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Abstract

In this paper, we study the existence of solutions for fractional evolution equations with nonlocal
conditions. These results are obtained using Banach contraction fixed point theorem. Other results
are also presented using Krasnoselskii theorem.
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1. Introduction

The theory of fractional differential equations is a new branch of mathematics by which many
physical phenomena in various fields of science and engineering can be modeled. Significant develop-
ment in this area has been achieved for the last few years. For details, we refer to [4, 6]. Moreover,
the study of fractional evolution equations is also of great importance [1, 3, 8, 9].
The main aim of this paper is to establish new existence results for evolution equations in Banach
spaces by using the fractional derivatives and fixed point theorems. So, let us consider the following
problem:

Dαx (t) = Ax (t) + f (t, x (t)) , t 6= ti, t ∈ J, 0 < α < 1,

∆x|t=ti = Ii(x(ti)), i = 1, 2, ...,m, x (0) = g (x) ,
(1.1)
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where Dα is the Caputo derivative, J = [0, b], A : D(A) → X is a nondensely defined operator,
X is a real Banach space, (ti)i=1,...,m are fixed points, with 0 < t1 < t2 < ... < ti < ... < tm < 1, m
is fixed in N∗, and ∆x|t=ti = x(t+i ) − x

(
t−i
)
, such that x(t+i ) and x

(
t−i
)

represent the right-hand
limit and left-hand limit of x(t) at t = ti, respectively, and f, g and Ii are appropriate functions to
be specified later.

2. Preliminaries

We introduce some definitions and properties which will be used in this paper:

Definition 2.1. A real valued function f is said to be in the space Cµ([0,∞[), µ ∈ R if there exists
a real number r > µ, such that f(t) = trf1(t), where f1 ∈ C([0,∞)).

Definition 2.2. A function f is said to be in the space Cn
µ ([0,∞[), n ∈ N, if f (n) ∈ Cµ([0,∞[).

Definition 2.3. The Riemann-Liouville fractional integral operator of order α ≥ 0, for a function
f ∈ Cµ([0,∞[), µ ≥ −1, is defined as

Jαf(t) =
1

Γ(α)

t∫
0

(t− τ)α−1f(τ)dτ ; α > 0, t > 0

J0f(t) = f(t).

(2.1)

The fractional derivative of f ∈ Cn
−1 in the sense of Caputo is defined as

Dαf(t) =

{
1

Γ(n−α)

∫ t
0
(t− τ)n−α−1f (n)(τ)dτ, n− 1 < α < n, n ∈ N∗,

dn

dtn
f(t), α = n.

(2.2)

For more details, see [2, 10].
We need the following lemma [5]:

Lemma 2.4. For α > 0, the general solution of the fractional differential equation

Dαx (t) = 0

is given by
x (t) = c0 + c1t+ c2t

2 + ...+ cn−1t
n−1,

where ci ∈ R are arbitrary real constants for i = 0, 1, 2, ..., n− 1, n = [α] + 1.

We prove also the following auxiliary result:

Lemma 2.5. Let f (t, x) ∈ X and A : D(A) → X is a nondensely defined operator. A solution of
the problem (1.1) is given by

x (t) =



g (x) + 1
Γ(α)

∫ t
0
(t− τ)α−1Ax (τ) dτ + 1

Γ(α)

∫ t
0
(t− τ)α−1f (τ, x) dτ, t ∈ [0, t1] ,

g (x) + 1
Γ(α)

∑i
j=1

∫ tj
tj−1

(tj − τ)α−1f (τ, x) dτ

+ 1
Γ(α)

∫ t
ti

(t− τ)α−1f (τ, x) dτ + 1
Γ(α)

∑i
j=1

∫ tj
tj−1

(t− τ)α−1Ax (τ) dτ

+ 1
Γ(α)

∫ t
ti

(t− τ)α−1Ax (τ) dτ +
∑i

j=1 Ij(x(tj)),

t ∈ [ti, ti+1] , i = 1, ...m, 0 < α < 1.

(2.3)
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Proof . Assume x satisfies (1.1). If t ∈ [0, t1], then Dαx (t) = Ax (t) + f(t, x (t)). Using Lemma 2.4,

we can write

x (t) = g (x) +
1

Γ(α)

∫ t

0

(t− τ)α−1Ax (τ) dτ +
1

Γ(α)

∫ t

0

(t− τ)α−1f (τ, x) dτ.

If t ∈ [t1, t2], then thanks to Lemma 2.4, we get

x (t) = x
(
t+1
)

+
1

Γ(α)

∫ t

t1

(t− τ)α−1Ax (τ) dτ +
1

Γ(α)

∫ t

t1

(t− τ)α−1f (τ, x) dτ

= ∆x |t=t1 +x
(
t−1
)

+
1

Γ(α)

∫ t

t1

(t− τ)α−1Ax (τ) dτ +
1

Γ(α)

∫ t

t1

(t− τ)α−1f (τ, x) dτ

= I1

(
x
(
t−1
))

+ g (x) +
1

Γ(α)

∫ t1

0

(t1 − τ)α−1f (τ, x) dτ +
1

Γ(α)

∫ t

t1

(t− τ)α−1f (τ, x) dτ

+
1

Γ(α)

∫ t1

0

(t− τ)α−1Ax (τ) dτ +
1

Γ(α)

∫ t

t1

(t− τ)α−1Ax (τ) dτ.

If t ∈ [t2, t3], then by Lemma 2.4 again, we have

x (t) = x
(
t+2
)

+
1

Γ(α)

∫ t

t2

(t− τ)α−1f (τ, x) dτ

= ∆x |t=t2 +x
(
t−2
)

+
1

Γ(α)

∫ t

t2

(t− τ)α−1f (τ, x) dτ

= I2

(
x
(
t−2
))

+ I1

(
x
(
t−1
))

+ g (x) +
1

Γ(α)

∫ t1

0

(t1 − τ)α−1f (τ, x) dτ

+
1

Γ(α)

∫ t2

t1

(t2 − τ)α−1f (τ, x) dτ +
1

Γ(α)

∫ t

t2

(t− τ)α−1f (τ, x) dτ

+
1

Γ(α)

∫ t1

0

(t− τ)α−1Ax (τ) dτ +
1

Γ(α)

∫ t2

t1

(t− τ)α−1Ax (τ) dτ

+
1

Γ(α)

∫ t

t2

(t− τ)α−1Ax (τ) dτ.

And if t ∈ [ti, ti+1], i = 1, ..m, with the same arguments as before, we obtain the second quantity
in (2.3). Lemma 2.5 is thus proved. �

To establish the existence of solutions of (1.1), we need following conditions:
(HA) : A(t) is a bounded linear operator on D (A) ⊂ X, the function t → A(t) is continuous in

the uniform operator topology, and
max
t∈J
‖A(t)‖ = C.

(H1) : The nonlinear function f : J × X → X is continuous and there exist constants β > 0,
ß> 0, such that
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||f(t, x (t))− f(t, y (t))|| ≤ β||x− y||; x, y ∈ X, t ∈ J

and
ß = max

t∈J
‖f(t, 0)‖ .

(H2) : The functions Ii : X → X are continuous and there exist constants $i, such that

‖ Ii(x)− Ii(y) ‖≤ $i ‖ x− y ‖, i = 1, 2, ...,m, for each x, y ∈ X,

and ω = ‖Ii(0)‖ .
(H3) : The function g : X → X is continuous, and there exist λ > 0 and M > 0, such that

‖ g(x)− g(y) ‖≤ λ||x− y||, for x, y ∈ X

and M = ‖g(0)‖ .

(H4) : There exists a positive constant r > 0 such that

(m+ 1) γ (βr + ß + Cr) +
m∑
i=1

$ir +mω + λr +M ≤ r,

where γ = bα

Γ(α+1)
.

3. Main Results

Our first result is the following theorem:

Theorem 3.1. If the hypotheses (HA) , (Hj)j=1,4 and

0 ≤ Λ := (m+ 1) γ (C + β) +
m∑
i=1

$i + λ < 1

are satisfied, then (1.1) has a unique solution on J .

Proof . Let us take Br = {x ∈ X : ‖x‖ ≤ r}. We define the operator T as follows:

Tx (t) =



g (x) + 1
Γ(α)

∑i
j=1

∫ tj
tj−1

(tj − τ)α−1f (τ, x) dτ

+ 1
Γ(α)

∫ t
ti

(t− τ)α−1f (τ, x) dτ + 1
Γ(α)

∑i
j=1

∫ tj
tj−1

(t− τ)α−1Ax (τ) dτ

+ 1
Γ(α)

∫ t
ti

(t− τ)α−1Ax (τ) dτ +
∑i

j=1 Ij(x(tj)).

(3.1)

(1*) We shall prove that T (Br) ⊂ Br. For x ∈ Br, and for any t ∈ J, we have:
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‖Tx (t)‖ ≤ ‖g (x)‖+
∥∥∥ 1

Γ(α)

∑i
j=1

∫ tj
tj−1

(tj − τ)α−1f (τ, x) dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∫ t
ti

(t− τ)α−1f (τ, x) dτ
∥∥∥+

∥∥∥ 1
Γ(α)

∑i
j=1

∫ tj
tj−1

(t− τ)α−1Ax (τ) dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∫ t
ti

(t− τ)α−1Ax (τ) dτ
∥∥∥+

∥∥∥∑i
j=1 Ij(x(tj))

∥∥∥ .
(3.2)

Then, we can write

‖Tx (t)‖ ≤ ‖g (x)− g (0)‖+ ‖g (0)‖+
∥∥∥ 1

Γ(α)

∑i
j=1

∫ tj
tj−1

(tj − τ)α−1 [f (τ, x)− f (τ, 0)] dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∑i
j=1

∫ tj
tj−1

(tj − τ)α−1f (τ, 0) dτ
∥∥∥+

∥∥∥ 1
Γ(α)

∫ t
ti

(t− τ)α−1 [f (τ, x)− f (τ, 0)] dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∫ t
ti

(t− τ)α−1f (τ, 0) dτ
∥∥∥+

∥∥∥ 1
Γ(α)

∑i
j=1

∫ tj
tj−1

(t− τ)α−1Ax (τ) dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∫ t
ti

(t− τ)α−1Ax (τ) dτ
∥∥∥+

∥∥∥∑i
j=1 [Ij(x(tj))− Ij(0)]

∥∥∥+
∥∥∥∑i

j=1 Ij(0)
∥∥∥ .

Using (HA), (H1) , (H2) and (H3) , we obtain

‖Tx‖ ≤ λ ‖x‖+M +
(m+ 1) βbα

Γ (α + 1)
‖x‖+

(m+ 1) ßbα

Γ (α + 1)
+

(m+ 1)Cbα

Γ (α + 1)
‖x‖

+
m∑
i=1

$i ‖x‖+mω. (3.3)

Therefore,

‖Tx‖ ≤ λr +M + (m+ 1) βγr + (m+ 1) ßγ + (m+ 1)Cγr

+
m∑
i=1

$ir +mω.

(3.4)

Thanks to (H4) , we obtain
‖Tx‖ ≤ r. (3.5)

Then T (Br) ⊂ Br. Hence, the operator Φ maps Br into itself.

(2*) Now we prove that T is a contraction mapping on Br. Let x and y ∈ Br, then for any t ∈ J,
we can write:
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‖Tx (t)− Ty (t)‖ ≤ ‖g (x)− g (y)‖

+
∥∥∥ 1

Γ(α)

∑i
j=1

∫ tj
tj−1

(tj − τ)α−1 [f (τ, x)− f (τ, y)] dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∫ t
ti

(t− τ)α−1 [f (τ, x)− f (τ, y)] dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∑i
j=1

∫ tj
tj−1

(t− τ)α−1A (x (τ)− y (τ)) dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∫ t
ti

(t− τ)α−1A (x (τ)− y (τ)) dτ
∥∥∥+

∥∥∥∑i
j=1 Ij(x(tj))− Ij(y(tj))

∥∥∥ .

(3.6)

Therefore,

‖Tx (t)− Ty (t)‖

≤ ‖ 1

Γ (α)

∫ t

0

(t− τ)α−1 (Ax (τ)− Ay (τ)) dτ

+
1

Γ (α)

∫ t

0

(t− τ)α−1 (f (τ, x (τ))− f (τ, y (τ))) dτ

+
∑
ti<t

(Ii (x (ti))− Ii (y (ti))) + (g (x)− g (y)) ‖. (3.7)

This implies that

‖Tx− Ty‖ ≤

(
(m+ 1) (Cγ + βγ) +

m∑
i=1

$i + λ

)
‖x− y‖ ,

and consequently,
‖Tx− Ty‖ ≤ Λ ‖x− y‖ . (3.8)

Since 0 ≤ Λ < 1, then T is a contraction, hence by Banach fixed point theorem, there exists a
unique fixed point x ∈ Br such that Tx = x. Theorem 3.1 is thus proved. �
Our second main result is based on the following fixed point theorem [7]:

Theorem 3.2. (Krasnoselskii Fixed Point Theorem) Let S be a closed convex and nonempty subset
of a Banach space X. Let P,Q be the operators such that:

(i)Px+Qy ∈ S, whenever x, y ∈ S,

(ii) P is compact and continuous,
(iii) Q is a contraction mapping.
Then there exists x∗, such that

x∗ = Px∗ +Qx∗.

We prove the following theorem:

Theorem 3.3. Suppose that the hypotheses (HA) and (Hj)j=1,4 are satisfied. If the quantity Υ :=
(m+ 1) γ (β + C) < 1, then the problem (1.1) has at least a solution on J.
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Proof . Let us define the operators R and S as:

Rx (t) =



1
Γ(α)

∑i
j=1

∫ tj
tj−1

(tj − τ)α−1f (τ, x) dτ

+ 1
Γ(α)

∫ t
ti

(t− τ)α−1f (τ, x) dτ

+ 1
Γ(α)

∑i
j=1

∫ tj
tj−1

(t− τ)α−1Ax (τ) dτ

+ 1
Γ(α)

∫ t
ti

(t− τ)α−1Ax (τ) dτ

(3.9)

and

Sx (t) = g (x) +
∑
ti<t

Ii (x (ti)) . (3.10)

For x, y ∈ Br, we have

‖Rx+ Sy‖ ≤ ‖Rx‖+ ‖Sy‖ . (3.11)

So for every t ∈ J, we can write:

‖Rx (t) + Sy (t)‖ ≤
∥∥∥ 1

Γ(α)

∑i
j=1

∫ tj
tj−1

(tj − τ)α−1f (τ, x) dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∫ t
ti

(t− τ)α−1f (τ, x) dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∑i
j=1

∫ tj
tj−1

(t− τ)α−1Ax (τ) dτ
∥∥∥

+
∥∥∥ 1

Γ(α)

∫ t
ti

(t− τ)α−1Ax (τ) dτ
∥∥∥

+ ‖g (y)‖+
∥∥∑

ti<1 Ii (y (ti))
∥∥ .

(3.12)

Using (HA) , (H1) , (H2) and (H3) , we get

‖Rx+ Sy‖ ≤ (m+ 1) γ (Cr + βr + ß) + λr +M +
m∑
i=1

$ir +mω. (3.13)

By (H4), we obtain

‖Rx+ Sy‖ ≤ r.

Hence Rx+ Sy ∈ Br.
On other hand, we have
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‖Rx (t)−Ry (t)‖ = ‖ 1
Γ(α)

∑i
j=1

∫ tj
tj−1

(tj − τ)α−1 [f (τ, x)− f (τ, y)] dτ

+ 1
Γ(α)

∫ t
ti

(t− τ)α−1 [f (τ, x)− f (τ, x)] dτ

+ 1
Γ(α)

∑i
j=1

∫ tj
tj−1

(t− τ)α−1 [Ax (τ)− Ay (τ)] dτ

+ 1
Γ(α)

∫ t
ti

(t− τ)α−1 [Ax (τ)− Ay (τ) dτ ] ‖.

(3.14)

Hence,

‖Rx−Ry‖ ≤ ((m+ 1) γ (β + C)) ‖x− y‖

≤ Υ ‖x− y‖ . (3.15)

Since Υ < 1, then the operator R is a contraction.
Now, we shall prove that the operator S is completely continuous from Br to Br.
Since Ii ∈ C (X,X) , then S is continuous on Br. So, we prove that S is relatively compact as

well as equi-continuous on X for every t ∈ J . To prove the compactness of S, we shall prove that
S(Br) ⊆ X is equi-continuous and S(Br)(t) is relatively compact for any r > 0, t ∈ J .

Let x ∈ Br and t+ h ∈ J, then we can write

‖Sx (t+ h)− Sx (t)‖ ≤ ‖g (x+ h)− g (x)‖+

∥∥∥∥∥ ∑
0<ti<t+h

Ii (x (ti))−
∑
ti<t

Ii (x (ti))

∥∥∥∥∥ . (3.16)

The inequality (3.16) is independent of x, thus S is equi-continous and as h→ 0 the right hand
side of the above inequality tends to zero; so S (Br) is relatively compact, and S is compact. Finally
by Krasnoselskii theorem, there exists at least a solution of (1.1).

�
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