

$$
\left|Q^{\prime}(z)\right| \leq n M(P, 1)|z|^{n-1}
$$

for $|z| \geq 1$.
Therefore for an appropriate choice of the argument of $\lambda$ we have

$$
\left|Q^{\prime}(z)-n \bar{\lambda} M(P, 1) z^{n-1}\right|=|\lambda| n M(P, 1)|z|^{n-1}-\left|Q^{\prime}(z)\right|
$$

Which helps us to rewrite inequality (2.4) as

$$
\left|P^{\prime}(z)\right|+\left|Q^{\prime}(z)\right| \leq|\lambda| n M(P, 1)|z|^{n-1}
$$

Make $|\lambda| \rightarrow 1$, we get inequality (2.3).
Lemma 2.5. If $P(z)=\sum_{j=0}^{n} a_{j} z^{j}$, is a polynomial of degree $n$, having no zeros in $|z|<k, k \geq 1$, then

$$
\begin{equation*}
\frac{k\left|a_{1}\right|}{\left|a_{0}\right|} \leq n \tag{2.5}
\end{equation*}
$$

The above result is due to Gardner et al. [4].

## 3. Proof of the theorems

Proof of the Theorem 1.1. For $\rho$ with $0 \leq \rho \leq k$, the polynomial $P(\rho z)$ has no zeros in $|z| \leq k / \rho, k / \rho \geq 1$. Now by applying Lemma 2.1, for $|z|=1$, we have

$$
\begin{equation*}
\rho\left|P^{\prime}(\rho z)\right| \leq n\left\{\frac{n\left|a_{0}\right|+\frac{k^{2}}{\rho^{2}} \rho\left|a_{1}\right|}{\left(1+\frac{k^{2}}{\rho^{2}}\right) n\left|a_{0}\right|+2 \frac{k^{2}}{\rho^{2}} \rho\left|a_{1}\right|}\right\} M(P, \rho) . \tag{3.1}
\end{equation*}
$$

Now, if $0 \leq r \leq \rho \leq k$, then by using Lemma 2.2, we have

$$
\begin{align*}
M(P, \rho) \leq & \left(\frac{\rho+k}{k+r}\right)^{n}\left[1-\frac{k(k-\rho)\left(n\left|a_{0}\right|-k\left|a_{1}\right|\right) n}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|}\left(\frac{\rho-r}{k+\rho}\right)\left(\frac{k+r}{k+\rho}\right)^{n-1}\right] M(P, r)  \tag{3.2}\\
& -\left[\frac{\left(n\left|a_{0}\right| \rho+k^{2}\left|a_{1}\right|\right)(r+k)}{\left(\rho^{2}+k^{2}\right) n\left|a_{0}\right|+2 k^{2} \rho\left|a_{1}\right|} \times\left[\left(\left(\frac{\rho+k}{r+k}\right)^{n}-1\right)-n(\rho-r)\right]\right] m(P, k)
\end{align*}
$$

By combining (3.1) and (3.2), Theorem 1.1 follows.

Proof of Theorem 1.3. Since $P(z)$ having no zero in $|z|<k$, therefore the polynomial $H(z)=P(k z)$ does not vanish in $|z|<1$. Then the polynomial $G(z)=$
$z^{n} \overline{H\left(\frac{1}{\bar{z}}\right)}$ has all its zeros in $|z| \leq 1$, and $|H(z)|=|G(z)|$ for $|z|=1$. By applying Lemma 2.3 we have

$$
\begin{equation*}
\left|H^{\prime}(z)\right| \leq\left|G^{\prime}(z)\right| \text { for }|z| \geq 1 . \tag{3.3}
\end{equation*}
$$

On the other hand by using Lemma 2.4, for $|z| \geq 1$ we have

$$
\begin{equation*}
\left|H^{\prime}(z)\right|+\left|G^{\prime}(z)\right| \leq n|z|^{n-1} M(H, 1) \tag{3.4}
\end{equation*}
$$

Now combining (3.3) and (3.4) we have

$$
\left|H^{\prime}\left(t e^{i \theta}\right)\right| \leq \frac{n t^{n-1}}{2} M(H, 1) \quad t \geq 1
$$

Replacing $H(z)$ by $P(k z)$, we conclude that

$$
\begin{equation*}
k\left|P^{\prime}\left(k t e^{i \theta}\right)\right| \leq \frac{n t^{n-1}}{2} M(P, k) \quad t \geq 1 \tag{3.5}
\end{equation*}
$$

Now if we take $\rho=k$ in Lemma 2.2 we have

$$
\begin{equation*}
M(P, k) \leq\left(\frac{2 k}{k+r}\right)^{n} M(P, r)-\frac{r+k}{2 k}\left[\left(\frac{2 k}{r+k}\right)^{n}-1-n(k-r)\right] m(P, k) \tag{3.6}
\end{equation*}
$$

Hence for $R \geq k$, we take $t=R / k$ in (3.5), now combining (3.6) and (3.5), we have

$$
\left|P^{\prime}\left(R e^{i \theta}\right)\right| \leq \frac{n R^{n-1}}{2 k^{n}}\left\{\left(\frac{2 k}{k+r}\right)^{n} M(P, r)-\frac{r+k}{2 k}\left[\left(\frac{2 k}{r+k}\right)^{n}-1-n(k-r)\right] m(P, k)\right\} .
$$

This completes the proof.

## Acknowledgement.

The Author is highly thankful to the referee for his useful comments and valuable guidance.

## References

1. A. Aziz and B. A. Zargar, Inequalities for the maximum modulus of the derivative of a polynomial, J. Inequalities in pure and applied mathematics. 8 (2007) 1-15.
2. K. K. Dewan and M. Bidkham, Inequalities for a polynomial and its derivative, J. Math. Anal. Appl. 166 (1992) 319-324.
3. K. K. Dewan and A. Mir, On the maximum modulus of a polynomial and its derivatives, International Journal of Mathematics and Mathematical Sciences. 16 (2005) 2641-2645.
4. R. B. Gardner, N. K. Govil and A. Weems, Some results concerning rate of growth of polynomials, East Journal of Approximation. 10 (2004) 301-312.
5. N. K. Govil, Q. I. Rahman and G. Schmeisser, On the derivative of a polynomial, Illinois J. Math. 23 (1979) 319-329.
6. P. D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc. 50 (1944) 509-513.
7. M. A. Malik, On the derivative of a polynomial, J. London Math. Soc. 1 (1969) 57-60.
8. Q. I. Rahman and G. Schmeisser, Analytic Theory of Polynomials, Oxford University Press, New York (2002).
${ }^{1}$ Department of Mathematics, Shahrood University of Technology, Shahrood, Iran.

E-mail address: azireh@gmail.com, azireh@shahroodut.ac.ir

