A PERIOD 5 DIFFERENCE EQUATION

WITOLD A. J. KOSMALA ${ }^{1 *}$

Abstract. The main goal of this note is to introduce another second-order difference equation where every nontrivial solution is of minimal period 5, namely the difference equation:

$$
x_{n+1}=\frac{1+x_{n-1}}{x_{n} x_{n-1}-1}, \quad n=1,2,3, \ldots
$$

with initial conditions x_{0} and x_{1} any real numbers such that $x_{0} x_{1} \neq 1$.

1. Introduction

Rational difference equations of second order have been studied for over 10 years, and solutions have very unique and beautiful behaviors. In the references we give a very limited list of papers that study behavior of such equations. See [1]-[16]. It is very intriguing to find an equation, which possesses solutions that are always periodic. For example, the equation:

$$
x_{n+1}=\frac{1}{x_{n} x_{n-1}}
$$

has only period 3 solutions; the equation:

$$
x_{n+1}=\frac{1}{x_{n-1}}
$$

has only period 4 solutions; and so on. It is believed that up to now Lyness's equation of the form

$$
x_{n+1}=\frac{1+x_{n}}{x_{n-1}}, \quad n=1,2,3, \ldots,
$$

with nonzero initial conditions, was the only equation for which nontrivial solutions were periodic with the minimal period of 5 . In this paper we want to change this fact by introducing another second-order equation with this property, namely:

$$
\begin{equation*}
x_{n+1}=\frac{1+x_{n-1}}{x_{n} x_{n-1}-1}, \quad n=1,2,3, \ldots \tag{1.1}
\end{equation*}
$$

with real initial conditions x_{0} and x_{1} such that $x_{0} x_{1} \neq 1$.

Date: Received: May 2010 ; Revised: September 2010.
2000 Mathematics Subject Classification. 39A10, 39A11.
Key words and phrases. difference equation, periodicity, equilibrium points, convergence *: Corresponding author.

This equation (1.1) is rooted in the difference equation:

$$
\begin{equation*}
x_{n+1}=\frac{1+x_{n-2}}{x_{n}}, \quad n=1,2,3, \ldots \tag{1.2}
\end{equation*}
$$

with three initial conditions x_{-1}, x_{0}, and x_{1}. The difference equation (1.2) has been extensively studied by many mathematicians around the world. In particular, Camouzis and Ladas in [4] introduced an identity which was used to prove that in the equation (1.2) all solutions must converge to a period 5 solution. Trichotomy properties of the equation (1.2) as well as its generalities are also discussed in [3].

To see where the difference equation (1.1) comes from, we need to look at the period 5 solution of the equation (1.2) which all solutions converge to. A simple calculation shows that a solution of the equations (1.2) is of period 5 if and only if the initial conditions are $x_{-1}=\alpha, x_{0}=\beta$ with α and β real such that $\alpha \beta \neq 1$, and $x_{1}=\frac{1+\alpha}{\alpha \beta-1}$. In addition, the other two terms of such a solution are $x_{2}=\alpha \beta-1$ and $x_{3}=\frac{1+\beta}{\alpha \beta-1}$. The expressions for x_{1}, x_{2}, and x_{3} above can be written as difference equations in their own right. That is, x_{1} can be written as our equation (1.1); x_{2} can be written as:

$$
\begin{equation*}
x_{n+1}=x_{n-2} x_{n-1}-1, \quad n=1,2,3, \ldots \tag{1.3}
\end{equation*}
$$

x_{-1}, x_{0}, and x_{1} real numbers; and x_{3} can be written as

$$
\begin{equation*}
x_{n+1}=\frac{1+x_{n-2}}{x_{n-3} x_{n-2}-1}, \quad n=1,2,3, \ldots, \tag{1.4}
\end{equation*}
$$

with appropriate initial conditions. The difference equation (1.3) has been studied in [8]. In addition, the equation (1.3) with reduced delay appears in [2]. Many wonderful properties of (1.3) have been presented in [9]. The equation (1.4) is yet to be investigated.

2. Main Results

Theorem 2.1. All the difference equations (1.1) - (1.4) have two equilibrium points: the golden number $\frac{1+\sqrt{5}}{2}$ and its conjugate $\frac{1-\sqrt{5}}{2}$.
Theorem 2.2. Every non-equilibrium solution of the difference equation (1.1) is periodic with the minimal period 5 .

Proof. Let α and β be real numbers such $\alpha \beta \neq 1$. Define $x_{0}=\alpha$ and $x_{1}=\beta$. Then, by simple calculations we obtain $x_{2}=\frac{1+\alpha}{\alpha \beta-1}, x_{3}=\alpha \beta-1, x_{4}=\frac{1+\beta}{\alpha \beta-1}$, and the sequence repeats.

3. Future Work

Continuation of the study of the equation (1.1) for generalizations

$$
x_{n+1}=\frac{p+x_{n-1}}{x_{n} x_{n-1}-q}
$$

with varies values of p and q is encouraged. An increased delay was already proposed as the equation (1.4). Investigation of (1.4) with values of p and q replacing the values of 1 is also of interest. Moreover, the difference equations that belong to the class of equations of the form

$$
x_{n+1}=x_{n-k} x_{n-l}-1, \quad n \in N
$$

and particular choice of $k, l \in N$, other than those presented in [8] and [9], are also of great interest.

References

1. A.M. Amhleh, E. Camouzis, G. Ladas, On the dynamics of a rational difference equation, Part 1, International Journal of Difference Equations (IJDE), ISSN 0973-6069, Volume 3, Number 1 (2008), p 1-35.
2. A.M. Amhleh, E. Camouzis, G. Ladas, On the dynamics of a rational difference equation, Part 2, International Journal of Difference Equations (IJDE), ISSN 0973-5321, Volume 3, Number 2 (2008), p 195-225.
3. E. Camouzis, R.G. DeVault, and W. Kosmala, On period five trichotomy of all positive solutions of $x_{n+1}=\frac{p+x_{n-2}}{x_{n}}$, J. Math. Anal. Appl. 291, p 40-49, 2004.
4. E. Camouzis, G. Ladas, Three trichotomy conjectures, J. Difference Equations Appl. 8, 495500, 2002.
5. C.H. Gibbons, M.R.S. Kulenovic, and G. Ladas, On the recursive sequence $x_{n+1}=\frac{\alpha+\beta x_{n-1}}{\gamma+x_{n}}$, Math. Sci. Res. Hot-Line 4 (2) (2000), 1-11.
6. C.H. Gibbons, M.R.S. Kulenovic, and G. Ladas, On the recursive sequence $y_{n+1}=$ $\frac{p+q y_{n}+r y_{n-1}}{1+y_{n}}$, Proceedings of the Fifth International Conference on Difference Equations and Applications, Temuco, Chile, Jan. 3-7, 2000, Gordon and Breach Science Publishers.
7. E.A. Grove and G. Ladas, Periodicities in nonlinear difference equations, Chapman \& Hall/CRC, Boca Raton, 2005.
8. C.M. Kent, W. Kosmala, and S. Stevic, Long-term behavior of solutions of the difference equation $x_{n+1}=x_{n-1} x_{n-2}-1$. Submitted.
9. C.M. Kent, W. Kosmala, M.A. Radin, and S. Stevic, Solutions of the difference equation $x_{n+1}=x_{n} x_{n-1}-1$, Abstr. Appl. Anal., Vol. 2010, Article ID 469683, (2010), 13 pages.
10. W. Kosmala, M.R.S. Kulenovic, G. Ladas, and C.T. Teixera, On the recursive sequence $y_{n+1}=$ $\frac{p+y_{n-1}}{q y_{n}+y_{n-1}}$, J. Math. Anal. Appl. 251(2000), 571-586.
11. M.R.S. Kulenovic and G. Ladas, On period two solutions of $x_{n+1}=\frac{\alpha+\beta x_{n}+\gamma x_{n-1}}{A+B x_{n}+C x_{n-1}}$, J. Diff. Equa. Appl. 6(2000), 641-646.
12. S. Stevic, More on the difference equation $x_{n+1}=\frac{x_{n-1}}{1+x_{n} x_{n-1}}$, Appl. Math. E-notes 4(2004), 80-85.
13. S. Stevic, Global stability and asymptotics of some classes of rational difference equations, J. Math. Anal. Appl. 316(2006), 60-68.
14. S. Stevic, On the difference equation $x_{n+1}=a+\frac{x_{n-1}}{x_{n}}$, Comput. Math. Appl. 56 (5) (2008), 1159-1171.
15. S. Stevic, Nontrivial solutions of a higher-order rational difference equation, Mat. Zametki 84 (5) (2008), 772-780.
16. S. Stevic, Boundedness character of a class of difference equations, Nonlinear Anal. TMA 70 (2009), 839-848.
${ }^{1}$ Department of Math. Sci., Appalachian State University, Boone, NC 28608, USA E-mail address: wak@math.appstate.edu
