Int. J. Nonlinear Anal. Appl. 5 (2014) No. 2, 50-59 ISSN: 2008-6822 (electronic) http://www.ijnaa.semnan.ac.ir

Fixed points for Banach and Kannan contractions in modular spaces with a graph

Aris Aghanians^a, Kourosh Nourouzi^{a,*}

^aFaculty of Mathematics, K. N. Toosi University of Technology, P.O. Box 16315-1618, Tehran, Iran.

(Communicated by M.B. Ghaemi)

Abstract

In this paper, we discuss the existence and uniqueness of fixed points for Banach and Kannan contractions defined on modular spaces endowed with a graph. We do not impose the Δ_2 -condition or the Fatou property on the modular spaces to give generalizations of some recent results. The given results play as a modular version of metric fixed point results.

Keywords: Complete modular space, Fixed point, Banach contraction, Kannan contraction. 2010 MSC: Primary 47H10; Secondary 46A80, 05C40.

1. Introduction and preliminaries

To control the pathological behavior of a modular in modular spaces the conditions Δ_2 and Fatou property are usually assumed (see, e.g., [1, 5, 7, 8, 11, 12]. For instance, in [1], Banach fixed point theorem is given in modular spaces that their modular satisfy both the Δ_2 -condition and the Fatou property. In [7], Khamsi established some fixed point theorems for quasi-contractions in modular spaces satisfying only the Fatou property.

In [6], Jachymski investigated Banach fixed point theorem in metric spaces with a graph and his idea followed by the authors in uniform spaces (see, e.g., [2, 3]).

In this paper motivated by the ideas given in [1, 6], we aim to discuss the fixed points of Banach and Kannan contractions in modular spaces endowed with a graph without Δ_2 -condition and Fatou property. We also clarify the independence of these contractions in modular spaces.

We first commence some basic concepts about modular spaces as formulated by Musielak and Orlicz [10]. For more details, the reader is referred to [9].

*Corresponding author

Email addresses: a.aghanians@dena.kntu.ac.ir (Aris Aghanians), nourouzi@kntu.ac.ir (Kourosh Nourouzi)

Definition 1.1. A real-valued function ρ defined on a real vector space X is called a modular on X if it satisfies the following conditions:

- $\begin{array}{ll} \textbf{M1} & \rho(x) \geq 0 \ for \ all \ x \in X; \\ \textbf{M2} & \rho(x) = 0 \ if \ and \ only \ if \ x = 0; \\ \textbf{M3} & \rho(x) = \rho(-x) \ for \ all \ x \in X; \\ \textbf{M4} & \rho(ax + by) \leq \rho(x) + \rho(y) \ for \ all \ x, y \in X \ and \ all \ a, b \geq 0 \ with \ a + b = 1. \end{array}$

If ρ satisfies (M1)-(M4), then the pair (X, ρ) , shortly denoted by X, is called a modular space.

The modular ρ is called convex if Condition (M4) is strengthened by replacing with

M4') $\rho(ax + by) \le a\rho(x) + b\rho(y)$ for all $x, y \in X$ and all $a, b \ge 0$ with a + b = 1.

It is easy to obtain the following two immediate consequences of Condition (M4) which we need in the sequel:

- If a and b are real numbers with $|a| \leq |b|$, then $\rho(ax) \leq \rho(bx)$ for all $x \in X$;
- If a_1, \ldots, a_n are nonnegative numbers with $\sum_{i=1}^n a_i = 1$, then

$$\rho\Big(\sum_{i=1}^n a_i x_i\Big) \le \sum_{i=1}^n \rho(x_i) \qquad (x_1, \dots, x_n \in X).$$

Definition 1.2. Let (X, ρ) be a modular space.

- 1. A sequence $\{x_n\}$ in X is said to be ρ -convergent to a point $x \in X$, denoted by $x_n \stackrel{\rho}{\longrightarrow} x$, if $\begin{array}{l}\rho(x_n-x) \to 0 \ as \ n \to \infty.\\ 2. \ A \ sequence \ \{x_n\} \ in \ X \ is \ said \ to \ be \ \rho\ Cauchy \ if \ \rho(x_m-x_n) \to 0 \ as \ m, n \to \infty.\\ 3. \ The \ modular \ space \ X \ is \ called \ \rho\ complete \ if \ each \ \rho\ Cauchy \ sequence \ in \ X \ is \ \rho\ convergent \ to \ a \ x_n \ begin{aligned} \label{eq:product} \end{aligned}$

- 4. The modular ρ is said to satisfy the Δ_2 -condition if $2x_n \xrightarrow{\rho} 0$ as $n \to \infty$ whenever $x_n \xrightarrow{\rho} 0$ as $n \to \infty$.
- 5. The modular ρ is said to have the Fatou property if

$$\rho(x-y) \le \liminf_{n \to \infty} \rho(x_n - y_n)$$

whenever

$$x_n \xrightarrow{\rho} x \quad and \quad y_n \xrightarrow{\rho} y \quad as \quad n \to \infty$$

Conditions (M2) and (M4) ensure that each sequence in a modular space can be ρ -convergent to at most one point. In other words, the limit of a ρ -convergent sequence in a modular space is unique.

We next review some notions in graph theory. All of them can be found in, e.g., [4].

Let X be a modular space. Consider a directed graph G with V(G) = X and $E(G) \supseteq \{(x, x) :$ $x \in X$, i.e., E(G) contains all loops. Suppose further that G has no parallel edges. With these assumptions, we may denote G by the pair (V(G), E(G)). In this way, the modular space X is endowed with the graph G. The notation G is used to denote the undirected graph obtained from G by deleting the directions of the edges of G. Thus,

$$V(G) = X \qquad E(G) = \{ (x, y) \in X \times X : (x, y) \in E(G) \lor (y, x) \in E(G) \}.$$

By a path in G from a vertex x to a vertex y, it is meant a finite sequence $(x_s)_{s=0}^N$ of vertices of G such that $x_0 = x$, $x_N = y$, and $(x_{s-1}, x_s) \in E(G)$ for $s = 1, \ldots, N$. A graph G is called weakly connected if there exists a path in G between each two vertices of G, i.e., there exists an undirected path in G between its each two vertices.

2. Main results

Let X be a modular space endowed with a graph G and $f: X \to X$ be any mapping. The set of all fixed points for f is denoted by Fix(f), and by C_f , we mean the set of all elements x of X such that $(f^n x, f^m x) \in E(\widetilde{G})$ for $m, n = 0, 1, \ldots$

We begin with introducing Banach and Kannan G- ρ -contractions.

Definition 2.1. Let X be a modular space with a graph G and $f: X \to X$ be a mapping. We call f a Banach G- ρ -contraction if

B1) f preserves the edges of G, i.e., $(x, y) \in E(G)$ implies $(fx, fy) \in E(G)$ for all $x, y \in X$; **B2)** there exist positive numbers k, a and b with k < 1 and a < b such that

$$\rho(b(fx - fy)) \le k\rho(a(x - y))$$

for all $x, y \in X$ with $(x, y) \in E(G)$.

The numbers k, a and b are called the constants of f. And we call f a Kannan G- ρ -contraction if

K1) f preserves the edges of G;

K2) there exist positive numbers k, l, a_1, a_2 and b with k + l < 1, $a_1 \le \frac{b}{2}$ and $a_2 \le b$ such that

$$\rho(b(fx - fy)) \le k\rho(a_1(fx - x)) + l\rho(a_2(fy - y))$$

for all $x, y \in X$ with $(x, y) \in E(G)$.

The numbers k, l, a_1 , a_2 and b are called the constants of f.

It might be valuable if we discuss these contractions a little. Our first proposition follows immediately from Condition (M3) and Definition 2.1.

Proposition 2.2. Let X be a modular space with a graph G. If a mapping from X into itself satisfies (B1) (respectively, (B2)) for \tilde{G} , then it satisfies (B1) (respectively, (B2)) for \tilde{G} . In particular, a Banach G- ρ -contraction is also a Banach \tilde{G} - ρ -contraction. Similar statements are true for Kannan G- ρ -contractions provided that $a_2 \leq \frac{b}{2}$.

We also have the following remark about Kannan G- ρ -contractions.

Remark 2.3. For a Kannan \widetilde{G} - ρ -contraction $f: X \to X$, we can interchange the roles of x and y in (K2) since $E(\widetilde{G})$ is symmetric. Having done this, we find

$$\rho(b(fx - fy)) = \rho(b(fy - fx))$$

$$\leq k\rho(a_1(fy - y)) + l\rho(a_2(fx - x))$$

$$= l\rho(a_2(fx - x)) + k\rho(a_1(fy - y)).$$

Therefore, no matter $a_1 \leq \frac{b}{2}$ or $a_2 \leq \frac{b}{2}$ whenever we are faced with Kannan \tilde{G} - ρ -contractions. Nevertheless, both a_1 and a_2 must be not more than b.

We now give some examples.

Example 2.4. Let X be a modular space with any arbitrary graph G. Since E(G) contains all loops, each constant mapping $f : X \to X$ is both a Banach and a Kannan G- ρ -contraction. In fact, E(G) should contain all loops if we want any constant mapping to be either a Banach or a Kannan G- ρ -contraction.

Example 2.5. Let X be a modular space and G_0 be the complete graph $(X, X \times X)$. Then Banach (Kannan) G_0 - ρ -contractions are precisely the Banach (Kannan) contractions in modular spaces.

Example 2.6. Let \leq be a partial order on a modular space X and consider a poset graph G_1 by $V(G_1) = X$ and $E(G_1) = \{(x, y) \in X \times X : x \leq y\}$. Then Banach G_1 - ρ -contractions are precisely the nondecreasing ordered ρ -contractions. A similar statement is true for Kannan G_1 - ρ -contractions.

Finally, we show that Banach and Kannan G- ρ -contractions are independent of each other. More precisely, we construct two mappings on \mathbb{R} such that one of them satisfies (B2) but not (K2), and the other, (K2) but not (B2) for the complete graph G_0 .

Example 2.7. Let ρ be the usual Euclidean norm on \mathbb{R} , i.e., $\rho(x) = |x|$ for all $x \in \mathbb{R}$. Define a mapping $f : \mathbb{R} \to \mathbb{R}$ by $fx = \frac{x}{3}$ for all $x \in \mathbb{R}$. Then f is a Banach G_0 - ρ -contraction with the constants $k = \frac{2}{3}$, $a = \frac{1}{2}$ and b = 1. Indeed, given any $x, y \in \mathbb{R}$, we have

$$\rho(b(fx - fy)) = \frac{1}{3}|x - y| = k\rho(a(x - y)).$$

On the other hand, if k, l, a_1 , a_2 and b are any arbitrary positive numbers satisfying k+l < 1, $a_1 \le \frac{b}{2}$ and $a_2 \le b$, then for y = 0 and any $x \ne 0$ we see that

$$\rho(b(fx-f0)) = \frac{b|x|}{3} > \frac{2a_1k|x|}{3} = k\rho(a_1(fx-x)) + l\rho(a_2(f0-0)).$$

Therefore, (K2) fails to hold and f is not a Kannan G_0 - ρ -contraction.

Example 2.8. It is easy to verify that the function $\rho(x) = x^2$ defines a modular on \mathbb{R} and (\mathbb{R}, ρ) is ρ -complete because $(\mathbb{R}, |\cdot|)$ is a Banach space. Now, consider a mapping $f : \mathbb{R} \to \mathbb{R}$ defined by $fx = \frac{1}{2}$ if $x \neq 1$ and $f1 = \frac{1}{10}$. Then f is a G_0 - ρ -Kannan contraction with the constants $k = \frac{64}{81}$, $l = \frac{16}{81}$, $a_1 = \frac{1}{2}$ and $a_2 = b = 1$. Indeed, given any $x, y \in \mathbb{R}$, we have the following three possible cases:

Case 1: If x = y = 1 or $x, y \neq 1$, then (K2) holds trivially since fx = fy;

Case 2: If x = 1 and $y \neq 1$, then

$$\rho(b(fx - fy)) = \frac{4}{25} \le \frac{4}{25} + \frac{16}{81} \left(\frac{1}{2} - y\right)^2 = k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)) \le \frac{1}{25} + \frac{16}{25} \left(\frac{1}{2} - y\right)^2 = k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)) \le \frac{1}{25} + \frac{16}{25} \left(\frac{1}{2} - y\right)^2 = k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)) \le \frac{1}{25} + \frac{16}{25} \left(\frac{1}{2} - y\right)^2 = k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)) \le \frac{1}{25} + \frac{16}{25} \left(\frac{1}{2} - y\right)^2 = k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)) \le \frac{1}{25} + \frac{16}{25} \left(\frac{1}{2} - y\right)^2 = k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)) \le \frac{1}{25} + \frac{16}{25} \left(\frac{1}{25} + \frac{16}{25} + \frac{16}{25}$$

Case 3: Finally, if $x \neq 1$ and y = 1, then

$$\rho(b(fx - fy)) = \frac{4}{25} \le \frac{16}{81} \left(\frac{1}{2} - x\right)^2 + \frac{4}{25} = k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)).$$

Note that $k + l = \frac{80}{81} < 1$, $a_1 \leq \frac{b}{2}$ and $a_2 \leq b$. But f is not a Banach G_0 - ρ -contraction; for if k, a and b are any arbitrary positive numbers satisfying k < 1 and a < b, then putting x = 1 and $y = \frac{3}{5}$ yields

$$\rho(b(fx - fy)) = \frac{4b^2}{25} > \frac{4a^2k}{25} = k\rho(a(x - y)).$$

Now we are going to prove our fixed point results. The first one is about the existence and uniqueness of fixed points for Banach \tilde{G} - ρ -contractions.

Theorem 2.9. Let X be a ρ -complete modular space endowed with a graph G and the triple (X, ρ, G) have the following property:

(*) If $\{x_n\}$ is a sequence in X such that $\beta x_n \xrightarrow{\rho} \beta x$ for some $\beta > 0$ and $(x_n, x_{n+1}) \in E(\widetilde{G})$ for all $n \ge 1$, then there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $(x_{n_i}, x) \in E(\widetilde{G})$ for all $i \ge 1$.

Then a Banach G- ρ -contraction $f : X \to X$ has a fixed point if and only if $C_f \neq \emptyset$. Moreover, this fixed point is unique if G is weakly connected.

Proof. (\Rightarrow) It is trivial since Fix $(f) \subseteq C_f$.

(\Leftarrow) Let k, a and b be the constants of f and let $\alpha > 1$ be the exponential conjugate of $\frac{b}{a}$, i.e., $\frac{a}{b} + \frac{1}{\alpha} = 1$. Choose an $x \in C_f$ and keep it fixed. We are going to show that the sequence $\{bf^n x\}$ is ρ -Cauchy in X. To this end, note first if n is a positive integer, then by (B2) we have

$$\rho(a(f^n x - x)) = \rho(a(f^n x - fx) + a(fx - x))$$

$$= \rho(\frac{a}{b}b(f^n x - fx) + \frac{1}{\alpha}\alpha a(fx - x))$$

$$\leq \rho(b(f^n x - fx)) + \rho(\alpha a(fx - x))$$

$$\leq k\rho(a(f^{n-1}x - x)) + r,$$

where $r = \rho(\alpha a(fx - x))$. Hence using the mathematical induction, we get

$$\rho(a(f^n x - x)) \leq k\rho(a(f^{n-1}x - x)) + r$$

$$\leq k \left[k\rho(a(f^{n-2}x - x)) + r \right] + r$$

$$= k^2 \rho(a(f^{n-2}x - x)) + kr + r$$

$$\vdots$$

$$\leq k^{n-1} \rho(a(fx - x)) + k^{n-2}r + \dots + r$$

for all $n \ge 1$. Since $\alpha > 1$, it follows that $\rho(a(fx - x)) \le \rho(\alpha a(fx - x)) = r$ and therefore,

$$\rho(a(f^n x - x)) \le k^{n-1}r + \dots + r = \frac{(1 - k^n)r}{1 - k} \le \frac{r}{1 - k} \qquad n = 1, 2, \dots$$
 (2.1)

Now using (B2) once more, we find

$$\rho(b(f^m x - f^n x)) \leq k\rho(a(f^{m-1}x - f^{n-1}x))) \\
\leq k\rho(b(f^{m-1}x - f^{n-1}x))) \\
\vdots \\
\leq k^n \rho(a(f^{m-n}x - x))$$
(2.2)

for all m and n with $m > n \ge 1$. Consequently, by combining (2.1) and (2.2), it is seen that for all $m > n \ge 1$ we have

$$\rho(b(f^m x - f^n x)) \le k^n \rho(a(f^{m-n} x - x)) \le \frac{k^n r}{1-k}.$$

Therefore, $\rho(b(f^m x - f^n x)) \to 0$ as $m, n \to \infty$, and so $\{bf^n x\}$ is a ρ -Cauchy sequence in X and because X is ρ -complete, it is ρ -convergent. On the other hand, X is a real vector space and b > 0. Thus, there exists an $x^* \in X$ such that $bf^n x \xrightarrow{\rho} bx^*$.

We next show that x^* is a fixed point for f. Since $x \in C_f$, it follows that $(f^n x, f^{n+1} x) \in E(\widetilde{G})$ for all $n \ge 0$, and so by Property (*), there exists a strictly increasing sequence $\{n_i\}$ of positive integers such that $(f^{n_i}x, x^*) \in E(\widetilde{G})$ for all $i \ge 1$. Hence using (B2) we get

$$\rho\left(\frac{b}{2}(fx^* - x^*)\right) = \rho\left(\frac{b}{2}(fx^* - f^{n_i+1}x) + \frac{b}{2}(f^{n_i+1}x - x^*)\right) \\
\leq \rho\left(b(fx^* - f^{n_i+1}x)\right) + \rho\left(b(f^{n_i+1}x - x^*)\right) \\
= \rho\left(b(f^{n_i+1}x - fx^*)\right) + \rho\left(b(f^{n_i+1}x - x^*)\right) \\
\leq k\rho\left(a(f^{n_i}x - x^*)\right) + \rho\left(b(f^{n_i+1}x - x^*)\right) \\
\leq k\rho\left(b(f^{n_i}x - x^*)\right) + \rho\left(b(f^{n_i+1}x - x^*)\right) \to 0$$

as $i \to \infty$. So $\rho(\frac{b}{2}(fx^* - x^*)) = 0$, and since b > 0, it follows that $fx^* - x^* = 0$ or equivalently, $fx^* = x^*$, i.e., x^* is a fixed point for f.

Finally, to prove the uniqueness of the fixed point, suppose that G is weakly connected and $y^* \in X$ is a fixed point for f. Then there exists a path $(x_s)_{s=0}^N$ in \widetilde{G} from x^* to y^* , i.e., $x_0 = x^*$, $x_N = y^*$, and $(x_{s-1}, x_s) \in E(\widetilde{G})$ for $s = 1, \ldots, N$. Thus, by (B1), we have

$$(f^n x_{s-1}, f^n x_s) \in E(\tilde{G})$$
 $(n \ge 0 \text{ and } s = 1, ..., N).$

And using (B2) and the mathematical induction we get

$$\rho\left(\frac{b}{N}(x^* - y^*)\right) = \rho\left(\frac{b}{N}(x^* - f^n x_1) + \dots + \frac{b}{N}(f^n x_{N-1} - y^*)\right) \\
\leq \rho\left(b(x^* - f^n x_1)\right) + \dots + \left(b(f^n x_{N-1} - y^*)\right) \\
= \sum_{s=1}^N \rho\left(b(f^n x_{s-1} - f^n x_s)\right) \\
\leq k \sum_{s=1}^N \rho\left(a(f^{n-1} x_{s-1} - f^{n-1} x_s)\right) \\
\leq k \sum_{s=1}^N \rho\left(b(f^{n-1} x_{s-1} - f^{n-1} x_s)\right) \\
\vdots \\
\leq k^n \sum_{s=1}^N \rho\left(b(x_{s-1} - x_s)\right) \to 0$$

as $n \to \infty$. So $\frac{b}{N}(x^* - y^*) = 0$, and since b > 0, it follows that $x^* = y^*$. Consequently, the fixed point of f is unique. \Box

Setting $G = G_0$ and $G = G_1$, we get the following consequences of Theorem 2.9 in modular and partially ordered modular spaces, respectively.

Corollary 2.10. Let X be a ρ -complete modular space and a mapping $f: X \to X$ satisfies

$$\rho(b(fx - fy)) \le k\rho(a(x - y)) \qquad (x, y \in X),$$

where 0 < k < 1 and 0 < a < b. Then f has a unique fixed point $x^* \in X$ and $bf^n x \xrightarrow{\rho} bx^*$ for all $x \in X$.

Corollary 2.11. Let \leq be a partial order on a ρ -complete modular space X such that the triple (X, ρ, \leq) has the following property:

(**) If $\{x_n\}$ is a sequence in X with successive comparable terms such that $\beta x_n \xrightarrow{\rho} \beta x$ for some $\beta > 0$, then there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ such that $x_{n_i} \preceq x$ for all $i \ge 1$.

Assume that a nondecreasing mapping $f: X \to X$ satisfies

 $\rho(b(fx - fy)) \le k\rho(a(x - y)) \qquad (x, y \in X \text{ and } x \le y),$

where 0 < k < 1 and 0 < a < b. Then f has a fixed point if and only if there exists an $x \in X$ such that $T^n x$ is comparable to $T^m x$ for all $m, n \ge 0$. Moreover, this fixed point is unique if the following condition holds:

label= For all $x, y \in X$, there exists a finite sequence $(x_s)_{s=0}^N$ in X with comparable successive terms such that $x_0 = x$ and $x_N = y$.

Corollary 2.12. Let (X, ρ) be a ρ -complete modular space endowed with a graph G, where ρ is a convex modular, and the triple (X, ρ, G) have Property (*). Assume that $f : X \to X$ is a mapping which preserves the edges of \widetilde{G} and satisfies

$$\rho(b(fx - fy)) \le k\rho(a(x - y)) \qquad (x, y \in X \text{ and } (x, y) \in E(G)),$$

where k, a and b are positive numbers with $b > \max\{a, ak\}$. Then f has a fixed point if and only if $C_f \neq \emptyset$. Moreover, this fixed point is unique if G is weakly connected.

Proof. Set $c = \max\{a, ak\}$ and choose any $a_0 \in (c, b)$. Then by the hypothesis and convexity of ρ , we have

$$\rho(b(fx - fy)) \leq k\rho(a(x - y))$$

= $k\rho(\frac{a}{a_0}a_0(x - y) + (1 - \frac{a}{a_0})0)$
 $\leq \frac{ak}{a_0}\rho(a_0(x - y))$

for all $x, y \in X$ with $(x, y) \in E(\widetilde{G})$. Since $a_0 < b$, and $\frac{ak}{a_0} < 1$, it follows that f satisfies (B2) for the graph \widetilde{G} with the constants k and a replaced with $\frac{ak}{a_0}$ and a_0 , respectively, and b kept fixed. Since f preserves the edges of \widetilde{G} , it follows that f is a Banach \widetilde{G} - ρ -contraction and the results are concluded immediately from Theorem 2.9. \Box

Our next result is about the existence and uniqueness of fixed points for Kannan \tilde{G} - ρ -contractions.

Theorem 2.13. Let X be a ρ -complete modular space endowed with a graph G and the triple (X, ρ, G) have Property (*). Then a Kannan \tilde{G} - ρ -contraction $f : X \to X$ has a fixed point if and only if $C_f \neq \emptyset$. Moreover, this fixed point is unique if $k < \frac{1}{2}$ and X satisfies the following condition:

(*) For all $x, y \in X$, there exists a $z \in X$ such that $(x, z), (y, z) \in E(\widetilde{G})$.

Proof. (\Rightarrow) It is trivial since $Fix(f) \subseteq C_f$.

(\Leftarrow) Let k, l, a_1 , a_2 and b be the constants of f. Choose an $x \in C_f$ and keep it fixed. We are going to show that the sequence $\{bf^nx\}$ is ρ -Cauchy in X. Given any integer $n \ge 2$, by (K2) we have

$$\begin{split} \rho \big(b(f^n x - f^{n-1} x) \big) &\leq k \rho \big(a_1(f^n x - f^{n-1} x) \big) + l \rho \big(a_2(f^{n-1} x - f^{n-2} x) \big) \\ &\leq k \rho \big(b(f^n x - f^{n-1} x) \big) + l \rho \big(b(f^{n-1} x - f^{n-2} x) \big), \end{split}$$

which yields

$$\rho\left(b(f^n x - f^{n-1}x)\right) \le \delta\rho\left(b(f^{n-1} x - f^{n-2}x)\right),$$

where $\delta = \frac{l}{1-k} \in (0,1)$. Hence using the mathematical induction, we get

$$\rho(b(f^n x - f^{n-1}x)) \le \delta^n \rho(b(fx - x)) \qquad n = 1, 2, \dots$$

Now using (K2) once more, we find

$$\rho(b(f^m x - f^n x)) \leq k\rho(a_1(f^m x - f^{m-1}x)) + l\rho(a_2(f^n x - f^{n-1}x)) \\
\leq k\rho(b(f^m x - f^{m-1}x)) + l\rho(b(f^n x - f^{n-1}x)) \\
\leq k\delta^m \rho(b(fx - x)) + l\delta^n \rho(b(fx - x))$$

for all $m, n \ge 1$. Therefore, $\rho(b(f^m x - f^n x)) \to 0$ as $m, n \to \infty$, and so $\{bf^n x\}$ is a ρ -Cauchy sequence in X and because X is ρ -complete, it is ρ -convergent. Thus, there exists an $x^* \in X$ such that $bf^n x \xrightarrow{\rho} bx^*$.

We next show that x^* is a fixed point for f. Since $x \in C_f$, it follows that $(f^n x, f^{n+1} x) \in E(\widetilde{G})$ for all $n \ge 0$, and so by Property (*), there exists a strictly increasing sequence $\{n_i\}$ of positive integers such that $(f^{n_i}x, x^*) \in E(\widetilde{G})$ for all $i \ge 1$. Hence using (K2), we get

$$\rho\left(\frac{b}{2}(fx^* - x^*)\right) = \rho\left(\frac{b}{2}(fx^* - f^{n_i+1}x) + \frac{b}{2}(f^{n_i+1}x - x^*)\right) \\
\leq \rho\left(b(fx^* - f^{n_i+1}x)\right) + \rho\left(b(f^{n_i+1}x - x^*)\right) \\
\leq \left[k\rho(a_1(fx^* - x^*)) + l\rho(a_2(f^{n_i+1}x - f^{n_i}x))\right] + \rho\left(b(f^{n_i+1}x - x^*)\right) \\
\leq k\rho\left(\frac{b}{2}(fx^* - x^*)\right) + l\rho\left(b(f^{n_i+1}x - f^{n_i}x)\right) + \rho\left(b(f^{n_i+1}x - x^*)\right)$$

for all $k \geq 1$. Hence

$$\rho\Big(\frac{b}{2}\big(fx^* - x^*\big)\Big) \le \delta\rho\big(b(f^{n_i+1}x - f^{n_i}x)\big) + \frac{1}{1-k}\rho\big(b(f^{n_i+1}x - x^*)\big) \to 0$$

as $i \to \infty$. So $\rho(\frac{b}{2}(fx^* - x^*)) = 0$, and since b > 0, it follows that $fx^* - x^* = 0$ or equivalently, $fx^* = x^*$, i.e., x^* is a fixed point for f.

Finally, to prove the uniqueness of the fixed point, suppose that Condition (\star) holds and $y^* \in X$ is a fixed point for f. We consider the following two cases:

Case 1: (x^*, y^*) is an edge of \tilde{G} . In this case, using (K2), we find

$$\rho(b(x^* - y^*)) = \rho(b(fx^* - fy^*)) \le k\rho(a_1(fx^* - x^*)) + l\rho(a_2(fy^* - y^*)) = 0.$$

Therefore, $\rho(b(x^* - y^*)) = 0$, and so $x^* = y^*$ because b > 0.

Case 2: (x^*, y^*) is not an edge of G.

In this case, by Condition (\star), there exists a $z \in X$ such that both (x^*, z) and (y^*, z) are edges of \widetilde{G} . So by (K1), we have $(x^*, f^n z), (y^*, f^n z) \in E(\widetilde{G})$ for all $n \ge 0$ since x^* is a fixed point for f. Therefore, by (K2) we find

$$\rho(b(f^{n}z - x^{*})) = \rho(b(f^{n}z - f^{n}x^{*})) \\
\leq k\rho(a_{1}(f^{n}z - f^{n-1}z)) + l\rho(a_{2}(f^{n}x^{*} - f^{n-1}x^{*})) \\
\leq k\rho(\frac{b}{2}(f^{n}z - f^{n-1}z)) \\
= k\rho(\frac{b}{2}(f^{n}z - f^{n}x^{*}) + \frac{b}{2}(f^{n-1}x^{*} - f^{n-1}z)) \\
\leq k\rho(b(f^{n}z - f^{n}x^{*})) + k\rho(b(f^{n-1}x^{*} - f^{n-1}z)) \\
= k\rho(b(f^{n}z - x^{*})) + k\rho(b(f^{n-1}z - x^{*}))$$

for all $n \ge 1$, which yields

$$\rho(b(f^n z - x^*)) \le \lambda \rho(b(f^{n-1} z - x^*)).$$

where $\lambda = \frac{k}{1-k} \in (0,1)$ because $k < \frac{1}{2}$. So by the mathematical induction, we get

$$\rho(b(f^n z - x^*)) \le \lambda^n \rho(b(z - x^*)) \qquad n = 0, 1, \dots$$

Since $\lambda < 1$, it follows that $bf^n z \xrightarrow{\rho} bx^*$. Similarly, one can show that $bf^n z \xrightarrow{\rho} by^*$, and so $bx^* = by^*$ because the limit of a ρ -convergent sequence in a modular space is unique. Thus, from b > 0, it follows that $x^* = y^*$.

Consequently, the fixed point of f is unique. \Box

Setting $G = G_0$ and $G = G_1$ once again, we get the following consequences of Theorem 2.13 in modular and partially ordered modular spaces, respectively.

Corollary 2.14. Let X be a ρ -complete modular space and a mapping $f: X \to X$ satisfies

$$\rho(b(fx - fy)) \le k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)) \qquad (x, y \in X),$$

where k, l, a_1, a_2 and b are positive with k + l < 1, $a_1 \leq \frac{b}{2}$ and $a_2 \leq b$. Then f has a unique fixed point $x^* \in X$ and $bf^n x \xrightarrow{\rho} bx^*$ for all $x \in X$.

Corollary 2.15. Let \leq be a partial order on a ρ -complete modular space X such that the triple (X, ρ, \leq) has Property (**). Assume that a nondecreasing mapping $f : X \to X$ satisfies

$$\rho(b(fx - fy)) \le k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)) \qquad (x, y \in X, \text{ and either } x \le y \text{ or } y \le x),$$

where k, l, a_1, a_2 and b are positive with k+l < 1, $a_1 \leq \frac{b}{2}$ and $a_2 \leq b$. Then f has a fixed point if and only if there exists an $x \in X$ such that $T^n x$ is comparable to $T^m x$ for all $m, n \geq 0$. Moreover, this fixed point is unique if $k < \frac{1}{2}$ and each pair of elements of X has either an upper or a lower bound.

As another consequence of Theorem 2.13, we have the convex version of it as follows:

Corollary 2.16. Let (X, ρ) be a ρ -complete modular space endowed with a graph G, where ρ is a convex modular, and the triple (X, ρ, G) have Property (*). Assume that $f : X \to X$ is a mapping which preserves the edges of \widetilde{G} and satisfies

$$\rho(b(fx - fy)) \le k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)) \qquad (x, y \in X \text{ and } (x, y) \in E(\widetilde{G})),$$

where k, l, a_1 , a_2 and b are positive numbers with $b > 4 \max\{a_1, a_2, a_1k, a_2l\}$. Then f has a fixed point if and only if $C_f \neq \emptyset$. Moreover, this fixed point is unique if X satisfies Condition (*).

Proof. Set $c = 2 \max\{a_1, a_2, a_1k, a_2l\}$ and choose any $a_0 \in (c, \frac{b}{2}]$. Then by the hypothesis and convexity of ρ , we have

$$\rho(b(fx - fy)) \leq k\rho(a_1(fx - x)) + l\rho(a_2(fy - y)) \\
= k\rho(\frac{a_1}{a_0}a_0(fx - x) + (1 - \frac{a_1}{a_0})0) + l\rho(\frac{a_2}{a_0}a_0(fy - y) + (1 - \frac{a_2}{a_0})0) \\
\leq \frac{a_1k}{a_0}\rho(a_0(fx - x)) + \frac{a_2l}{a_0}\rho(a_0(fy - y))$$

for all $x, y \in X$ with $(x, y) \in E(\widetilde{G})$. Since $a_0 \leq \frac{b}{2} < b$, and $\frac{a_1k}{a_0} + \frac{a_2l}{a_0} < 1$, it follows that f satisfies (K2) for the graph \widetilde{G} with the constants k, l, a_1 and a_2 replaced with $\frac{a_1k}{a_0}, \frac{a_2l}{a_0}, a_0$ and a_0 , respectively, and b kept fixed. Since f preserves the edges of \widetilde{G} , it follows that f is a Kannan \widetilde{G} - ρ -contraction and the first assertion is concluded immediately from Theorem 2.13.

On the other hand, since $a_0 > c \ge 2a_1k$, it follows that $\frac{a_1k}{a_0} < \frac{1}{2}$, and because X satisfies Condition (*), Theorem 2.13 guarantees the uniqueness of the fixed point of f. \Box

References

- A. Ait Taleb, and E. Hanebaly, A fixed point theorem and its application to integral equations in modular function spaces, Proc. Amer. Math. Soc., 128 (2) (2000) 419–426.
- [2] A. Aghanians, K. Fallahi, and K. Nourouzi, An entourage approach to the contraction principle in uniform spaces endowed with a graph, Panamer. Math. J., 23 (2) (2013) 87–102.
- [3] A. Aghanians, K. Fallahi, and K. Nourouzi, Fixed points for G-contractions on uniform spaces endowed with a graph, Fixed Point Theory Appl., vol. 2010:182, 12 pages, 2010.
- [4] J. A. Bondy, and U. S. R. Murty, Graph Theory with Applications, American Elsevier Publishing Co., Inc., New York, 1976.
- [5] K. Fallahi, and K. Nourouzi, Probabilistic modular spaces and linear operators, Acta Appl. Math., 105 (2) (2009) 123–140.
- [6] J. Jachymski, The contraction principle for mappings on a metric space with a graph, Proc. Amer. Math. Soc., 136 (4) (2008) 1359-1373.
- [7] M. A. Khamsi, Quasicontraction mappings in modular spaces without Δ_2 -condition, Fixed Point Theory Appl., vol. 2008, Article ID 916187, 6 pages, 2008.
- [8] F. Lael, and K. Nourouzi, Fixed points of mappings defined on probabilistic modular spaces, Bull. Math. Anal. Appl., 4 (3) (2012) 23–28.
- [9] J. Musielak, Orlicz Spaces and Modular Spaces, Springer-Verlag, Berlin, 1983.
- [10] J. Musielak, and W. Orlicz, On modular spaces, Studia Math., 18 (1959) 49–65.
- [11] K. Nourouzi, and S. Shabanian, Operators defined on n-modular spaces, Mediterr. J. Math., 6 (4) (2009) 431-446.
- [12] A. Razani, E. Nabizadeh, M. Beyg Mohamadi, and S. Homaei Pour, Fixed points of nonlinear and asymptotic contractions in the modular space, Abstr. Appl. Anal., vol. 2007, Article ID 40575, 10 pages, 2007.