Int. J. Nonlinear Anal. Appl. 5 (2014) No. 2, 31-36 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

On Invariant Sets Topology

Madjid Eshaghi Gordji^{a,*}, Mohsen Rostamian Delavar^b

^aDepartment of Mathematics, Semnan University, P.O.Box. 35195-363, Semnan, Iran. ^bYoung Researchers Club, Semnan Branch, Islamic Azad University, Semnan, Iran.

(Communicated by A. Ebadian)

Abstract

In this paper we introduce and study a new topology related to a self mapping on a nonempty set. Let X be a nonempty set and let f be a self mapping on X. Then the set of all invariant subsets of X related to f, i.e. $\tau_f := \{A \subseteq X : f(A) \subseteq A\} \subseteq \mathcal{P}(X)$ is a topology on X. Among other things, we find the smallest open sets contains a point $x \in X$. Moreover, we find the relations between f and τ_f . For instance, we find the conditions on f to show that whenever τ_f is T_0 , T_1 or T_2 .

Keywords: Topological spaces, Separation axioms, Fixed point theorems. 2000 MSC: Primary 54D70, 54D10. Secondary 47H10.

1. Introduction

Suppose that f is a function from a nonempty set X into itself. Define $\tau_f = \{A \subseteq X : f(A) \subseteq A\} \subseteq \mathcal{P}(X)$ which is called the set of *invariant sets related to the function* f. The paper is based on some elementary results about τ_f which is a topology on X. This topology have some interesting results with new applications.

First it is shown that (X, τ_f) is a topological space. Also some basic properties are investigated. Second using the concept of *orbit* for $x \in X$, we introduce the separation concepts of T_0, T_1 and T_2 . In this section we give some conditions for topological space (X, τ_f) and f which are equivalent to the separation concepts of T_0, T_1 and T_2 . In the last section as an application we prove some fixed point theorems related to the separation concepts and orbits.

It is known that for function f, an element $x \in X$ is a *fixed point* if f(x) = x. The proof of some results in the following section are easy and then we can omit them. We mainly used [2] and [3] in this paper.

*Corresponding author

Email addresses: madjid.eshaghi@gmail.com (Madjid Eshaghi Gordji), rostamian333@gmail.com (Mohsen Rostamian Delavar)

2. Basic Results

Proposition 2.1. (X, τ_f) is a topological space.

Proof. It is easy to see that $\emptyset, X \in \tau_f$. (a) For $U_{\alpha} \in \tau_f$ with $\alpha \in I$, $f(\bigcup_{\alpha} U_{\alpha}) = \bigcup_{\alpha} f(U_{\alpha}) \subseteq \bigcup_{\alpha} (U_{\alpha})$. (b) For i = 1, ..., n and $U_i \in \tau_f$, $f(\bigcap_{i=1}^n U_i) \subseteq \bigcap_{i=1}^n f(U_i) \subseteq \bigcap_{i=1}^n U_i$.

Proposition 2.2. In topological space (X, τ_f) , every intersection (resp. union) of closed sets is closed.

Proposition 2.3. Consider the topological space (X, τ_f) . Then

- (a) if $G \in \tau_f$, then $G \subseteq f^{-1}(G)$.
- (b) if $F^c \in \tau_f$, then $f^{-1}(F) \subseteq F$.

Proposition 2.4. Consider the topological space (X, τ_f) . For any set $A \subseteq X$ we have $x \in \overline{A}$ if for any $G \in \tau_f$ which contains x, there is $y \in A$ such that $f(y) \in G$. The converse is also true for a set A if any $y \in A$ be a fixed point of f.

Proof. Suppose that $x \in \overline{A}$ and $x \in G \in \tau_f$. If for any $y \in A$, $f(y) \notin G$ then $f(y) \in G^c$. Using Proposition 2.3 we have $y \in f^{-1}(G^c) \subseteq G^c$. So $x \in \overline{A} \subseteq G^c$ which contradicts $x \in G$.

For the converse suppose that $x \notin \overline{A}$. Hence according to the definition of closure in topological spaces, there is a closed set F such that $A \subseteq F$ and $x \notin F$. So $A \cap F^c = \emptyset$ and F^c is an open set including x. This implies that $y \notin F^c$ for any $y \in A$. But this means that $f(y) \notin F^c$ which is a contradiction.

The continuity of a function $g: (X, \tau_f) \to (X, \tau_f)$ has the usual definition. Indeed for any $x \in X$, the relation $f(x) \in B \in \tau_f$ necessitates that there is $A \in \tau_f$ including x such that $g(A) \subseteq B$.

Proposition 2.5. The function $f : (X, \tau_f) \to (X, \tau_f)$ is continuous.

Proof. Suppose that $f(x) \in B \in \tau_f$. So $x \in f^{-1}(B)$. From Proposition 2.3, $f(f^{-1}(B)) \subseteq B \subseteq f^{-1}(B)$. Hence $f^{-1}(B) \in \tau_f$. Now set $A = f^{-1}(B)$. Then $x \in A$ and $f(A) = f(f^{-1}(B)) \subseteq B$.

Proposition 2.6. Consider two functions $f, g : X \to X$. If the function $h : (X, \tau_f) \to (X, \tau_g)$ is continuous, then the relation $h(x) \in B \in \tau_g$ implies that there is $A \in \tau_f$ including x such that $(g \circ h \circ f)(A) \subseteq B$.

Proof. Consider $x \in X$ with $h(x) \in B \in \tau_g$. By continuity of h, there is $A \in \tau_f$ including x such that $h(A) \subseteq B$. Since $g(B) \subseteq B$ and $f(A) \subseteq A$, then

$$g \circ h \circ f(A) \subseteq g \circ h(A) \subseteq g(B) \subseteq B.$$

Corollary 2.7. Suppose that $g : (X, \tau_f) \to (X, \tau_f)$ is continuous. for any $x \in X$ the relation $f(x) \in B \in \tau_f$ implies that there is $A \in \tau_f$ including x such that $(g \circ f)(A) \subseteq B$.

Definition 2.8. Consider the topological space (X, τ_f) . The orbit of $x \in X$ is defined as the following:

$$O(x) = \{ f^n(x); \ n = 0, 1, 2, \cdots \}.$$

Since $f(O(x)) \subseteq O(x)$, then $O(x) \in \tau_f$. This means that for any $x \in X$, O(x) is an open set including x. Also O(x) is included in any open set including x.

Proposition 2.9. Consider the topological space (X, τ_f) .

(a) For any $x \in X$, O(x) is the smallest open set including x. That is O(x) is intersection of all open sets including x.

(b) The set $\{O(x); x \in X\}$ is a base for τ_f .

(c) If $x \in X$ is a fixed point of the function f, then $O(x) = \{x\}$.

Proof. It is easy consequence of Definition 2.8.

Definition 2.10. Consider the topological space (X, τ_f) . For any set $A \subseteq X$ we define the orbit hull of A as the following:

$$O_h(A) = \bigcup_{x \in A} O(x).$$

Proposition 2.11. Consider the topological space (X, τ_f) and two set $A, B \subseteq X$. Then

- (a) $A \subseteq O_h(A)$.
- (b) $O_h(A) \in \tau_f$.
- (c) If $A \subseteq B$, then $O_h(A) \subseteq O_h(B)$.
- (d) If $A \in \tau_f$, then $O_h(A) = A$.
- (e) $O_h(A) = \bigcap \{G; A \subseteq G \text{ and } G \in \tau_f \}.$

Proof. (a), (b) and (c) are obvious. For assertion (d), Since $A \in \tau_f$, then for any $x \in A$, $O(x) \subseteq A$. So $O_h(A) \subseteq A \subseteq O_h(A)$. By Definition 2.8 and the fact $A \subseteq O_h(A) \in \tau_f$ we have $O_h(A) \subseteq \bigcap \{G; A \subseteq G \text{ and } G \in \tau_f\} \subseteq O_h(A)$.

3. Separation Theorems

The purpose of this section is establishing equivalent conditions for famous separations axioms related to the function f. We begin with definition of separation axioms.

Definition 3.1. According to the classical definitions in topological spaces we define that (X, τ_f) has the property of:

(a) T_0 if for any $x, y \in X$ with $x \neq y$ there is $G \in \tau_f$ such that either $x \in G$ and $y \in X \setminus G$ or $y \in G$ and $x \in X \setminus G$.

(b) T_1 if for any $x, y \in X$ with $x \neq y$ there are $G, U \in \tau_f$ such that $x \in G, y \in X \setminus G$ and $y \in U$ and $x \in X \setminus U$.

(c) T_2 ((X, τ_f) is Hausdorff) if for any $x, y \in X$ with $x \neq y$ there are $G, U \in \tau_f$ such that $x \in G$ and $y \in U$ with $G \cap U = \emptyset$.

Proposition 3.2. Topological space (X, τ_f) has the property of T_0 if and only if for any $x \neq y$ in X either $x \neq f^n(y)$, n = 0, 1, 2, ... or $y \neq f^n(x)$, n = 0, 1, 2, ...

Proof. Suppose that (X, τ_f) has the property of T_0 and consider $x, y \in X$ with $x \neq y$. Then there is $G \in \tau_f$ such that either $x \in G, y \in X \setminus G$ or $y \in G, x \in X \setminus G$. These imply that $O(x) \subseteq G$, $y \notin O(x)$ or $O(y) \subseteq G, x \notin O(y)$. So for any $n = 0, 1, 2, \dots, y \neq f^n(x)$ or $x \neq f^n(y)$.

For the converse consider $x, y \in X$ with $x \neq y$. By the assumption for any $n = 0, 1, 2, \dots, y \neq f^n(x)$ or $x \neq f^n(y)$. Hence $x \notin O(y)$ or $y \notin O(x)$. Now set G = O(x) or G = O(y).

Proposition 3.3. The following assertions are equivalent

- (a) (X, τ_f) has the property of T_1 .
- (b) for any $x \in X$, $\{x\}^c \in \tau_f$.
- (c) for any $x \neq y$ in X we have $x \neq f^n(y)$ and $y \neq f^n(x)$, for n = 0, 1, 2, ...

Proof.

(a) \rightarrow (b): Consider $x \in X$. If $y \in \{x\}^c$, then there is an open set V_y such that $x \notin V_y$. So $y \notin \overline{\{x\}}$ which implies that $y \in X \setminus \overline{\{x\}} \in \tau_f$. Hence $f(y) \in f(X \setminus \overline{\{x\}}) \subseteq X \setminus \overline{\{x\}}$ for any $y \in Y$. So $f(\{x\}^c) \subseteq X \setminus \overline{\{x\}} \subseteq X \setminus \{x\} = \{x\}^c$.

(b) \rightarrow (c): Suppose that $x, y \in X$, $x \neq y$ and $\{x\}^c, \{y\}^c \in \tau_f$. So $\{x\} = \overline{\{x\}}$ and $\{y\} = \overline{\{y\}}$. It follows that $x \notin \overline{\{y\}}$ and $y \notin \overline{\{x\}}$. Hence there are open sets U including x and V including y such that $y \notin U$ and $x \notin V$. These imply that $y \notin O(x)$ and $x \notin O(y)$. Then $x \neq f^n(y)$ and $y \neq f^n(x)$, for $n = 0, 1, 2, \ldots$

(c) \rightarrow (a): Consider $x, y \in X$ with $x \neq y$. By the assumption for any $n = 0, 1, 2, \dots, y \neq f^n(x)$ and $x \neq f^n(y)$. Hence $x \notin O(y)$ and $y \notin O(x)$. Now set U = O(x) and V = O(y).

Corollary 3.4. Suppose that (X, τ_f) has the property of T_1 and $x \in X$ is a fixed point of function f. Then $\{x\}$ is open and closed.

Proposition 3.5. The topological space (X, τ_f) has the property of T_2 (being Hausdorff) if and only if for any $x \neq y$ in X we have $f^n(y) \neq f^n(x)$, for all $m, n \in \{0, 1, 2, ...\}$.

Proof. Suppose that (X, τ_f) has the property of T_2 and consider $x, y \in X$ with $x \neq y$. So there are open sets U including x and V including y such that $U \cap V = \emptyset$. Hence $O(x) \cap O(y) = \emptyset$. Then for all $m, n \in \{0, 1, 2, ...\}, f^n(y) \neq f^n(x)$. For the converse set O(x) = U and O(y) = V.

Definition 3.6. The topological space (X, τ_f) is called regular if for any $x \in X$ and closed set $F \subseteq X \setminus \{x\}$ with $F \neq \{O(x)\}^c$ we have $O_h(F) \cap O(x) = \emptyset$.

Theorem 3.7. The topological space (X, τ_f) is regular if and only if for any $x \in X$ and any open set $U \neq O(x)$ including x, we have $x \in O(x) \subset \overline{O(x)} \subset U$.

Proof. Suppose that (X, τ_f) is regular and $x \in U \in \tau_f$. Then

$$O_h(X \setminus U) \cap O(x) = \emptyset.$$
(1)

On the other hand always $X \setminus U \subset O_h(X \setminus U)$ and so

$$[O_h(X \setminus U)]^c \subset U.$$
(2)

Now from (1) and (2) we have $x \in O(x) \subset [O_h(X \setminus U)]^c \subset U$. Since $[O_h(X \setminus U)]^c$ is closed then $\overline{O(x)} \subset [O_h(X \setminus U)]^c$. Hence $x \in O(x) \subset \overline{O(x)} \subset X \setminus U$.

For the converse Consider $x \in X$ and closed F with $O(x)^c \neq F \subseteq X \setminus \{x\}$. These imply that $X \setminus F \neq O(x)$ and $x \in X \setminus F \in \tau_f$. According to the assumption $x \in O(x) \subset \overline{O(x)} \subset U$. So $x \in O(x)$ and $F \subset X \setminus \overline{O(x)}$ which imply that $O_h(F) \subset X \setminus \overline{O(x)}$. Since $(X \setminus \overline{O(x)}) \cap O(x) = \emptyset$ then, $O_h(F) \cap O(x) = \emptyset$.

4. Application

As an application of the Sections 1 and 2, we give the following fixed point theorems using separation axioms and the concept of orbits related to the function f. Also we show that if f is a contraction on a metric space (X, d), then for any $x \in X$ there is an open set with respect to the metric d including x such that belongs to τ_f .

Definition 4.1. a family $\mathcal{A} = \{A_j : j \in J\}$ of open sets in X is called an (open) cover of K if $K \subseteq \bigcup_j A_j$.

Theorem 4.2. Suppose that (X, τ_f) is a Hausdorff space. The function $f : (X, \tau_f) \to (X, \tau_f)$ has the fixed point if and only if for every cover $\{G_{\alpha}; \alpha \in \mathfrak{A}\}$ for X, there are $x_0 \in X$ and $\alpha_0 \in \mathfrak{A}$ such that both of x_0 and $f(x_0)$ are included in G_{α_0} .

Proof. If f has a fixed point then there is $\alpha_0 \in \mathfrak{A}$ such that both of x_0 and $f(x_0)$ included in G_{α_0} . For the converse suppose that f has no fixed point. So $f(x) \neq x$ for any $x \in X$. Since (X, τ_f) is a Hausdorff space then for any $x \in X$ there are U_x including x an W_x including f(x) such that $U_x \cap W_x = \emptyset$. Also according to the Proposition 2.5, we can choose U_x such that $f(U_x) \subseteq W_x$. Since $\{U_x; x \in X\}$ is a cover for X then there is $z \in X$ and $x_0 \in X$ such that both of z and f(z) are included in U_{x_0} . Hence $f(z) \in f(U_{x_0}) \subseteq W_{x_0}$. So $f(z) \in U_{x_0} \cap W_{x_0}$, which implies that $U_{x_0} \cap W_{x_0} \neq \emptyset$.

Lemma 4.3. Consider $f: (X, \tau_f) \to (X, \tau_f)$. For any $x \in X$, $\overline{O(x)}$ is both of open and closed.

Proof. It is clear that O(x) is closed. Suppose that W_y is an arbitrary open set including f(y). So there is U_y such that $f(U_y) \subset W_y$. Now consider y as a cluster point of O(x). So $U_y \cap O(x) \neq \emptyset$. Hence $f(U_y) \cap O(x) \neq \emptyset$. Which implies that $W_y \cap O(x) \neq \emptyset$. This guarantees that f(y) is a cluster point in O(x). Hence $f(y) \in \overline{O(x)}$ which implies that $f(\overline{O(x)}) \subseteq \overline{O(x)}$.

Theorem 4.4. Consider the following assertions for function $f : (X, \tau_f) \to (X, \tau_f)$.

(a) For some $x_0 \in X$, the set $\overline{O(x_0)}$ is compact;

(b) if x is not a fixed point of f, then $x \notin \overline{O(f^2(x))}$.

Then there is a cluster point y in $O(x_0)$ such that f(y) = y.

Proof. Consider $\mathcal{M} = \{A \subseteq \overline{O(x_0)}; A \neq \emptyset \text{ and } A, A^c \in \tau_f\}$. Lemma 4.3 guarantees that \mathcal{M} is nonempty. Let \mathcal{M} be partially ordered by the set inclusion and let \mathcal{N} be a totally ordered subfamily of \mathcal{M} . Put $\mathcal{M}_0 = \cap\{A; A \in \mathcal{N}\}$. \mathcal{M}_0 is closed nonempty subset of $\overline{O(x_0)}$ by the compactness of $\overline{O(x_0)}$ and it is a lower bound of \mathcal{N} . Using Zorn's Lemma we can find a subset L of \mathcal{M} which is minimal with respect to being nonempty, closed and mapped into itself by f. By the minimality of L we have $\overline{T(L)} = L$.

Let x be an element in L and suppose that $x \neq f(x)$. Then $x \notin \overline{O(f^2(x))}$ and so the continuity of f implies that the set $\overline{O(f^2(x))}$ is mapped into itself by f and the minimality of L implies that $L = \overline{O(f^2(x))}$. On the other hand we have $x \in L$. It follows that $x \in \overline{O(f^2(x))}$ which is desire contradiction. Therefore x = f(x).

Definition 4.5. [1] Let (X, d) be a metric space. A function $f : X \to X$ is called a contraction if there exists k < 1 such that for any $x, y \in X$, $d(f(x), f(y)) \leq kd(x, y)$.

Theorem 4.6. For metric space (X, d), Consider contraction function f and the topological space (X, τ_f) . Then for any $x \in X$ we can find the value r such that $B_r(x) \in \tau_f$.

Proof. We find r such that for any $y \in B_r(x)$, $f(y) \in B_r(x)$. So it is enough to find r such that d(x, f(y)) < r. By the triangle inequality, $d(x, f(y)) \le d(x, f(x)) + d(f(x), f(y))$ and since f is a contraction, $d(f(x), f(y)) \le kd(x, y)$. If $B_r(x)$ is any ball and $y \in B_r(x)$, so $d(x, y) \le r$. Hence $d(f(x), f(y)) \le kr$ and so $d(x, f(y)) \le d(x, f(x)) + kr$. Then if we choose r so that d(x, f(x)) + kr < r, we would find that d(x, f(y)) < r for all $y \in B_r(x)$ and this completes the proof. Thus we consider:

$$\begin{split} d(x, f(x)) + kr < r \\ d(x, f(x)) < r - kr \\ d(x, f(x)) < r(1-k) \\ d(x, f(x))/(1-k) < r. \end{split}$$

Hence we see that if d(x, f(x))/(1-k) < r, then $f(y) \in B_r(x)$ for all $y \in B_r(x)$.

References

- S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equation integrals. Fund. Math. (3)(1922), 133–181.
- [2] J.R. Munkres, Topology A First Course, Prentice-Hall, 1975.
- [3] B.T. Sims, Fundamentals of Topology, Macmillan Publishing Co. Inc, 1976.