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Abstract

We say a functional equation (ξ) is stable if any function g satisfying the equation (ξ) approximately
is near to true solution of (ξ). Using fixed point methods, we investigate approximately higher
ternary derivations in Banach ternary algebras via the Cauchy functional equation

f(λ1x+ λ2y + λ3z) = λ1f(x) + λ2f(y) + λ3f(z) .
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1. Introduction and preliminaries

A ternary algebra A is a real or complex linear space, endowed with a linear mapping, the so-called
a ternary product (x, y, z)→ [x, y, z] of A×A×A into A such that [[x, y, z], w, v] = [x, [y, z, w], v] =
[x, y, [z, w, v]] for all x, y, z, w, v ∈ A.

If (A,�) is a usual (binary) algebra, then [x, y, z] := (x� y)� z makes A into a ternary algebra.
Hence the ternary algebra is a natural generalization of the binary case. In particular, if a ternary
algebra (A, [ ]) has a unit, i.e., an element e ∈ A such that x = [x, e, e] = [e, e, x] for all x ∈ A,
then A with the binary product x � y := [x, e, y], is a usual algebra. By a normed ternary algebra
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we mean a ternary algebra with a norm ‖.‖ such that ‖[x, y, z]‖ ≤ ‖x‖‖y‖‖z‖ for all x, y, z ∈ A. A
Banach ternary algebra is a normed ternary algebra such that the normed linear space with norm
‖.‖ is complete.

A. Cayley [7] introduced the notion of cubic matrices and a generalization of the determinant,
called the hyperdeterminant, then were found again and generalized by M. Kapranov, I. M. Gelfand
and A. Zelevinskii in 1990 [28]. As an application in physics, the quark model inspired a particular
brand of ternary algebraic systems. The so-called Nambu mechanics which has been proposed by
Y. Nambu [33] in 1973, is based on such structures. There are also some applications, although
still hypothetical, in the fractional quantum Hall effect, the non-standard statistics (the anyons),
supersymmetric theories, Yang-Baxter equation, etc, (cf. [1], [29], [47]).

Throughout this paper, we assume that A and B are real or complex ternary algebras. For the
sake of convenience, we use the same symbol [ ] (resp. ‖.‖) in order to represent the ternary products
(resp. norms) on ternary algebras A and B.

A linear mapping h : A → B is said to be a ternary homomorphism if h([x, y, z]) = [h(x), h(y), h(z)]
holds for all x, y, z ∈ A. A linear mapping d : A → A is said to be a ternary derivation if
d([x, y, z]) = [d(x), y, z] + [x, d(y), z] + [x, y, d(z)] holds for all x, y, z ∈ A (see [34]).

Let N be the set of natural numbers. For m ∈ N ∪ {0} = N0, a sequence H = {h0, h1, ..., hm}
(resp. H = {h0, h1, ..., hn, ...}) of linear mappings from A into B is called a higher ternary derivation
of rank m (resp. infinite rank) from A into B if

hn([x, y, z]) =
∑

i+j+k=n

[hi(x), hj(y), hk(z)].

holds for each n ∈ {0, 1, ...,m} (resp. n ∈ N0) and all x, y, z ∈ A (cf, see [25], [44]). The higher
ternary derivation H from A into B is said to be onto if h0 : A → B is onto. The higher ternary
derivation H on A is called be strong if h0 is an identity mapping on A. Of course, a higher ternary
derivation of rank 0 from A into B (resp. a strong higher ternary derivation of rank 1 on A) is a
ternary homomorphism (resp. a ternary derivation). So a higher ternary derivation is a generalization
of both a ternary homomorphism and a ternary derivation.

We say a functional equation (ξ) is stable if any function g satisfying the equation (ξ) approx-
imately is near to true solution of (ξ). We say that a functional equation is superstable if every
approximately solution is an exact solution of it. The stability problem of functional equations orig-
inated from a question of Ulam [46] in 1940, concerning the stability of group homomorphisms. Let
(G1, .) be a group and let (G2, ∗) be a metric group with the metric d(., .). Given ε > 0, does there
exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the inequality d(h(x.y), h(x) ∗ h(y)) < δ
for all x, y ∈ G1, then there exists a homomorphism H : G1 → G2 with d(h(x), H(x)) < ε for all
x ∈ G1? In the other words, under what condition does there exist a homomorphism near an ap-
proximate homomorphism? The concept of stability for functional equation arises when we replace
the functional equation by an inequality which acts as a perturbation of the equation. In 1941, D.
H. Hyers [23] gave the first affirmative answer to the question of Ulam for Banach spaces. Let
f : E → E ′ be a mapping between Banach spaces such that

‖f(x+ y)− f(x)− f(y)‖ ≤ δ

for all x, y ∈ E, then there exists a unique additive mapping T : E → E ′ such that

‖f(x)− T (x)‖ ≤ δ
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for all x ∈ E. Moreover if f(tx) is continuous in t ∈ R each fixed x ∈ E, then T is linear. In 1978,
Th. M. Rassias [41] proved the following theorem.

Theorem 1.1. Let f : E → E ′ be a mapping from a normed vector space E into a Banach space
E ′subject to the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p), (1.1)

for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then there exists a unique
additive mapping T : E → E ′ such that

‖f(x)− T (x)‖ ≤ 2ε

2− 2p
‖x‖p (1.2)

for all x ∈ E. If p < 0 then inequality (1.1) holds for all x, y 6= 0, and (1.2) for x 6=. Also, if the
function t 7→ f(tx) from R into E ′ is continuous in real t for each fixed x ∈ E, then T is linear.

Since then, a great deal of work of Rassias type has been done by a number of authors (cf.
[ [27], [36], [37], [39]] and reference therein).

In 1949, D. G. Bourgin [6] proved the following result, which is sometimes called the superstability
of ring homomorphisms: suppose that A and B are Banach algebras with unit. If f : A → B is a
surjective mapping such that

‖f(x+ y)− f(x)− f(y)‖ ≤ ε,

‖f(xy)− f(x)f(y)‖ ≤ δ

for some ε ≥ 0, δ ≥ 0 and all x, y ∈ A, then f is a ring homomorphism.

Recently, R. Badora [5] and T. Miura et al. [31] proved the Hyers-Ulam stability, the Isac and
Rassias-type stability [24], the Hyers-Ulam-Rassias stability and the Bourgin-type superstability of
ring derivations on Banach algebras.

On the other hand, C. Park [34] has contributed works on the stability problem of ternary
homomorphisms and ternary derivations.

Cǎdariu and Radu applied the fixed point method to the investigation of stability of the functional
equations. (see also [ [2]- [35]]).

There are some examples of approximately higher ternary derivations which are not exactly higher
ternary derivations in Banach ternary algebras. The remark 1.1 [38] is a slight modification of an
example given by P. Semrl [45] which is due to B. E. Johnson [26] (see also [ [31], Example 1.1]).

In this paper, we will adopt the fixed point alternative of Cǎdariu and Radu to show the exis-
tence of an exact higher ternary derivation near to an approximately higher ternary derivation by
investigating the Hyers-Ulam stability for higher ternary derivations in Banach ternary algebras.
Furthermore, we are going to examine the Isac and Rassias-type stability [24] and the Bourgin-type
superstability for higher ternary derivations in Banach ternary algebras.
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2. main results

Before proceeding to the main results, we will state the following theorem.

Theorem 2.1. (the alternative of fixed point [11]). Suppose that we are given a complete generalized
metric space (Ω, d) and a strictly contractive mapping T : Ω → Ω with Lipschitz constant L. Then
for each given x ∈ Ω, either d(Tmx, Tm+1x) = ∞ for all m ≥ 0, or other exists a natural number
m0 such that

(?) d(Tmx, Tm+1x) <∞ for all m ≥ m0;

(?) the sequence {Tmx} is convergent to a fixed point y∗ of T .

(?) y∗is the unique fixed point of T in the set Λ = {y ∈ Ω : d(Tm0x, y) <∞};

(?) d(y, y∗) ≤ 1
1−Ld(y, Ty) for all y ∈ Λ.

By a similar to in [4], we first obtain the Hyers-Ulam stability result.

Theorem 2.2. Let A be a normed ternary algebra and B a Banach ternary algebra. Suppose that
F = {f0, f1, ..., fn, ...} is a sequence of mappings from A into B such that for some δ ≥ 0, ε ≥ 0 and
each n ∈ N0,

‖fn(λ1x+ λ2y + λ3z)− λ1fn(x)− λ2fn(y)− λ3fn(z)‖ ≤ ε (2.1)

and

‖fn([x, y, z])−
∑

i+j+k=n

[fi(x), fj(y), fk(z)]‖ ≤ δ (2.2)

hold for all x, y, z ∈ A and all λ1, λ2, λ3 ∈ U = {z ∈ C : |z| = 1}. Then there exists a unique higher
ternary derivation H = {h0, h1, ..., hn, ...} of any rank from A into B such that for each n ∈ N0,

‖fn(x)− hn(x)‖ ≤ ε

2
(2.3)

holds for all x ∈ A. Moreover, we have∑
i+j+k=n

[hi(x), hj(y), {hk(z)− fk(z)}] = 0 (2.4)

for each n ∈ N0 and all x, y, z ∈ A.

Proof . Putting λ1 = λ2 = λ3 = 1 and x = y = z in (2.1) implies

‖1

3
fn(3x)− fn(x)‖ ≤ ε

3
(2.5)

for each n ∈ N0 and all x ∈ A.

Consider the set Xn := {g | g : A → B} and introduce the generalized metric on Xn for all
n ∈ N0:

d(h, g) := inf{c ∈ R+ : ‖g(x)− h(x)‖ ≤ cε, ∀x ∈ A}.
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It is easy to show that (Xn, d) is complete for all n ∈ N0. Now we define the linear mapping
J : Xn → Xn for all n ∈ N0 by

J(h)(x) =
1

3
h(3x)

for all x ∈ A. By Theorem 3.1 of [11],

d(J(g), J(h)) ≤ 1

3
d(g, h)

for all g, h ∈ Xn.

It follows from (2.5) that

d(f, J(f)) ≤ 1

3
.

By Theorem 2.1, J has a unique fixed point in the set Xn1 := {h ∈ X : d(f, h) < ∞} for all
n ∈ N0. Let hn be the fixed point of J for all n ∈ N0. hn is the unique mapping with

hn(3x) = 3hn(x)

for all x ∈ A and for all n ∈ N0 satisfying there exists c ∈ (0,∞) such that

‖hn(x)− fn(x)‖ ≤ cε

for all x ∈ A and for all n ∈ N0. On the other hand we have limmd(Jm(fn), hn) = 0 for all n ∈ N0.
It follows that

lim
m→∞

1

3m
fn(3mx) = hn(x) (2.6)

for all x ∈ A and for all n ∈ N0. It follows from d(fn, hn) ≤ 1
1− 1

3

d(fn, J(fn)), that

d(fn, hn) ≤ 1

2

for all n ∈ N0. This implies the inequality (2.3).

Let λ1 = λ2 = λ3 = 1 in (2.1) and then let us replace x by 3mx, y by 3my and z by 3mz. By
dividing the result by 3m and taking m→∞, we see that for each n ∈ N0, hn satisfies the functional
equation f(x+ y+ z)− f(x)− f(y)− f(z) = 0 for all x, y, z ∈ A. Note that the functional equation
f(x + y + z) − f(x) − f(y) − f(z) = 0 is equivalent to the Cauchy additive functional equation
f(x+ y)− f(x)− f(y) = 0. Hence hn is additive for each n ∈ N0.

The rest of the proof is similar to the proof of Theorem 2.1 in [38]. �

Let R+ be the set of positive real numbers. G. Isac and Th. M. Rassias [24] generalized the
Hyers theorem by introducing a mapping ψ : R+ → R+ subject to the conditions

lim
t→∞

ψ(t)

t
= 0, (2.7)

ψ(ts) ≤ ψ(t)ψ(s) forall t, s ∈ R+, (2.8)

ψ(t) < t forall t > 1. (2.9)

Here we obtain the Isac and Rassias-type stability result for higher ternary derivations which is
a generalization of Theorem 2.2.
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Theorem 2.3. Let A be a normed ternary algebra, B a Banach ternary algebra and ψ : R+ → R+ a
mapping with properties (2.7), (2.8) and (2.9). In addition, let ϕ : R+ → R+ be a mapping satisfying
the condition

lim
t→∞

ϕ(t)

t
= 0. (2.10)

Suppose that F = {f0, f1, ..., fn, ...} is a sequence of mappings from A into B such that for some
ε ≥ 0 and each n ∈ N0,

‖fn(λ1x+ λ2y + λ3z)− λ1fn(x)− λ2fn(y)− λ3fn(z)‖ ≤ ε{ψ(‖x‖) + ψ(‖y‖) + ψ(‖z‖)} (2.11)

and

‖fn([x, y, z])−
∑

i+j+k=n

[fi(x), fj(y), fk(z)]‖ ≤ ϕ(‖x‖‖y‖‖z‖) (2.12)

hold for all x, y, z ∈ A and all λ1, λ2, λ3 ∈ U = {z ∈ C : |z| = 1}. Then there exist a unique higher
ternary derivation H = {h0, h1, ..., hn, ..} of any rank from A into B and a constant k ∈ R such that
for each n ∈ N0 and all x ∈ A,

‖fn(x)− hn(x)‖ ≤ kεψ(‖x‖). (2.13)

Moreover, the relation (2.4) is fulfilled.

Proof . Putting λ1 = λ2 = λ3 = 1 and x = y = z in (2.11) yields

‖1

3
fn(3x)− fn(x)‖ ≤ εψ(‖x‖) (2.14)

for each n ∈ N0 and all x ∈ A. Consider the set Xn := {g | g : A → B} and introduce the generalized
metric on Xn for all n ∈ N0:

d(h, g) := inf{c ∈ R+ : ‖g(x)− h(x)‖ ≤ cψ(‖x‖), ∀x ∈ A}.

It is easy to show that (Xn, d) is complete for all n ∈ N0. Now we define the linear mapping
J : Xn → Xn for all n ∈ N0 by

J(h)(x) =
1

3
h(3x)

for all x ∈ A. By Theorem 3.1 of [11],

d(J(g), J(h)) ≤ 1

3
d(g, h)

for all g, h ∈ Xn.

It follows from (2.14) that

d(f, J(f)) ≤ ε.



Nearly higher ternary derivations in Banach ternary algebras...5 (2014) No. 2,7-15 13

By Theorem 2.1, J has a unique fixed point in the set Xn1 := {h ∈ X : d(f, h) < ∞} for all
n ∈ N0. Let hn be the fixed point of J for all n ∈ N0. hn is the unique mapping with

hn(3x) = 3hn(x)

for all x ∈ A and for all n ∈ N0 satisfying there exists c ∈ (0,∞) such that

‖hn(x)− fn(x)‖ ≤ cψ(‖x‖)

for all x ∈ A and for all n ∈ N0. On the other hand we have limmd(Jm(fn), hn) = 0 for all n ∈ N0.
It follows that

lim
m→∞

1

3m
fn(3mx) = hn(x)

for all x ∈ A and for all n ∈ N0. It follows from d(fn, hn) ≤ 1
1−εd(fn, J(fn)), that

d(fn, hn) ≤ ε

1− ε

for all n ∈ N0. This implies the inequality (2.13).

Let λ1 = λ2 = λ3 = 1 in (2.11) and then let us replace x by 3mx, y by 3my and z by 3mz. Let us
divide the result by 3m and utilize (2.8). Now, if we take m→∞, then we see that for each n ∈ N0,
hn satisfies the functional equation f(x+ y + z)− f(x)− f(y)− f(z) = 0 for all x, y, z ∈ A. So, hn
is additive for each n ∈ N0.

The rest of the proof is similar to the proof of Theorem 2.2 in [38]. �

Remark 2.4. The typical example of the mapping ψ fulfilling (2.7), (2.8) and (2.9) is given by
ψ(t) = tp, where p < 1. The example of the mapping ϕ satisfying (2.10) is ϕ(t) = tq, where q < 1.
If we intend to consider the case of p, q > 1, then we adopt the method given by Z. Gajda in [20] to
obtain the Isac and Rassias-type stability result for the mapping ψ : R+ → R+ fulfilling the conditions

lim
t→∞

ψ(t)

t
= 0, (2.15)

ψ(ts) ≤ ψ(t)ψ(s) forallt, s ∈ R+, (2.16)

ψ(t) < t forallt ∈ (0, 1). (2.17)

In the proof of Theorem 2.2, if we replace (2.6) by

hn(x) = lim
m→∞

3mfn(
1

3m
x)

and (2.9) in [38] by

lim
m→∞

3m4n(
1

3m
x, y, z) = 0,

then Theorem 2.3 is still true under the conditions (2.15), (2.16) and (2.17). As consequences of
Theorem 2.2, we get the following Bourgin-type super- stability.



14 Eshaghi, Farokhzad, Hosseinioun

Corollary 2.5. (Corollary 2.4 of [38]) Let A be a Banach ternary algebra with unit e and B a
Banach ternary algebra with unit e∗. Suppose that F = {f0, f1, ..., fn, ...} is a sequence of mappings
from A into B satisfying (2.1) and (2.2), where f0 is onto and f0(e) = e∗. Then F = {f0, f1, ..., fn, ...}
is a higher ternary derivation of any rank from A onto B.

Corollary 2.6. (Corollary 2.6 of [38]) Let A be a Banach ternary algebra with unit. Suppose that
F = {f0, f1, ..., fn, ...} is a sequence of mappings on A satisfying (2.1) and (2.2), where f0 is an
identity mapping on A. Then F = {f0, f1, ..., fn, ...} is a strong higher ternary derivation of any
rank on A.

Remark 2.7. As in Theorem 2.3 and Remark 2.4, we can generalize our results by substituting
another functions satisfying appropriate conditions (see, for instance, [21]) for the bounds ε and δ
of the inequalities corresponding to the functional equations

fn(λ1x+ λ2y + λ3z) = λ1fn(x) + λ2fn(y) + λ3fn(z),

fn([x, y, z]) =
∑

i+j+k=n

[fi(x), fj(y), fk(z)].
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[8] L. Cǎdariu, V. Radu, Fixed points and the stability of quadratic functional equations, Analele Universitatii de

Vest din Timisoara. 41 (2003), 25–48.
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