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Abstract

In this paper we introduce and study a new topology related to a self mapping on a nonempty set.
Let X be a nonempty set and let f be a self mapping on X. Then the set of all invariant subsets of
X related to f , i.e. τf := {A ⊆ X : f(A) ⊆ A} ⊆ P(X) is a topology on X. Among other things,
we find the smallest open sets contains a point x ∈ X. Moreover, we find the relations between f
and τf . For instance, we find the conditions on f to show that whenever τf is T0, T1 or T2.
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1. Introduction

Suppose that f is a function from a nonempty set X into itself. Define τf = {A ⊆ X : f(A) ⊆
A} ⊆ P(X) which is called the set of invariant sets related to the function f . The paper is based
on some elementary results about τf which is a topology on X. This topology have some interesting
results with new applications.
First it is shown that (X, τf ) is a topological space. Also some basic properties are investigated.
Second using the concept of orbit for x ∈ X, we introduce the separation concepts of T0, T1 and T2.
In this section we give some conditions for topological space (X, τf ) and f which are equivalent to
the separation concepts of T0, T1 and T2. In the last section as an application we prove some fixed
point theorems related to the separation concepts and orbits.
It is known that for function f , an element x ∈ X is a fixed point if f(x) = x. The proof of some
results in the following section are easy and then we can omit them. We mainly used [2] and [3] in
this paper.
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2. Basic Results

Proposition 2.1. (X, τf ) is a topological space.

Proof. It is easy to see that ∅, X ∈ τf .
(a) For Uα ∈ τf with α ∈ I, f(

⋃
α

Uα) =
⋃
α

f(Uα) ⊆
⋃
α

(Uα).

(b) For i = 1, ..., n and Ui ∈ τf , f(
n⋂
i=1

Ui) ⊆
n⋂
i=1

f(Ui) ⊆
n⋂
i=1

Ui.

Proposition 2.2. In topological space (X, τf ), every intersection (resp. union) of closed sets is
closed.

Proposition 2.3. Consider the topological space (X, τf ). Then

(a) if G ∈ τf , then G ⊆ f−1(G).

(b) if F c ∈ τf , then f−1(F ) ⊆ F .

Proposition 2.4. Consider the topological space (X, τf ). For any set A ⊆ X we have x ∈ Ā if for
any G ∈ τf which contains x, there is y ∈ A such that f(y) ∈ G. The converse is also true for a set
A if any y ∈ A be a fixed point of f .

Proof. Suppose that x ∈ A and x ∈ G ∈ τf . If for any y ∈ A, f(y) /∈ G then f(y) ∈ Gc. Using
Proposition 2.3 we have y ∈ f−1(Gc) ⊆ Gc. So x ∈ A ⊆ Gc which contradicts x ∈ G.
For the converse suppose that x /∈ A. Hence according to the definition of closure in topological
spaces, there is a closed set F such that A ⊆ F and x /∈ F . So A ∩ F c = ∅ and F c is an open set
including x. This implies that y /∈ F c for any y ∈ A. But this means that f(y) /∈ F c which is a
contradiction.

The continuity of a function g : (X, τf )→ (X, τf ) has the usual definition. Indeed for any x ∈ X,
the relation f(x) ∈ B ∈ τf necessitates that there is A ∈ τf including x such that g(A) ⊆ B.

Proposition 2.5. The function f : (X, τf )→ (X, τf ) is continuous.

Proof. Suppose that f(x) ∈ B ∈ τf . So x ∈ f−1(B). From Proposition 2.3, f(f−1(B)) ⊆ B ⊆
f−1(B). Hence f−1(B) ∈ τf . Now set A = f−1(B). Then x ∈ A and f(A) = f(f−1(B)) ⊆ B.

Proposition 2.6. Consider two functions f, g : X → X. If the function h : (X, τf ) → (X, τg)
is continuous, then the relation h(x) ∈ B ∈ τg implies that there is A ∈ τf including x such that
(g ◦ h ◦ f)(A) ⊆ B.

Proof. Consider x ∈ X with h(x) ∈ B ∈ τg. By continuity of h, there is A ∈ τf including x such
that h(A) ⊆ B. Since g(B) ⊆ B and f(A) ⊆ A, then

g ◦ h ◦ f(A) ⊆ g ◦ h(A) ⊆ g(B) ⊆ B.

Corollary 2.7. Suppose that g : (X, τf ) → (X, τf ) is continuous. for any x ∈ X the relation
f(x) ∈ B ∈ τf implies that there is A ∈ τf including x such that (g ◦ f)(A) ⊆ B.
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Definition 2.8. Consider the topological space (X, τf ). The orbit of x ∈ X is defined as the follow-
ing:

O(x) = {fn(x); n = 0, 1, 2, · · ·}.

Since f(O(x)) ⊆ O(x), then O(x) ∈ τf . This means that for any x ∈ X, O(x) is an open set
including x. Also O(x) is included in any open set including x.

Proposition 2.9. Consider the topological space (X, τf ).

(a) For any x ∈ X, O(x) is the smallest open set including x. That is O(x) is intersection of all
open sets including x.

(b) The set {O(x);x ∈ X} is a base for τf .

(c) If x ∈ X is a fixed point of the function f , then O(x) = {x}.

Proof. It is easy consequence of Definition 2.8.

Definition 2.10. Consider the topological space (X, τf ). For any set A ⊆ X we define the orbit hull
of A as the following:

Oh(A) =
⋃
x∈A

O(x).

Proposition 2.11. Consider the topological space (X, τf ) and two set A,B ⊆ X. Then

(a) A ⊆ Oh(A).

(b) Oh(A) ∈ τf .
(c) If A ⊆ B, then Oh(A) ⊆ Oh(B).

(d) If A ∈ τf , then Oh(A) = A.

(e) Oh(A) =
⋂
{G;A ⊆ G and G ∈ τf}.

Proof. (a), (b) and (c) are obvious. For assertion (d), Since A ∈ τf , then for any x ∈ A, O(x) ⊆ A.
So Oh(A) ⊆ A ⊆ Oh(A). By Definition 2.8 and the fact A ⊆ Oh(A) ∈ τf we have Oh(A) ⊆

⋂
{G;A ⊆

G and G ∈ τf} ⊆ Oh(A).

3. Separation Theorems

The purpose of this section is establishing equivalent conditions for famous separations axioms
related to the function f . We begin with definition of separation axioms.

Definition 3.1. According to the classical definitions in topological spaces we define that (X, τf ) has
the property of:

(a) T0 if for any x, y ∈ X with x 6= y there is G ∈ τf such that either x ∈ G and y ∈ X \ G or
y ∈ G and x ∈ X \G.

(b) T1 if for any x, y ∈ X with x 6= y there are G,U ∈ τf such that x ∈ G, y ∈ X \G and y ∈ U
and x ∈ X \ U .

(c) T2 ((X, τf ) is Hausdorff) if for any x, y ∈ X with x 6= y there are G,U ∈ τf such that x ∈ G
and y ∈ U with G ∩ U = ∅.

Proposition 3.2. Topological space (X, τf ) has the property of T0 if and only if for any x 6= y in X
either x 6= fn(y), n = 0, 1, 2, . . . or y 6= fn(x), n = 0, 1, 2, . . ..
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Proof. Suppose that (X, τf ) has the property of T0 and consider x, y ∈ X with x 6= y. Then there
is G ∈ τf such that either x ∈ G, y ∈ X \ G or y ∈ G, x ∈ X \ G. These imply that O(x) ⊆ G,
y /∈ O(x) or O(y) ⊆ G, x /∈ O(y). So for any n = 0, 1, 2, · · ·, y 6= fn(x) or x 6= fn(y).
For the converse consider x, y ∈ X with x 6= y. By the assumption for any n = 0, 1, 2, · · ·, y 6= fn(x)
or x 6= fn(y). Hence x /∈ O(y) or y /∈ O(x). Now set G = O(x) or G = O(y).

Proposition 3.3. The following assertions are equivalent

(a) (X, τf ) has the property of T1.

(b) for any x ∈ X, {x}c ∈ τf .
(c) for any x 6= y in X we have x 6= fn(y) and y 6= fn(x), for n = 0, 1, 2, . . ..

Proof.

(a)→ (b): Consider x ∈ X. If y ∈ {x}c, then there is an open set Vy such that x /∈ Vy. So

y /∈ {x} which implies that y ∈ X \ {x} ∈ τf . Hence f(y) ∈ f(X \ {x}) ⊆ X \ {x} for any y ∈ Y .

So f({x}c) ⊆ X \ {x} ⊆ X \ {x} = {x}c.
(b)→ (c ): Suppose that x, y ∈ X, x 6= y and {x}c, {y}c ∈ τf . So {x} = {x} and {y} = {y}. It

follows that x /∈ {y} and y /∈ {x}. Hence there are open sets U including x and V including y such
that y /∈ U and x /∈ V . These imply that y /∈ O(x) and x /∈ O(y). Then x 6= fn(y) and y 6= fn(x),
for n = 0, 1, 2, . . ..

(c)→ (a): Consider x, y ∈ X with x 6= y. By the assumption for any n = 0, 1, 2, · · ·, y 6= fn(x)
and x 6= fn(y). Hence x /∈ O(y) and y /∈ O(x). Now set U = O(x) and V = O(y).

Corollary 3.4. Suppose that (X, τf ) has the property of T1 and x ∈ X is a fixed point of function
f . Then {x} is open and closed.

Proposition 3.5. The topological space (X, τf ) has the property of T2 (being Hausdorff) if and only
if for any x 6= y in X we have fn(y) 6= fn(x), for all m,n ∈ {0, 1, 2, . . .}.

Proof. Suppose that (X, τf ) has the property of T2 and consider x, y ∈ X with x 6= y. So there are
open sets U including x and V including y such that U ∩ V = ∅. Hence O(x) ∩ O(y) = ∅. Then for
all m,n ∈ {0, 1, 2, . . .}, fn(y) 6= fn(x). For the converse set O(x) = U and O(y) = V .

Definition 3.6. The topological space (X, τf ) is called regular if for any x ∈ X and closed set
F ⊆ X \ {x} with F 6= {O(x)}c we have Oh(F ) ∩O(x) = ∅.

Theorem 3.7. The topological space (X, τf ) is regular if and only if for any x ∈ X and any open

set U 6= O(x) including x, we have x ∈ O(x) ⊂ O(x) ⊂ U.

Proof. Suppose that (X, τf ) is regular and x ∈ U ∈ τf . Then

Oh(X \ U) ∩O(x) = ∅. (1)

On the other hand always X \ U ⊂ Oh(X \ U) and so

[Oh(X \ U)]c ⊂ U. (2)

Now from (1) and (2) we have x ∈ O(x) ⊂ [Oh(X \ U)]c ⊂ U . Since [Oh(X \ U)]c is closed then
O(x) ⊂ [Oh(X \ U)]c. Hence x ∈ O(x) ⊂ O(x) ⊂ X \ U .
For the converse Consider x ∈ X and closed F with O(x)c 6= F ⊆ X \ {x}. These imply that
X \ F 6= O(x) and x ∈ X \ F ∈ τf . According to the assumption x ∈ O(x) ⊂ O(x) ⊂ U. So

x ∈ O(x) and F ⊂ X \O(x) which imply that Oh(F ) ⊂ X \O(x). Since (X \O(x))∩O(x) = ∅ then,
Oh(F ) ∩O(x) = ∅.
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4. Application

As an application of the Sections 1 and 2, we give the following fixed point theorems using
separation axioms and the concept of orbits related to the function f . Also we show that if f is a
contraction on a metric space (X, d), then for any x ∈ X there is an open set with respect to the
metric d including x such that belongs to τf .

Definition 4.1. a family A = {Aj : j ∈ J} of open sets in X is called an (open) cover of K if
K ⊆

⋃
j Aj.

Theorem 4.2. Suppose that (X, τf ) is a Hausdorff space. The function f : (X, τf ) → (X, τf ) has
the fixed point if and only if for every cover {Gα;α ∈ A} for X, there are x0 ∈ X and α0 ∈ A such
that both of x0 and f(x0) are included in Gα0 .

Proof. If f has a fixed point then there is α0 ∈ A such that both of x0 and f(x0) included in Gα0 .
For the converse suppose that f has no fixed point. So f(x) 6= x for any x ∈ X. Since (X, τf )
is a Hausdorff space then for any x ∈ X there are Ux including x an Wx including f(x) such that
Ux ∩Wx = ∅. Also according to the Proposition 2.5, we can choose Ux such that f(Ux) ⊆ Wx. Since
{Ux;x ∈ X} is a cover for X then there is z ∈ X and x0 ∈ X such that both of z and f(z) are
included in Ux0 . Hence f(z) ∈ f(Ux0) ⊆ Wx0 . So f(z) ∈ Ux0∩Wx0 , which implies that Ux0∩Wx0 6= ∅.

Lemma 4.3. Consider f : (X, τf )→ (X, τf ). For any x ∈ X, O(x) is both of open and closed.

Proof. It is clear that O(x) is closed. Suppose that Wy is an arbitrary open set including f(y). So
there is Uy such that f(Uy) ⊂ Wy. Now consider y as a cluster point of O(x). So Uy ∩ O(x) 6= ∅.
Hence f(Uy) ∩O(x) 6= ∅. Which implies that Wy ∩O(x) 6= ∅. This guarantees that f(y) is a cluster

point in O(x). Hence f(y) ∈ O(x) which implies that f(O(x)) ⊆ O(x).

Theorem 4.4. Consider the following assertions for function f : (X, τf )→ (X, τf ).

(a) For some x0 ∈ X, the set O(x0) is compact;

(b) if x is not a fixed point of f , then x /∈ O(f 2(x)).
Then there is a cluster point y in O(x0) such that f(y) = y.

Proof. Consider M = {A ⊆ O(x0);A 6= ∅ and A,Ac ∈ τf}. Lemma 4.3 guarantees that M is
nonempty. LetM be partially ordered by the set inclusion and let N be a totally ordered subfamily
of M. Put M0 = ∩{A;A ∈ N}. M0 is closed nonempty subset of O(x0) by the compactness of
O(x0) and it is a lower bound of N . Using Zorn’s Lemma we can find a subset  L of M which is
minimal with respect to being nonempty, closed and mapped into itself by f . By the minimality of
 L we have T ( L) =  L.
Let x be an element in  L and suppose that x 6= f(x). Then x /∈ O(f 2(x)) and so the continuity
of f implies that the set O(f 2(x)) is mapped into itself by f and the minimality of  L implies that
 L = O(f 2(x)). On the other hand we have x ∈  L. It follows that x ∈ O(f 2(x)) which is desire
contradiction. Therefore x = f(x).

Definition 4.5. [1] Let (X, d) be a metric space. A function f : X → X is called a contraction if
there exists k < 1 such that for any x, y ∈ X, d(f(x), f(y)) ≤ kd(x, y).

Theorem 4.6. For metric space (X, d), Consider contraction function f and the topological space
(X, τf ). Then for any x ∈ X we can find the value r such that Br(x) ∈ τf .
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Proof. We find r such that for any y ∈ Br(x), f(y) ∈ Br(x). So it is enough to find r such
that d(x, f(y)) < r. By the triangle inequality, d(x, f(y)) ≤ d(x, f(x)) + d(f(x), f(y)) and since f
is a contraction, d(f(x), f(y)) ≤ kd(x, y). If Br(x) is any ball and y ∈ Br(x), so d(x, y) ≤ r. Hence
d(f(x), f(y)) ≤ kr and so d(x, f(y)) ≤ d(x, f(x))+kr. Then if we choose r so that d(x, f(x))+kr < r,
we would find that d(x, f(y)) < r for all y ∈ Br(x) and this completes the proof. Thus we consider:

d(x, f(x)) + kr < r

d(x, f(x)) < r − kr
d(x, f(x)) < r(1− k)

d(x, f(x))/(1− k) < r.

Hence we see that if d(x, f(x))/(1− k) < r, then f(y) ∈ Br(x) for all y ∈ Br(x).
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