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Abstract

Some fixed point theorems and common fixed point theorem in Logarithmic convex structure are
proved.
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1. Introduction

In 1970, W. Takahashi [5] introduced the notion of convexity in metric spaces and studies some
fixed point theorems for non expansive mapping in such spaces. He proved that all norm spaces and
their convex subsets are convex metric spaces. Takahashi also gave many examples of convex metric
spaces which are not embeded in any normed Banach space. Subsequently, M. D. Guay, K. L. Singh
and J. H. M. Whitfield [2], Machado [3], Tallman [6], Shimizu [7] and Ciric [1] were among others
who obtained results in this setting. Recently, the auther and et al. [4] define the notion of the
logarithmic convex structure. In this paper, some fixed point theorems and a common fixed point
theorem is proved.

2. Definitions and propositions

For a metric space (X, d), a continuous mapping, W : X×X× [0, 1] −→ X is said to be a convex
structure on X if for all x, y ∈ X and λ ∈ [0, 1]

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y) (2.1)
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holds for all u ∈ X. The metric space (X, d) with a convex structure is called a convex metric space.
A Banach space and each of its convex subsets are convex metric spaces. But a Frechet space is not
necessary a convex metric space [5].
Recently, the author and et al. define the logaritmic convex structure as the following:[4]

Definition 2.1. Let X be a set and D : X × X → [1,∞) be a mapping satisfying the following
conditions:

(i) For all x, y ∈ X, D(x, y) ≥ 1 and D(x, y) = 1 if and only if x = y.

(ii) For all x, y ∈ X,D(x, y) = D(y, x).

(iii) ∀x, y, z ∈ X;D(x, y) ≤ D(x, z)D(z, y).

(iv) For all x, y, z ∈ X, z 6= x, y and λ ∈ (0, 1);

D
(
z,W (x, y, λ)

)
≤ Dλ(x, z)D1−λ(y, z) and

D(x, y) = D
(
x,W (x, y, λ)

)
D
(
y,W (x, y, λ)

)
(2.2)

where, W : X × X × [0, 1] → X is a continuous mapping. We name this a logarithmic convex
structure.

A subset K of a logarithmic convex structure is said to be log-convex if W (x, y, λ) ∈ K for all
x, y ∈ K and λ(0 ≤ λ ≤ 1).

Remark 2.2. Note that for every convex metric space (X, d), by defining D(x, y) = ed(x,y), we obtain
a log-convex structure. In the following, we make a log–convex structure which is not the above form.

Let D(x, y) = 1 + e−|x−y| for x 6= y and one for the case x = y, then (R, D,W ) is a log-convex
structure, where W (x, y, λ) = λx + (1 − λ)y. For inequality in (iv), one may apply the following
inequality:

1 + aλb1−λ ≤ (1 + a)λ(1 + b)1−λ (0 < a, b ≤ 1).

Since, the function f(a, b) = (1 + a)λ(1 + b)1−λ − aλb1−λ attains its minimum at points (a, a), so the
above inequality is hold.

Proposition 2.3. The open balls Br(x) and the closed balls Br(x) in X are log-convex subsets of
X.

Proposition 2.4. Let {Kα : α ∈ I} be a family of log-convex subsets of X, then
⋂
α∈I Kα is a

log-convex subset of X.

Definition 2.5. For a subset A of a log- convex structure X, we denote the log-convex hull of A as
Lco(A) and define as the intersection of all log-convx sets containing A.
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Suppose that An = W n(A) = W (W...(W (A)...) then, {An}∞n=1 is an increasing sequence of log-convex
subsets of X. One may show that

lim
n→∞

An =
∞⋃
n=1

An = Lco(A).

Definition 2.6. Let X be a log-convex structure and A be a nonempty log-convex bounded set in
X. For x ∈ X, let us set

rx(A) = sup
y∈A

d(x, y),

and

r(A) = inf
x∈A

rx(A).

We thus define Ac = {x ∈ A : rx(A) = r(A)} to be the center of A. We denote the diameter of
a subset A of X by

δ(A) = sup{d(x, y) : x, y ∈ A}.

A point x ∈ A is called a diametral point of A iff

sup
y∈A

d(x, y) = δ(A).

A log-convex structure X will be said to have Property (LC) if every bounded decreasing net of
nonempty closed log-convex subsets of X has a nonempty intersection.

Proposition 2.7. If X has Property(LC), then Ac is nonempty, closed and log-convex.

Proposition 2.8. Let M be nonempty compact subset of X and let K be the least closed log-convex
set containing M . If the diameter δ(M) is positive, then there exists an element u ∈ K such that
sup{d(x, u) : x ∈M} < δ(M).

Definition 2.9. A log-convex structure X is said to have normal structure if for each closed bounded
log-convex subset A of X which contains at least two points, there exists x ∈ A which is not a diametral
point of A.

Let K be a nonempty subset of a log-convex structure X. A selfmapping T : K −→ K has
property (G) if

∃λ ∈ [0, 1]∀x, y ∈ K; d(Tx, Ty) ≤ dλ(x, Tx)d1−λ(y, Ty)

T is said to have property (B) on K, if for every closed and log-convex subset F of K, which has
nonzero diameter and is invariant under T , there exists some x ∈ F such that

d(x, Tx) < sup
y∈F

d(y, Ty)

The set S in a log-convex structure X is said to be log-star shaped if there exists x0 ∈ S such that
W (x, x0, λ) ∈ S for all x ∈ S and λ ∈ [0, 1].
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3. main result

Theorem 3.1. Let T be a mapping of a non-empty bounded closed log-star shaped subset S of a
log-convex structure X, into itself which has property (G). Suppose that for every closed T -invariant
log-star shaped subset C of S we have

sup d(y, Ty) <
√
δ(C),

with δ(C) > 0 which δ(C) is diameter of C. Then, T has a unique fixed point in S if S posses a
minimal closed T -invariant log-star shaped subset S∗ of S.

Proof . If δ(S∗) = 0 then the point in S∗ is fixed point. By contrary, assume that δ(S∗) > 0. So,
there is x0 ∈ S∗ such that for every x ∈ S∗, λ ∈ [0, 1], W (x, x0, λ) ∈ s∗. For each y ∈ S∗ and for
some λ0 we have

d(Ty, Tx0) ≤ dλ0(y, Ty)d1−λ0(x0, Tx0)

≤ sup
z∈S∗

d(z, Tz)
.
= r.

So, T (S∗) ⊆ Br(Tx0). Since, S∗ ∩ Br(Tx0) is T -invariant log-star shaped, by minimality of S∗ it
follows that S∗ ⊆ Br(Tx0). Hence,

sup
z∈S∗

d(z, Tx0) ≤ sup
z∈S∗

d(z, Tz).

Let S ′ = {y ∈ S∗ : supz∈S∗ d(z, y) ≤ r2}. Now, for z ∈ S∗,

d(x0, z) ≤ d(x0, Tx0)× d(Tx0, z) ≤ r2.

This implies that x0 ∈ S ′.
For y ∈ S ′ we have

d(Ty, z) ≤ d(Ty, Tx0)× d(Tx0, z) ≤ (sup
z∈S∗

d(z, Tz))2,

and so, S ′ is T -invariant.
For x ∈ S ′, y ∈ S∗ and λ ∈ [0, 1] we have

d(W (x, x0, λ), y) ≤ dλ(x, y)d1−λ(x0, z) ≤ r2.

therefore, supy∈X∗ d(W (x, x0, λ) ≤ r2. It follows that W (x, x0, λ) ∈ S ′ for all x ∈ S ′ and λ ∈ [0, 1].
Hence, S ′ is log-star shaped.
Suppose that y ∈ S ′, the closure of S ′. Then, there is a sequence {yn} converging to y and

sup
z∈S∗

d(yn, z) ≤ (sup
z∈S∗

d(z, Tz))2.

By tending n to infinity, we have supz∈S∗ d(y, z) ≤ r2, and so y ∈ S ′. On the other hand,

δ(S ′) ≤ r2 < δ(S∗).

Therefore, S ′ is a proper closed T–invariant log-star shaped subset of S∗, a contradition. Verification
the uniqueness of the fixed point is easy. �
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Lemma 3.2. Let M be nonempty compact subset of X and let K be the least closed log-convex
set containing M . If the diameter δ(M) is positive, then there exists an element u ∈ K such that
sup {d(x, u) : x ∈M} < δ(M).

Theorem 3.3. Let K be a compact log-convex metric space. If Υ is a family of nonexpansive map-
pings with invariant property in K, then the family Υ has a common fixed point.

Proof . Setting Φ as family of nonempty convex compact subset of K such that are an invariant
under each T ∈ Υ. It is follow from Zorns lemma, Φ has a minimal member, that is A. If A is a
singleton subset of K, then theorem is proved. Otherwise, there exists a compact subset M of A
such that M = T (M) = {T (x) : x ∈M} for each T ∈ Υ. If M contains more than one point, by
lemma 3.2 there exists an element u in the least convex set M such that

α = sup {d(u, x) : x ∈M} < δ(M)

where δ(M) is diameter of M . We setting

A0 =
⋂
x∈M

{y ∈ A : d(x, y) ≤ α},

then A0 is the nonempty closed convex proper subset of A invariant under each T ∈ Υ. This is a
contradiction to the minimality of A. �

Theorem 3.4. Let X be log-convex metric space X having property (LC) and S be a non-empty
bounded closed and log-convex subset of X. If T : S → S is a continuous selfmapping which has
properties (G) and (B) then, T has a unique fixed point in S.

Proof . Let Γ be the family of all bounded closed and log-convex subsets of S, mapped into itself
by T . Also, assume that M be the minimal element of Γ with respect to being nonempty bounded
closed and log-convex and invariant under T . If δ(M) = 0, each member of M is a fixed point. If
δ(M) > 0, by property (B), there is x ∈M such that

d(x, Tx) < sup
y∈M

d(y, Ty)
.
= r.

Let N = {x ∈M : d(x.Tx) ≤ r}. If x ∈ N , then

d(Tx, T 2x) ≤ dλ0(x, Tx)d1−λ0(Tx, T 2x) ≤ r.

this implies that Tx ∈ N for all x ∈ N . So, TN ⊆ N . Let Lco(T (N) be the closed log-convex hull
of T (N). If z ∈ Lco(T (N), then one of the following cases may arise:
(i) z ∈ T (N) and since T (N) ⊆ N , hence, Tz ∈ T (N) ⊆ Lco(T (N)
(ii) z ∈ Lco(T (N)) =

⋃∞
n=1An where, An = W n(A). it follows that there exists n so that, z ∈ An.

Assume that n = 1, then there are x1 and y1 in A and λ1 ∈ [0, 1] such that z = W (x1, y1, λ1).
hence, d(z, Tz) ≤ dλ1(x1, T z)d

1−λ1(y1, T z). Note that d(x1, T z) ≤ dλ0(x1, Tx1)d
1−λ0(Tx1, T z) ≤

rλ0
(
dλ0(x1, Tx1)dd

1−λ0(z, Tz)
)1−λ0

≤ r. By applying the priciple of mathematical induction, for the

case z ∈ An one may prove that d(z, Tz) ≤ r. This implies that z ∈ N and so, Tz ∈ T (N) ⊆
Lco(T (N).
(iii) z ∈ Lco(T (N)) − T (N), then there is a sequence {zn} in Lco(T (N)) such that zn → z. By
continuty of T , the sequence {T (zn)} tends to T (z) and

d(z, T (z)) = lim
n→∞

d(zn, T (zn)) ≤ r.

Hence, z ∈ N and T (z) ∈ T (N) ⊆ Lco(T (N). Thus, Lco(T (N) is a closed and log-convex subset of
M which is invariant under T and d(z, T (z)) ≤ r for all z ∈ Lco(T (N). this implies that Lco(T (N)
is a proper subset of M , a contradiction. �
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