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Abstract

In this paper, by using the way of weight coefficients and technique of real analysis, a multidimen-
sional discrete Hilbert-type inequality with a best possible constant factor is given. The equivalent
form, the operator expression with the norm are considered.
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1. Introduction

Assuming that p > 1,141 = 1, f(2),g(y) > 0, f € L(Ry), g € LR, |1}y = LS fo(e)de} > 0,
llg]|; > 0, we have the following Hardy-Hilbert’s integral inequality (cf. [3]):

[T f)el)
| R ey < sl (11)

with the best possible constant factor 7. If am, b, = 0,a = {am}yi_; € 7,0 = {b,}72, € 17,
lall, ={> 0, aﬁl}% > 0, |b||; > 0, then we have the following discrete Hilbert’s inequality with the
same best constant —7—— :
Sn(n /)
b 1.2
Y e < Tl (12)

m=1 n=1
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Inequalities ([1.1)) and (1.2)) are important in analysis and its applications (cf. [3], [11], [I7], [14], [19],
[20]).

In 1998, by introducing an independent parameter A € (0, 1], Yang [18] gave an extension of ([1.1])
at p = ¢ = 2. For improving the results of [18], Yang gave some extensions of (1.1) and (1.2]) as
follows (cf. [17]):

If Adj, Ao, A € RyA + Ay = A ky(z,y) is a non-negative homogeneous function of degree —\, with
k(M) = /Ooo Ex(t, D)t 1dt € Ry,
¢(a) = P h(a) = 21U (), g(y) = 0,
e LyalRe) = { il o i= (| otolaan) <
9 € Louw(R), | fllp.s: l19llgw > 0, then

/ / (1) £ (0)g()ddy < KOl l9l o (1.3)

where the constant factor k(\;) is the best possible. Moreover, if ky(x,y) is finite and
kx(z,y)x™~(ka(x, y)y*? ') is decreasing with respect to z > 0(y > 0), then for a,, b, > 0,

0o 1
a€ o = { i llal o = {52, 6(n)lanlP}s < oo},
b= {bu}21 € lyws llal s [Bllgs > O, we have (cf. [12])

Y kalmyn)amb, < k(A)lallpellbllo. (1.4)

m=1 n=1
with the best possible constant factor k().

Clearly, for A = 1,ky(z,y) = x+y A= —,)\2 = z_la’ reduces to , while reduces
to . Some other results including multldimensional Hilbert-type inequalities are provided by
[23]-[10].

On half-discrete Hilbert-type inequalities with the non-homogeneous kernels, Hardy et al. pro-
vided a few results in Theorem 351 of [3]. But they did not prove that the the constant factors are the
best possible. However, Yang [21] gave a result with the kernel a + by introducing a variable and
proved that the constant factor is the best possible. In 2011 Yang [22] gave the following half-discrete
Hardy-Hilbert’s inequality with the best possible constant factor B (A1, Ag):

e}

/0 °°f<x>zmdx < B 0w ) ool (1.5)

where A\;, A2 > 0,0 < Xy <1, A\ + Xy = A, B(u, ) fo 1+t)u+1, e t*"1dt (u,v > 0)is the beta function.
Zhong et al ([29]-[37]) investigated several half-discrete Hilbert-type inequalities with particular
kernels.

Applying the way of weight functions and the techniques of discrete and integral Hilbert-type
inequalities with some additional conditions on the kernel, a half-discrete Hilbert-type inequality
with a general homogeneous kernel of degree —\ € R and a best constant factor k& (A;) is obtained
as follows:

/0 F@)' S k(s n)andz < KO pgllallgs (1.6)
n=1
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which is an extension of ([1.5)) (see Yang and Chen [24]). At the same time, a half-discrete Hilbert-
type inequality with a general non-homogeneous kernel and a best constant factor is given by Yang
[15].

In this paper, by using the way of weight coefficients and technique of real analysis, a multi-
dimensional discrete Hilbert-type inequality with iarameters and a best possible constant factor is

given, which is a multidimensional extension of (|1.4]) for ky(m,n) = % The equivalent form,

the operator expression with the norm are also considered.

2. Some lemmas

If ig, jo € N(N is the set of positive integers), «, 5 > 0, we put

llla _(lek|a) (z = (21,--+,2;) € RY), (2.1)

lylls Z(Zlyklﬁ) (y= (. ys) € RP). (2:2)

Lemma 2.1. Ifs € Ny, M > 0,¥(u) is a non-negative measurable function in (0,1], and Dy =
{z e Ry; > ) < M7} then we have (cf. [16])

/ /DM (H >)dx1 ~dzg (2.3)

MoT5(
= —)/O U (u)u " du. (2.4)

Iz
Lemma 2.2. For s € Ny >0, € > 0, we have
e G o(1 0t 2.5
ZHWHW —WJF (1) —07). (2.5)
Proof . For M > s'/7, weset W(u) = (Mulg)o A, M<” ~ 1 Then by the decreasing property

and " lt fOHOWS Zm ||m‘|;5—€ Z f{xeRi;xiZH HxH;S_Edaj

:A}iinoo/ /DM (Zl ))dml - dz, (2.6)

= lim ﬂ/ (Mul/’Y) s=ur Ldu = L%) (2.7)
W5 3 TC) Sy es P T (E) |
Dolmllz=e = at Y [lmll*
m {meNs;m;>2}
(3

< a+/ 5 = o+ —
{ueRi;ui21} 7 8/778 1F(§)

Then we have (2.5). OO O
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Definition 2.3. For Oé,ﬁ > O,)\ > 0,0 < )\1 < ?:0,0 < )\2 < j07/\1 + )\2 = )\, m =
m) as follows:

N, n=(ng,---,nj) € N, define two weight coefficients wy(Aa,n) and Wi(Ay,

In(||m||a/||n 1S
O, ) Z ([lm[la/]In]|5)

[lmll5 = [lnll3 [jm]le=
n({lmlla/lInlls) _lImlla"

Wi(Ar,m
. Z [Imll = Mnll3 ||n|lf =

where, Y, = Zmi0:1 e Zz:l and -, = an0:1 T Zi:l :
Lemma 2.4. As the assumptions of Definition 1, then (i) we have

w,\()\g,n) < KQ(TLGNjO),
W)\(/\l,m) < Kl(meN"O),

where,
, 72
o) [ .
Kl - j0—1F jo )\ . AL )
BR7ID(%G) | Asin(55H) |
. - 12
o (L) T
KQ = = ZES) ;
i I(2) | Xsin(™5L)

ii) for p > 1, 0 < £ < pAy, setting Xl =)\ — E,Xg = Xy + £, we have
p p

0 < Ky(1 —0y(n)) < wr(Ag, n),

where,
~ 2 A a 2 ~
~ 1 7'(')\1 %o /Hn‘lg (hlv),v()\l/)\)—l
0 = |Zsin(=— d
) = | >] / WO
1
- O ’)“\ A1 )
1
[Inll5

2

- [io(L -

K2 - i—l(a)io : A '
a0~ 1I(2) Asin(%5L)

Proof . Proof. By the decreasing property and (2.4)), it follows

A2
1 « n
o) < [ Blllollnl) el
RY

1zl[d = lInl3 [l|le~"

+/lInlls) llnllézdfffl'”dxio

=il MM ()] 5

In(MI2, (5)°
1= S MM, ()]
_ o AT / M<Auua/unng> s

o

o = [nl[3 Mio- M Tt

83

<m17'”7mi0) €

(2.8)

(2.9)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)
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“Ldu

~ g A in(Mu /|l Inll}?
W QR (®) Jo T AP — [l

i0
F’O( ) /°° (Inv)pPM /A1
Ao~ 11“(’0) 0 v—1

2
[o(2) T

g - a - = K .

a1 (%) [)\sm(’rg\l)] 2

Hence, we have (2.10). By the same way, we have (2.11)).

. . A A .
Since lim,_,o+ % = 0, there exists a constant M > 0, such that

u=ln—ollgM 0=

v

/(2N ] AL_1
Y Mwe 0.0y ).

v—1
By the decreasing property and the same way as obtaining ([2.7]), we have
- tn(|fz|la/|[]]5) |Inll3
(e [ Ulella/lla) T2
{z€R;z;>1} |z][3 — [In|]3 |||~

rio(l) /w (Inw)p /Dt

At D() ey v =1

dv = K5(1 — 05(n)) > 0,

T A v—1

~ 2 A/« A
i/ lnllg <
L ”il)] M/O o1
™ 0

~ 2 Ao A
_ 1 3 D Ml (1w Yo /N-1g
0 < Oy(n)= [—sin(u)] /o 5 (Inv)v v
0

A
!
2
E

_My/e
_ )xMSlHQ(WT’\l)z'(())‘1 2)/
N A2 X

(A=) |3

The lemma is proved. [ [

3. Main Results and Operator Expressions
Setting ®(m) := |[m|[2° "7 (m € N) and ¥(n) := [[n||4"° 7 (n € N%), we have
Theorem 3.1. Ifa,f >0, A > 0,0 < A <ip,0 < Ay < jo, M + Ao = A, then forp > 1,2+ 2 =1

A, by, > 0,0 < ||a||p.a,||0]|g0 < 00, we have the following inequality

1 1 1
ZZ n(|[m|lo/]|n[|5) by < K7 K2 |al]p.0][b] g0, (3.1)

[Iml[3 = lInll3

where the constant factor
1
101 (L P oTio(l
NN LR SO
prIT(R) | LAI(R)

18 the best possible.

Q=

[)\sin(”T’\l)] (32)
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Proof . By Hélder’s inequality (cf. [§]), we have

i A
Lzzmumn oflinls) [l 2 Il
Il =TIl | ] G2 | [ o207

In]

1

P
{ZWA Ay, m)||m] [0 >m}

1
{Zw g
Then by (2.10) and ( , we have (3.1)).

For0<5<p)\1,)\1:)\1—§)\ :)\Q—I—%,weset

—ig+A1— —jotA2—=

am—||mHa 7 by = [|n “(m e N, n e N7,

Then by (2.5) and (2.14), we obtain
[ —107 )\
ol = {lemll” o } {Zunuﬁm ) b}

= {Z Hm!la"“}p {Z HnHﬂj”} (3.3)
E

Q|

1
p

Z [Z 1T’TrLWJ|_/‘|‘|Z‘|‘|f m] Zw)\ )\2’ ‘nH —Jjo—¢ (36)

1

> Kyy 1_O(W> [Inll57 ™ (3.7)
- 9o (1) . ]

= Ko - O1)—-0(1)]|. 3.8

ng/%jo_lr(%)+ (1) -o() (39

1 11
If there exists a constant K < K K, such that 1} is valid as we replace K7 Ky by K, then

~ FJ'O(l) ~ .
we have K2 {m + 80(1) — 50(1):| <el
1
K[@||po bllo = K ™ () om|
< eK|lallpel|bllgy = m—i—E (1)
To(l B q
Jo 5JO_IF(JEO)
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11

For e — 0%, we find FJO(%) - ——o——and then K7 KJ < K.
gio—1r(g) &) R0 jp g

B8 atlo— 11—\<'LO) Asin (7")‘1) - 10711—\("60>

plo—1r(19)
11
Hence, K = K} K is the best possible constant factor of 1} 00

Theorem 3.2. As the assumptions of Theorem 1, for 0 < ||a|[,e < 00, we have the following
1 1

inequality with the best constant factor K7 KJ

1
.
i In(l|m|la/||n[lg)am \ (" 5 ooh
J = {Z ||n||gx2 jo (Z D = HnﬁA < K? K ||al|p.e, (3.9)
n m & B

which s equivalent to .

. -1 ,
Proof . We set b, as follows: b, := ||n||g’\2_]0 (Zm W)p ,n € NJ Then it follows

[Iml[X~Inl13
= [[b]]Z ¢ If J = 0, then (3.9) is trivially valid for 0 < |lal[,e < oo; if J = oo, then it is
1mp0881ble since the right hand 81de of . is finite. Suppose that 0 < J < c. Then by (3.1] . we

find —b—~J, =JF=1< K"K l|al|p.a|]b]|qw,namely, Hb||g\1,1 =J< K”KqHaHpq>, and then

. ) follows.

On the other hand, assuming that (3.9) is valid, by Holder’s inequality, we have

I = Z(\p(n))% Z 1n<HmHa/HnHB)Aam

o [(T(1))7b,) < J|[b]]0- (3.10)
[l = [nll3

n m

Then by (3.9), we have (3.1). Hence (3.9) and (3.1]) are equivalent.

By the equivalency, the constant factor K7 KJ in (3.9) is the best possible. Otherwise, we can
1 1

come to a contradiction by (3.10]) that the constant factor K7 Ky in 1} is not the best possible.
O

For p > 1, we define two real weight normal discrete spaces 1, and 1, as follows:

e ={GZ{am};Hallp,@Z{Zfb(m)afn};<OO},
Ly ={b={bn};||b||q,@={Z\If<n>b;a}é<oo}.

11
As the assumptions of Theorem 1, in view of J < K7 KJ'||al|,e, we have the following definition:

Definition 3.3. Define a multidimensional Hilbert-type operator T': 1,6 — 1, y1-» as follows: For
a € 1,4, there exists an unique representation T'a € 1, y1-», satisfying

Ta(n) := 3 2lello/lInll)an o ooy (3.11)

[Imll3 = llnl13

m

For b €1, y, we define the following formal inner product of T'a and b as follows:

In([[m|a/[|nl]s)am
(Ta,b) ZZ Tl = Tl by (3.12)

[Inll3
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Then by Theorem 1 and Theorem 2, for 0 < ||a||,.,, ||b]|q,» < 00, we have the following equivalent
inequalities:

(Ta,0) < K{E;|lallyollbllge, (3.13)
1 1
| Tallpw—» < K Kyllallpe. (3.14)

It follows that 7" is bounded with

T - 11
|| a||p,‘1’1 < KPKJ. (3.15)

|T|| ;== sup
a(#£0)€l, o ||al

p,®

11
Since the constant factor K{ K4 in (3.14) is the best possible, we have

Corollary 3.4. If T is defined by Definition 2, then it follows
11 Fjo(l)
B

Remark 3.5. Forig=jo=11in , we have inequality

™

Asm(%l)]?' (3.16)

3=

7

T (%)

2

In(m/n) T
b S —— bl|g.1s- 3.17
oy, < s | lalloelBllos (3.17)

A
m=1 n=1 (T)

Hence, is a multidimensional extension of for kx(m,n) = In(m/n)

mr—nA
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