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Abstract

In this paper, we introduce tripled partially ordered sets and monotone functions on tripled partially
ordered sets. Some basic properties on these new defined sets are studied and some examples for
clarifying are given.
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1. Introduction and Preliminaries

Partially ordered sets (or poset) are generalizations of ordered sets. A partially ordered set is a set
together with a binary relation that indicates that, for some pairs of elements in the set, one of the
elements precedes the other. A set X is a partially ordered set if it has a binary relation x � y
defined on it that satisfies

1. Reflexivity: x � x for all x ∈ X;

2. Antisymmetry: If x � y, and y � x, then x = y for all x, y ∈ X;

3. Transitivity: If x � y and y � z, then x � z for all x, y, z ∈ X.

Examples of partially ordered sets include the integers and real numbers with their ordinary ordering,
subsets of a given set ordered by inclusion and natural numbers ordered by divisibility. For more
details about partially ordered sets and their properties we refer the reader to [1] and [2].
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Definition 1.1. A partially ordered set X is a totally ordered set if any two elements are comparable.

If X is a partially ordered set and Y is totally ordered, there is a natural interpretation of the term
monotonic as applied to functions with domain X and range in Y . Let (X,≤) be a partially ordered
set and let Y be totally ordered. The function f : X → Y is said to be increasing if f(x1) ≤ f(x2)
whenever x1, x2 ∈ X and x1 ≤ x2 and the function f : X → Y is said to be decreasing if f(x1) ≥ f(x2)
whenever x1, x2 ∈ X and x1 ≤ x2. In [3] and [? ], examples have given of monotone functions. The
aim of this paper is to introduce tripled ordered sets and monotone functions on tripled ordered sets.

2. Tripled Partially Ordered sets

The following definition is the main definition of our paper.

Definition 2.1. Let X be a nonempty set. A tripled partial order relation is a triple relation
�3 on X (i.e. �3⊆ X ×X ×X) which satisfies the following conditions:

(i) (reflexivity) (x, x, x) ∈�3,

(ii) (antisymmetry) if (x, y, z) ∈�3, (y, z, x) ∈�3, (z, x, y) ∈�3, (x, z, y) ∈�3, (y, x, z) ∈�3 and
(z, y, x) ∈�3, then x = y = z,

(iii) (transitivity) if (x, y, z) ∈�3, (y, z, t) ∈�3 and (z, t, w) ∈�3, then (x, z, w) ∈�3,

for all x, y, z, t, w ∈ X. A set with a triple partial order �3 is called a
tripled partially ordered set. We denote this tripled partially ordered set by (X,�3).

Lemma 2.2. We can replace the hypotheses (ii) of Definition 2.1 with

(ii)′ (x, y, z) ∈�3, (y, z, x) ∈�3 and (z, x, y) ∈�3 . (2.1)

Proof . According to the transitivity property of �3, the hypotheses (2.1) implies

(x, z, y) ∈�3, (y, x, z) ∈�3 and (z, y, x) ∈�3 . (2.2)

�
There are many examples for tripled partially ordered sets that we give some of them as follows:

Example 2.3. 1. Let X = {1, 2, 3, 4}. Define �3= {(1, 1, 1), (2, 2, 2), (3, 3, 3), (4, 4, 4), (4, 1, 1),
(4, 2, 2), (4, 3, 3), (4, 4, 1), (4, 4, 2), (4, 4, 3)}. Then � is a tripled partial order on X, and (X,�)
is a tripled partially ordered set.

2. Greater than or equal relation “ ≥” is a tripled partial ordering on the set of integers. Thus
(Z,≥) is a tripled partially ordered set.

3. The division symbol “ |” is a tripled partial ordering on the set of positive integers.
4. Consider R2 with the following tripled partial order

((a1, b1), (a2, b2), (a3, b3)) ∈�3 if and only if a1 ≤ a2 ≤ a3, b1 ≤ b2 ≤ b3.

5. Consider R2 with the following tripled partial order

((a1, b1), (a2, b2), (a3, b3)) ∈�3 if and only if a1 ≤ a2 ≤ a3, b1 ≥ b2 ≥ b3.

6. Consider R2 with the following tripled partial order

((a1, b1), (a2, b2), (a3, b3)) ∈�3 if and only if a1 ≥ a2 ≥ a3, b1 ≤ b2 ≤ b3.

7. Consider R2 with the following tripled partial order

((a1, b1), (a2, b2), (a3, b3)) ∈�3 if and only if a1 ≥ a2 ≥ a3, b1 ≥ b2 ≥ b3.
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3. Well-Ordered Relation

One of the most important tools in (binary) posets are comparable elements. We define the
comparable elements in tripled partially ordered sets as follows.

Definition 3.1. Let (X,�3) be a tripled partially ordered set and x, y, z ∈ X. Elements x, y and z
are said to be comparable elements of X if one of the following cases holds

1. (x, y, z) ∈�3;

2. (y, z, x) ∈�3;

3. (z, x, y) ∈�3;

4. (x, z, y) ∈�3;

5. (y, x, z) ∈�3;

6. (z, y, x) ∈�3.

When x, y and z are elements of X such that neither of the above relations hold, they are called
incomparable.

Example 3.2. 1. Consider the tripled partially ordered set (Z, |) (see Example 2.3). The integers
3, 9, 27 are comparable and 3, 9, 10 are incomparable.

2. Consider the tripled partially ordered set R2 with defined tripled order in Example 2.3 (5).
Elements (1, 4), (2, 3) and (3, 1) are comparable and (2, 2), (3, 3) and (4, 4) are incomparable.

Definition 3.3. A tripled partially ordered set X is a chain if any three elements are comparable.

Example 3.4. 1. The tripled partially ordered set (Z,≥) is a chain.

2. The tripled partially ordered set (Z, |) is not a chain.

3. R2 with the defined tripled partially order in Example 2.3 is not a chain.

Definition 3.5. Let (X,�3) be a tripled partially ordered set. An element α ∈ X is called
smallest element if (α, x, y) ∈�3, for all x, y ∈ X.

Example 3.6. 1. Consider the natural numbers set N with greater than or equal relation. Then
1 is the smallest element of (N,≤).

2. Let X = {2, 4, 6, 8, 10, 12}. Consider X with division relation. According to the following
diagram 2 is the smallest element.

8 12

4

OO ??~~~~~~~~
6

OO

10

2

__@@@@@@@@

OO ==||||||||

Definition 3.7. Let (X,�3) be a tripled partially ordered set. An element β ∈ X is called
biggest element if (x, y, β) ∈�3, for all x, y ∈ X.

Example 3.8. 1. Let X = {1, 2, · · · , 10} with greater than or equal relation. Then 10 is the
biggest element of (X,≤).
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2. Let X = {2, 4, 6, 10, 60}. Consider X with division relation. According to the following diagram
60 is the biggest element.

60

4

??~~~~~~~~
6

OO

10

aaBBBBBBBB

2

__@@@@@@@@

OO ==||||||||

Definition 3.9. Let (X,�3) be a tripled partially ordered set. An element γ ∈ X is called
mid most element if (x, γ, y) ∈�3, for all x, y ∈ X.

Example 3.10. Let X = {3, 5, 15, 30, 45} with division relation. According to the following diagram
15 is the mid most element.

30 45

15

aaBBBBBBBB

==||||||||

3

==||||||||
5

aaBBBBBBBB

Theorem 3.11. Let (X,�3) be a tripled partially ordered set. Then the smallest, biggest and mid
most elements of X are unique if they exist.

Proof . Let α, ά both be smallest elements of X. Since α is the smallest element of X and ά ∈ X,
then

(α, ά, ά) ∈�3, (α, α, ά) ∈�3 and (α, ά, α) ∈�3 . (3.1)

Similarly, since ά is smallest element of X and α ∈ X, then

(ά, α, α) ∈�3, (ά, ά, α) ∈�3 and (ά, α, ά) ∈�3 . (3.2)

Since �3 is a tripled partially order on X, by transitivity property of �3, we have α = ά. By the
similar argument we can obtain uniqueness of the biggest and midmost elements of X. �

Definition 3.12. A tripled partially ordered set X is well-ordered if every nonempty subset S of
X contains the smallest element.

Example 3.13. Set of all pairs X = {(x, y) ∈ R × R : x ≥ 0, y ≥ 0} with tripled partial order �3

that is

((x1, y1), (x2, y2), (x3, y3)) ∈�3 if and only if x1 ≤ x2 ≤ x3, y1 ≤ y2 ≤ y3. (3.3)

Then (0, 0) is the smallest element of (X,�3). Thus, (X,�3) is a well-ordered set.

Proposition 3.14. Every subset Y of a well-ordered set X is itself well-ordered.
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Proof . If S is a nonempty subset of Y , then it is also a subset of X and, as any nonempty subset
of X, it contains a smallest element. Therefore, Y is well-ordered. �

Proposition 3.15. Let X is a well-ordered set. If x, y, z ∈ X, then X is chain.

Proof . The subset s = {x, y, z} has a smallest element, which is x or y or z. In the first case, if x
is smallest element, then we have

(x, y, z) ∈�3 or (x, z, y) ∈�3 . (3.4)

In the second case, if y is the smallest element, then we have

(y, x, z) ∈�3 or (y, z, x) ∈�3 . (3.5)

In the third case, if z is the smallest element, then we have

(z, x, y) ∈�3 or (z, y, x) ∈�3, (3.6)

therefore, X is a chain. �

4. Maximal, Minimal and Middimal Elements

The maximal and minimal elements in (binary) partially order sets are very useful. We define
maximal, minimal and middimal elements in tripled partially ordered sets as follows.

Definition 4.1. Let X be a tripled partially ordered set and let E ⊆ X. An element m ∈ X is a
minimal element for E if there is no x, y ∈ E for which

(x, y,m) ∈�3 and (x,m, y) ∈�3, (4.1)

that is, if x, y ∈ E and if (x, y,m) ∈�3 and (x,m, y) ∈�3, then x = m and y = m.

Definition 4.2. Let X be a tripled partially ordered set and let E ⊆ X. An element ρ ∈ X is a
maximal element for E if there is no x, y ∈ E for which

(ρ, x, y) ∈�3 and (x, ρ, y) ∈�3, (4.2)

that is, if x, y ∈ E and if (ρ, x, y) ∈�3 and (x, ρ, y) ∈�3, then x = ρ and y = ρ.

Definition 4.3. Let X be a tripled partially ordered set and let E ⊆ X. An element l ∈ X is a
middimal element for E if there is no x, y ∈ E for which

(l, x, y) ∈�3 and (x, y, l) ∈�3, (4.3)

that is, if x, y ∈ E and if (l, x, y) ∈�3 and (x, y, l) ∈�3, then x = l and y = l.

Example 4.4. Let X = {2, 3, 4, 5, 6, 8, 12, 15, 30}. Consider X with division relation | as a tripled
partially ordered set. Then consider the following diagram

8 12 30

4

OO ??~~~~~~~~
6

OO ==||||||||
15

OO

2

OO ??~~~~~~~~
3

OO ==||||||||
5

OO
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2, 3 and 5 are minimal elements for X, 4, 6 and 15 are middimal elements for X and 8, 12 and
30 are maximal elements for X.

Theorem 4.5. Let (X,�3) be a tripled partially ordered set. Then the following statements hold:

(i) if α is smallest element of X, then α is unique minimal element of X.

(ii) if β is biggest element of X, then β is unique maximal element of X.

(iii) if l is mid most element of X, then l is unique middimal element of X.

Proof . Suppose α is the smallest element of X, then there is no x, y ∈ X for which

(x, y, α) ∈�3 and (x, α, y) ∈�3 . (4.4)

Thus α is a minimal element of X. Now suppose ά is an another minimal element of X. Note
that α is the smallest element of X, we have

(α, α, ά) ∈�3 and (α, ά, α) ∈�3 . (4.5)

Therefore, from definition of minimal element, we deduce α = ά. By the similar argument, we
can prove (ii) and (iii). �

Theorem 4.6. Let (X,�3) be a chain. Then the following statements hold:

(i) α is smallest element of X if and only if α is a minimal element of X.

(ii) β is biggest element of X if and only if β is a maximal element of X.

(iii) l is midmost element of X if and only if l is a middimal element of X.

Proof . (ii) If l is midmost element of X, by previous theorem, l is middimal element of X. Suppose
l be a middimal element of X, we show that l is midmost element of X. Note that X is a chain, for
any x ∈ X, we have one of the following

(l, x, x) ∈�3, (x, l, x) ∈�3, (x, x, l) ∈�3 . (4.6)

On the other hand, from the fact that l is a middimal element of X, it follows that there is no
X 3 x 6= l for which (l, x, x) ∈�3 or (x, x, l) ∈�3. Therefore, for any x ∈ X, we deduce (x, l, x) ∈�3,
that is, l is midmost element of X. �

5. Upper, Lower and Middle Bounds

In this section we define upper, lower and middle bounds for subsets of a tripled partially ordered
set.

Definition 5.1. Let X be a tripled partially ordered set. A subset A of X is bounded from above
if there exists a u ∈ X, called an upper bound of A, such that (x, y, u) ∈�3 for all x, y ∈ X.

Definition 5.2. Let X be a tripled partially ordered set. A subset A of X is bounded from below
if there exists a v ∈ X, called a lower bound of A, such that (v, x, y) ∈�3 for all x, y ∈ X.
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Definition 5.3. Let X be a tripled partially ordered set. A subset A of X is bounded from
middling if there exists a h ∈ X, called a middle bound of A, such that (x, h, y) ∈�3 for all
x, y ∈ X.

Example 5.4. 1. The set of natural numbers with greater than or equal relation is bounded from
below that 1 is the lower bound of it.

2. Let X be the tripled partially ordered set defined in Example 3.8 (2), then it is bounded from
below and bounded from above. The lower bound of X is 2 and the upper bound of X is 60.

3. Let X be the tripled partially ordered set defined in Example 3.10, then it is bounded from
middling with middle bound 15.

Definition 5.5. Let X be a tripled partially ordered set. A subset A of X is called bounded if it
is bounded from above, bounded from below and bounded from middle.

Proposition 5.6. Let X be a tripled partially ordered set and α, β, γ ∈ X. Then the following
statements hold:

(i) α is smallest element of X if and only if α is a lower element of X.

(ii) β is biggest element of X if and only if β is an upper element of X.

(iii) γ is midmost element of X if and only if γ is a middling element of X.

Proof . (i) α is the smallest element of X if and only if (α, x, y) ∈�3 for all x, y ∈ X, if and only if
α is a lower element of X.

(ii) β is the biggest element of X if and only if (x, y, β) ∈�3, for all x, y ∈ X if and only if β is
an upper element of X.

(iii) γ is the midmost element of X if and only if (x, γ, y) ∈�3, for all x, y ∈ X if and only if γ is
a middlling element of X. �

6. Supremum, Infimum and Middlmum

Definition 6.1. Let (X,�3) be a tripled partially ordered set and A ⊂ X. If u ∈ X is an upper
bound of A such that (x, y, u) ∈�3 for all upper bounds x, y of A, then u is called the supremum of
A, denoted by u = supA.

Definition 6.2. Let (X,�3) be a tripled partially ordered set and A ⊂ X. If v ∈ X is an lower
bound of A such that (v, x, y) ∈�3, for all lower bounds x, y of A, then v is called the infimum of
A, denoted by v = inf A.

Definition 6.3. Let (X,�3) be a tripled partially ordered set and A ⊂ X. If h ∈ X is a middle
bound of A such that (x, h, y) ∈�3, for all middle bounds x, y of A, then h is called the Middlmum
of A, denoted by h = midA.
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Example 6.4. Let X = {a, b, c, d, e, f, g, h}. Consider the following cubic diagram that we show by
vector for comparable elements:

g

e

@@��������
h

OO

f

^^========

d

@@��������

OO

c

^^========

@@��������
b

^^========

OO

a

__????????

OO ??��������

1. Set A1 = {a, b, c, d}. g is an upper bound for A1 and A1 has not another upper bound. Then
supA1 = g. A lower bound for A1 is a and A1 has not another lower bound. Thus inf A1 = a.

2. Set A2 = {a, c, d, e}. The upper bounds of A2 are e and g. Then supA2 = e. A2 has only one
lower bound. It is a, thus inf A2 = a.

3. Set A3 = {a, b, c, f}. The upper bounds of A3 are f and g. Then supA3 = f . A lower bound
of A3 is a and A3 has not another lower bound. Then inf A3 = a.

Example 6.5. Let X = {1, 2, 3, 5, 6, 7, 30, 120, 210}. Consider the following diagram that we show
by vector for comparable elements:

210 120

7

==||||||||
30

OO <<xxxxxxxx

5

OO ==||||||||
6

OO

3

OO ==|||||||||
2

OO

1

aaBBBBBBBBB

OO

1. Set A1 = {1, 2, 3}. The set of all upper bounds for A1 is {6, , 30, 120, 210} and so supA1 = 6.
On the other hand, the only lower bound for A1 is 1, thus inf A1 = 1.

2. Set A2 = {1, 2, 3, 5}. Then {30, 120, 210} is the set of all upper bounds for A2, then supA2 = 30.
Also, the only lower bound for A2 is 1, thus inf A2 = 1.

3. Set A3 = {1, 2, 3, 6}. Then {6, 30, 120, 210} is the set of all upper bounds for A3, then supA3 =
6. 1 is a lower bound for A3 and there is not another lower bound for A3. Then inf A3 = 1.

4. Set A4 = {1, 2, 3, 5, 6}. The set of all upper bounds of A4 is {30, 120, 210}. Then supA4 = 30.
A4 has only one lower bound. Its lower bound is 1, thus inf A4 = 1.

5. Set A5 = {1, 2, 3, 5, 6, 7}. A5 has only one upper bound. Its upper bound is 210, then supA3 =
210. A lower bound for A5 is 1 (there is not another lower bound for A5), thus inf A5 = 1.

6. Set A6 = {1, 2, 3, 5, 6, 30}. Then {30, 120, 210} is the set of all upper bounds of A6. It follows
that supA6 = 30. The only lower bound of A6 is 1, thus inf A6 = 1.
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7. Set A7 = {1, 2, 3, 5, 6, 30, 120}. Then A7 has only one upper bound. It is 120, then supA7 = 120.
A lower bound for A7 is 1 and there is not another lower bound for A7, thus inf A7 = 1.

8. Set A8 = {1, 2, 3, 5, 6, 7, 30}. Then A8 has only one upper bound. It is 210, then supA8 = 210.
A8 has only one lower bound. It is 1, thus inf A8 = 1.

9. Set A9 = {1, 2, 3, 5, 6, 7, 30, 120}. Then A9 has not upper bound, therefore it has not supremum.
A lower bound for A9 is 1 and there is not another lower bound for A9, thus inf A9 = 1.

10. Set A10 = {1, 2, 3, 5, 6, 7, 30, 210}. Then A10 has only one upper bound. It is 210, then supA10 =
210. A lower bound for A10 is 1 and there is not another lower bound for A10, thus inf A10 = 1.

11. Set A11 = {2, 3, 5}. Then {30, 120, 210} is the set of all upper bounds of A11. Then supA11 =
30. A lower bound for A11 is 1 and there is not another lower bound for it, thus inf A11 = 1.

12. Set A12 = {2, 3, 5, 6}. Then {30, 120, 210} is the set of all upper bounds of A12. Then supA12 =
30. A lower bound for A12 is 1 and there is not another lower bound for it, thus inf A12 = 1.

Proposition 6.6. Let X be a tripled partially ordered set and A ⊂ X. The supremum (infimum or
Middlmum) of A is unique if it exists.

Proof . Suppose that u, ú are two supremums for A. Since ú is an upper bound of A and u is a
smallest upper bound, then

(u, u, ú) ∈�3, (u, ú, ú) ∈�3 and (ú, u, ú) ∈�3 . (6.1)

Similarly

(u, ú, ú) ∈�3, (ú, ú, u) ∈�3 and (ú, u, u) ∈�3 . (6.2)

On the other hand, �3 is a tripled partially ordered on X. Then by transitivity property of �3,
we deduce u = ú.

If v, v́ are two infimums of A, then v́ is an upper bound of A and v is a biggest upper bound,
then

(v́, v́, v) ∈�3, (v́, v, v) ∈�3, and (v́, v, v́) ∈�3, (6.3)

and similarly

(v, v, v́) ∈�3, (v, v́, v́) ∈�3 and (v, v́, v) ∈�3 . (6.4)

Since �3 is a tripled partially ordered on X, by transitivity property of relation �3 we deduce
v = v́.
By the similar argument, we can show the Middlmum of A, is unique. �

7. Monotone Functions

One of the most important class of functions on partially ordered sets are monotone functions.
We define the monotone functions on tripled partially ordered sets as follows.

Definition 7.1. Let (X,�3) be a tripled partially ordered set and let f : X −→ X be a mapping.
Then

1. f is monotone of type 1, if (f(a), f(b), f(c)) ∈�3 if (a, b, c) ∈�3.

2. f is monotone of type 2, if (f(a), f(c), f(b)) ∈�3 if (a, b, c) ∈�3.

3. f is monotone of type 3, if (f(c), f(b), f(a)) ∈�3 if (a, b, c) ∈�3.
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4. f is monotone of type 4, if (f(c), f(a), f(b)) ∈�3 if (a, b, c) ∈�3.

5. f is monotone of type 5, if (f(b), f(a), f(c)) ∈�3 if (a, b, c) ∈�3.

6. f is monotone of type 6, if (f(b), f(c), f(a)) ∈�3 if (a, b, c) ∈�3.

Example 7.2. 1. Let (R,�3) be a tripled partially ordered set and let f : R −→ R be identity
function. Then f is a monotone function of type 1.

2. Let (R2,�3) be a tripled partially ordered set such that

((a1, b1), (a2, b2), (a3, b3)) ∈�3 if and only if a1 ≤ a2 ≤ a3, b1 ≤ b2 ≤ b3.

Let f : R2 −→ R2 be identity function. Then f is a monotone function of type 1.

3. Consider the set S = {(2n, 2n+1, 2n+2) : n ∈ N} with order “ ≤”. Define f : S −→ N∪{0}
by f(x) =remainder of division of x to 2. Then f is a monotone of type 2.

4. Let (R2,�3) be a tripled partially ordered set such that

((a1, b1), (a2, b2), (a3, b3)) ∈�3 if and only if a1 ≤ a2 ≤ a3, b1 ≤ b2 ≤ b3.

Define f : R2 −→ R2 by f(x) = −x, for all x ∈ R2. Then f is a monotone function of type 3.

5. Consider the set S = {(3n, 3n+1, 3n+3) : n ∈ N} with order “ ≤”. Define f : S −→ N∪{0}
by f(x) =remainder of division of x to 3. Then f is a monotone of type 4.

6. Consider the set S = {(2n+1, 2n+2, 2n+3) : n ∈ N} with order “ ≤”. Define f : S −→ N∪{0}
by f(x) =remainder of division of x to 2. Then f is a monotone function of type 5.
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