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Abstract

In this study, by a non-negative homogeneous kernel k£ we prove some extensions of Hardy’s inequality
in two and three dimensions.
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1. Introduction

The classical Hardy inequality reads:

/OOO(M)de < (2%),,/:0#(@ dr,  (p>1) (1.1)

T

where, f is nonnegative function such that f € LP(R,) and R, = (0,00). The almost dramatic
period of research in at least 10 years until G.H. Hardy [I] stated and proved was recently
described in details in [2].
Another important inequality is the following:
If p> 1 and f is a nonnegative function such that f € LP(R,), then

/000< 000 /() d:c)pdy < " /Ooofp(y)dy. (1.2)

sin(7)

It was early known that these inequalities are in fact equivalent. Moreover, (1.2)) is sometimes
called Hilbert’s inequality even if Hilbert himself only considered the case p = 2 (L spaces were not
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defined at that time).

We also note that (1.1) can be interpreted as the Hardy operator H : (H f)(x) := L [* f(t)d¢t, maps
L? into LP with the operator norm ¢ = 1% <since, it is known that (%) is the sharp constant in

" +y L&) g maps LP

). Similarly, 1) may be interpreted as also the operator A : (Af)(y) = [~

P
into LP with the operator norm (¢> .
sin <w/p>
In 1928 Hardy [2] proved an estimate for some integral operators as a generalization of the Schur

test, from which the first ”weighted” modification of Hardy’s inequality (1.1]) followed, namely the
inequality

/:YW)%a dx < (*)p/omfp(x)xa dz, (p>1) (1.3)

valid, with p > 1 and o < p—1, for all measurable non-negative functions f(see [3] Theorem 330),

p
where the constant ( is the best possible. The prehistory of 1) up to the time when Hardy

p
p—a—1
finally proved (1.1)) in 1925 in [3] can be found in [6]. After that the inequality has been developed
and applied in almost unbelievable ways. See for instance the books [6], [7] devoted to this subject
and also the recent historical article [5] and references given therein. Recently, many extensions of

hardy’s inequality in higher dimensions are appeared(cf. [4], [8], [12]).

In this section, we introduce some inequalities due to B. Yang and W.T. Sulaiman. These inequal-
ities are extended Hardy‘s inequality and Hardy-Hilbert‘s inequality. First, we give one inequality
which is given by B. Yang and also is an extension of Hardy-Hilbert‘s inequality.

Theorem 1.1. ([11], Theorem 2.1). Let f and g be two nonnegative real functions and A > 2 —
min{p, ¢} such that

0</ tAfP(t) dt < oo, 0</ 72 g(t) dt < oo.
0 0

If A, B > 0, then we have

e (B >A5(pﬂ_2’q+3_2>(/oootl‘Af”<t>dt);(/omtl i)

In the following we give two inequalities which are given by W.T. Sulaiman and also are exten-
sions of Hardy‘s inequality. We shall give some generalizations of these inequalities through the next
section.

1

Theorem 1.2. ([9/, Theorem 1). Let f,g >0, p> 0, %+ % =1, A>1and oy =p(A—1)+1.
Assume that

Then

/ / ) dzdy < B(), A)(aa_l);’(%ajl)q"</0°°fa,,(t)dt>é</0°°gaq(t)dt)q_
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Theorem 1.3. ([9/, Theorem 2). Let f,g,h >0, p,q,l > 1 and 110 + % + 1 = 1. Also suppose that
s,;t€{p,q,1}, asy =M1+ 32)+(A=1)(p—1) and A > 1. Assume that

F(z) = /0 fwdn Gy - /0 oydt,  H(z)— /O “nt) dt.

If
O</ fora(t) dt < oo, 0</ gl (t) dt < oo, 0</ hote(t) dt < oo,
0 0 0
then
ap,q Yq.l Ap
oo o0 OOFT<I')GT(:I/)HT(2) /oo % /oo %
drdydz < K () dt Yal(t) dt
/// RIS wdyde < K ([ perateyae) (g )
oo 1
X Rote () dt)
([ o)
where X o N
a S Qg \d [ —*
K =p3(\ 2N, 2)\) ( —2L— o - .
B, N)B(2A, >(%q_1) (%1_1) (%_1)

2. Extensions of Hardy‘s inequality

Suppose that

1 (=)t
Kay)=4 T v BV
0 if x> y.
With r = 1 we obtain the kernel of Cesaro

ifr<y

Ow =

k(z,y) = {

Hardy, Littlewood and Polya proved the following known theorems:

if z>vy.

Theorem 2.1. ([3/, Theorem 319). Suppose that p > 1, and k(z,y) is nonnegative and homogeneous
of degree -1, and

/ k(x, 1)x_% dx = / k(l,y)y_% dy = c.
0 0
Then

[ st dsty <o [~ rrwas) ([ i)
If k(z,y) is given as above, then we have
c= /Oook(x, 1)x_% dx = /01(1 - x)T_lx_% F(lr) dx = F(l;(j——i)l)'

With r = 1 we obtain k = = = ¢
p—1
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Theorem 2.2. ([3], Theorem 329). If p > 1, r >0 and

F @) = 55 / ety i

/Om(fy)ydﬁ +1—- / file

1 - r—1
m/.@ (t—x)"f(t)dt

0 ., P F(%) p [ . P
/0 (f (a:)) da:<{r(r—+%>}/0 (3: f(x)) dx

unless f = 0. In each case the constant is the best possible.

then

unless f = 0. If

f(x) =

then

The function f, is called the Riemann-Lioville integral of f of order r and the function f” is called
the Weyl integral of f of order r.

By applying the above two theorems, we state and prove new inequalities as follows.

Theorem 2.3. Let f,g>0,p>1,7r>0 and 1% —i—é = 1. Also assume that k(x,y) is a non-negative
homogeneous function of degree —2\ with A > 1 and that o, = p(A — 1) + 1.
If

F@) = [ =0
wl0) = g [ =gty

then
R fr(17) TP r(y) aq QTP QTq
L[ () (B2) 7 k) dedy < Clpa. NOwIOWIN, ol
where N 1 N 1
Clp.q.\) = (/0 tA—lk(l,t)dt)”(/o Pt 1)dt) |
and » 1 |
- e
@(S):(F(r—i-l—ais)) '
Proof .
op A—1
[ fr(‘r) an gr(y) % o OO/OO(J;TT(_xl))pyp 1
/0 /0 <xr—1> <yr—1) k(z,y) dedy = . —x% kv (z,y)
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w oo (L)t )
§</ / Wk(ff,y)dxdy)”
w@ 1 1

/ / (A= 1 eyl CE) dwdyy

1 1
=UrVa.

If we take y = tx, then applying Theorem [2.2] we obtain

U::(/m<ﬁ§@)%lm></m}kIMLtMQ
< (/OOO £ k(1, 1)) (F(i(i%j%i))%(/omf%(x) r).

Similarly, we can show that

Ve ([ e ) (F(it%_"%l))a"( [ o).

This completes the proof. [J

Corollary 2.4. (i) By taking k(x,y) = W, in above-mentioned theorem, we have

oo t}\—l
Clp,g.\) = | ———dt
(p,q, M) A R

= B(\N).

Now, putting r = 1, Theorem is obtained.
(ii) Assume that A, B > 0, by taking k(z,y) =

m, in Theorem 2.3 one may obtain the following
generalization of Theorem[I.3:

%q

ﬂ@ 1 w@)T 1 o 1 o
i 1 r—1 1 F(l o ) pat 3 F( ) pal:
dxdy < AN (—— 2 ) [(——— 2 )¢
/‘/) (Aot Byp oy < ppft mrg+1—%9 <r@+1-$ﬂ
o0 1

<([Trwa) ([Coa)

(iii) By taking k(x,y) = m, in above-mentioned theorem, we have

o0 t)\—l
0

1+ 2

™

2\
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This leads us to the following inequality

<y>>qq
CCT 1 r—1 T a?p O?Tq
| / WA dndy < 2-6(p)0(0) 112 ]l

Theorem 2.5. Let f,g,h > 0, p,q,l > 1, %—i— é +% =1 and s,t € {p,q,l}. Also, assume that

k = k(z,y,z) is a non-negative homogeneous function of degree —4X\ with X > 1 and as; = A(1 +
D+ A=1)(p—1) and r > 0. If we take

Fo) =7 [0 ar
1 Y r—1

1

() = 7 / (2 — 7 h(t) dr,

9-(y) =

then

L[ ) ¥ ke dodyz < o VO )0

Zrl

¢ 1)O(l, p)
X[ fllagq gllags 12llas, -
C(p,q,l,\) = / / w P T (1, u, v) dudv / / AT ( u,l,v)dudv)
00 00 %
x(/ / u’\’lv”’lk(u,v,l)dudv)
o Jo

where

and

Proof .

fr(x) a% a1 2/\;1
The left hand side of inequality = / / / 1) P Y Pz

q

Qagq,r A—1 22—1
(—ZTT(}/I)) ¢ z a9 4g
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fT(z apgs A1 22—1 X
r— PQy z ;
/ / / - Dol AL k(x,y,2) dwdyd2>
gr(y )oai A1 32A=1 .
X</ / / k(l’,y’z) dxdydz>q
az ppA—1,22—1 1
% (/ / / Zril 2/\ . LA ?) k’(;E, Y, Z) dxdydz> ! .
= L%Ma NT,

fr(w )ona A—1_2\—1
o1 Yz
/ / / 2)\ 1, 1_1) k(x,y,z) dxdydz.

By taking y = ux and z = vz we have

L_(/O (fr // “”lmuv)dudv)

By applying Theorem [2.2] we deduce that

JZ
—1

)

where

R NS W F(1_$> AP a
L<(/O /0 Wl k(l,u,v)dudv><r(r+1_$>> (/ fora(z)d )

Similarly, one can show that

M < </OOO /OOO u/\—lv2>\—1k(u,l,v)dudv> <F(£(izj%i)>“4vl(/ooog%l(y) dy),

Qq,l

and

N < </0°° /000 w Pk (u, u, 1)dudv> (F(l;(iz_a%i)>al’p</oooho‘lm(z) dz).

Al,p

This completes the proof. [J

Corollary 2.6. By taking k(x,y, 2)

i with A, B,C > 0, in above-mentioned theorem,
the following inequality is obtained:

_ 1
~ (Az+By+C=z

gr(y) ) (h:(zl) )Tt 1

xO(q, DO, )l fllog.a gllag, 1Alar, -
In special case, by takingr =1, A= B =C =1 we obtain Theorem[1.3 due to W.T. Sulaiman.
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By similar manner, one may prove dual form of Theorems [2.3] and [2.5] which are stated in the
following;:

Theorem 2.7. Let f,g >0, p> 1, % + é = 1. Also, assume that k(x,y) is a non-negative homoge-
neous function of degree —2\ with A > 1, a, = p(A — 1)+ 1 and r > 0.
Suppose that

r 7L > _l,r—l
ra) =g [ t=ar

g (y) = ﬁ / oo(t —y) " g(t) dt.
Then

/OW/OOO(ff’“(x))?(?/9’@)%%@ y) dudy < C(p, g, VOB | £l gl

C(p,q,\) = (/Oootk—lk(l,t)dtf(/Oootk—lk(t,l)dtf,

_ F(QLP) op
olp) = (W)

where

and

Theorem 2.8. Let f,g,h > 0 ,p,q,l > 1, %—i— % —l—% =1 and s,t € {p,q,r}. Also, assume that

k(x,y,z) is a non-negative homogeneous function of degree —4X with A > 1 and o,y = M1+ §) +
(A=1)(p—1) and r > 0. Assume that

=g [-orsom
i e
=ty [

Then

2q,l 2lp

/000/000/000 (xf’“(@)oﬁq (yg?“(y)> a (zh’"(z)) l k(x,y,z)dxdydz < C(p,q,l, )\)é(p7 q)(:)(% l)é(l,p)

ap,q “g,l Xp
P q 1
X|| fllagq lgllag, [IAllal, ,
where

1

00 o0 1 [e's) (%s)
C(p,q,l,\) = / / w AT (1, u v)dudv) (/ / u’\_lv”_lk(u,l,v)dudvy
o Jo o Jo
/ / o (v, 1)dudv) :
o Jo

~I

and

Q
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The following statement is a Hardy-type inequality which due to W.T. Sulaiman:

11
Theorem 2.9. ([10], Theorem 2). Let f,g >0,p>1and ; + = 1.

Suppose that
T Y
=/ f(t) dt, G(y)z/ g(t) dt.
0 0

Then

/ / a:pyq )dxdy<pﬂ *(p.p) q B(¢,9)) / £7(x dxf(/jg'?(y)dy)é.

We generalize this theorem as follows:

Theorem 2.10. Let f,g >0, p>1 and r > 0. Also assume that k(x,y) is a non-negative homoge-
neous function of degree —2\ with A > 2, o, = p(A — 1) and Ilj + % =1.1If

F@) = [l =0

0,(y) = %) / -ty g(t) dt,

then

aq

/OOO/OOOx;yi;(fr(x)) <gr(y)> k(x,y)dxdy < C(p, )@(p)@(q)HfH:?:HQHE,

yr—l

C(p,q) = (/Oootp—lkg(l,t)dt>’l’</o 1 (¢, 1)dt>;),

P(l—) \%
o = (Frrromy)

and

Proof .

< (7 R s )
< / h / T

— M»Ni.

The left-hand side of inequality = / / yq T(I)> k2 (z,y) x v <gr<y>>ké(c€ y) dzdy

),

/N

ok
8
S
QL
8
=Y
<
N—
<
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Note that a,, = pA — p and so by taking y = tx we have

M= (/OOO (f’"gff)>apdx> (/OOO tp—lkg(l,t)dt)

By applying Theorem [2.2] one may obtain

M < (/OOO tpfllgg(l,t)dt> (F(Zt%ﬁpl))%(/owfap(x) d:c).

By the same way, one can show that:

N < </00<> tq—lk;%(t,l)dt> (F(z(j_f_f%l)>%</owgaq(y) dy).

This completes the proof of the statement. [J

Corollary 2.11. By taking r = 1 and k(z,y) =

1 Tt i above-mentioned theorem, one may obtain
Theorem [2.9.

(z+y

Proof . Note that

Q=

/tplkzlt )(/Oootqlk:wl)dt))
/ V([ )

— 85 (p, )65(%@-
O

Theorem 2.12. Suppose that f;(1 < i < n) are nonnegative integrable functions, p;(1 <i <n), are
nonnegative numbers such that they are not all zero and s =>_p;. Define

_ /mfi(t) i, (1<i<n).

Then

/OOO(F“(‘"’”);F”;"(“”’;))&<sp_5> </ szfz ).

Proof . By the theorem of the arithmetic and geometric means one may obtain

% < p1F1($> +oe +pnFn(‘r)

(7@ (@)

Therefore

(Fe)

1»8

() )‘2 < i(plFl(aﬂ

sP x x
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By integrating we have

/M<Ffl<x>---F5n<as>>i S;/w< i) | By,

xs sP X X

= é(%)p(/oﬂipifi(éﬂ))p dx).

The last inequality is obtained by applying the Hardy’s inequality. [l

Corollary 2.13. By taking py = 1 and py = --- = p, = 0 in Theorem the Hardy’s inequality
1s obtained.

Theorem 2.14. Letn > 2, f;(1 <i < n) be nonnegative integrable functions and p; > 1(1 < i < n).
Define

Then

/OOOFI(x) 'x'n'F”(I) dr < Z%(pip_" 1)@(/000 f’i(x)dx).

Proof . By Holder’s inequality we have

— o .. o
Now, by integrating and applying the Hardy’s inequality the assertion is proved. [

Corollary 2.15. By taking p; = p and F; = F' in Theorem |2.14] one may obtain

My )= g [
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