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Abstract

In this paper, we discuss the existence and uniqueness of fixed points for Banach and Kannan
contractions defined on modular spaces endowed with a graph. We do not impose the ∆2-condition
or the Fatou property on the modular spaces to give generalizations of some recent results. The
given results play as a modular version of metric fixed point results.
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1. Introduction and preliminaries

To control the pathological behavior of a modular in modular spaces the conditions ∆2 and Fatou
property are usually assumed (see, e.g., [1, 5, 7, 8, 11, 12]. For instance, in [1], Banach fixed point
theorem is given in modular spaces that their modular satisfy both the ∆2-condition and the Fatou
property. In [7], Khamsi established some fixed point theorems for quasi-contractions in modular
spaces satisfying only the Fatou property.

In [6], Jachymski investigated Banach fixed point theorem in metric spaces with a graph and his
idea followed by the authors in uniform spaces (see, e.g., [2, 3]).

In this paper motivated by the ideas given in [1, 6], we aim to discuss the fixed points of Banach
and Kannan contractions in modular spaces endowed with a graph without ∆2-condition and Fatou
property. We also clarify the independence of these contractions in modular spaces.

We first commence some basic concepts about modular spaces as formulated by Musielak and
Orlicz [10]. For more details, the reader is referred to [9].
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Definition 1.1. A real-valued function ρ defined on a real vector space X is called a modular on
X if it satisfies the following conditions:

M1) ρ(x) ≥ 0 for all x ∈ X;
M2) ρ(x) = 0 if and only if x = 0;
M3) ρ(x) = ρ(−x) for all x ∈ X;
M4) ρ(ax+ by) ≤ ρ(x) + ρ(y) for all x, y ∈ X and all a, b ≥ 0 with a+ b = 1.

If ρ satisfies (M1)-(M4), then the pair (X, ρ), shortly denoted by X, is called a modular space.

The modular ρ is called convex if Condition (M4) is strengthened by replacing with

M4′) ρ(ax+ by) ≤ aρ(x) + bρ(y) for all x, y ∈ X and all a, b ≥ 0 with a+ b = 1.

It is easy to obtain the following two immediate consequences of Condition (M4) which we need
in the sequel:

• If a and b are real numbers with |a| ≤ |b|, then ρ(ax) ≤ ρ(bx) for all x ∈ X;

• If a1, . . . , an are nonnegative numbers with
∑n

i=1 ai = 1, then

ρ
( n∑
i=1

aixi

)
≤

n∑
i=1

ρ(xi) (x1, . . . , xn ∈ X).

Definition 1.2. Let (X, ρ) be a modular space.

1. A sequence {xn} in X is said to be ρ-convergent to a point x ∈ X, denoted by xn
ρ−→ x, if

ρ(xn − x)→ 0 as n→∞.
2. A sequence {xn} in X is said to be ρ-Cauchy if ρ(xm − xn)→ 0 as m,n→∞.
3. The modular space X is called ρ-complete if each ρ-Cauchy sequence in X is ρ-convergent to a

point of X.
4. The modular ρ is said to satisfy the ∆2-condition if 2xn

ρ−→ 0 as n → ∞ whenever xn
ρ−→ 0

as n→∞.
5. The modular ρ is said to have the Fatou property if

ρ(x− y) ≤ lim inf
n→∞

ρ(xn − yn)

whenever
xn

ρ−→ x and yn
ρ−→ y as n→∞.

Conditions (M2) and (M4) ensure that each sequence in a modular space can be ρ-convergent to at
most one point. In other words, the limit of a ρ-convergent sequence in a modular space is unique.

We next review some notions in graph theory. All of them can be found in, e.g., [4].
Let X be a modular space. Consider a directed graph G with V (G) = X and E(G) ⊇ {(x, x) :

x ∈ X}, i.e., E(G) contains all loops. Suppose further that G has no parallel edges. With these
assumptions, we may denote G by the pair (V (G), E(G)). In this way, the modular space X is

endowed with the graph G. The notation G̃ is used to denote the undirected graph obtained from
G by deleting the directions of the edges of G. Thus,

V (G) = X E(G) =
{

(x, y) ∈ X ×X : (x, y) ∈ E(G) ∨ (y, x) ∈ E(G)
}
.

By a path in G from a vertex x to a vertex y, it is meant a finite sequence (xs)
N
s=0 of vertices of

G such that x0 = x, xN = y, and (xs−1, xs) ∈ E(G) for s = 1, . . . , N . A graph G is called weakly

connected if there exists a path in G̃ between each two vertices of G, i.e., there exists an undirected
path in G between its each two vertices.
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2. Main results

Let X be a modular space endowed with a graph G and f : X → X be any mapping. The set of
all fixed points for f is denoted by Fix(f), and by Cf , we mean the set of all elements x of X such

that (fnx, fmx) ∈ E(G̃) for m,n = 0, 1, . . . .
We begin with introducing Banach and Kannan G-ρ-contractions.

Definition 2.1. Let X be a modular space with a graph G and f : X → X be a mapping. We call
f a Banach G-ρ-contraction if

B1) f preserves the edges of G, i.e., (x, y) ∈ E(G) implies (fx, fy) ∈ E(G) for all x, y ∈ X;
B2) there exist positive numbers k, a and b with k < 1 and a < b such that

ρ
(
b(fx− fy)

)
≤ kρ

(
a(x− y)

)
for all x, y ∈ X with (x, y) ∈ E(G).

The numbers k, a and b are called the constants of f . And we call f a Kannan G-ρ-contraction if

K1) f preserves the edges of G;
K2) there exist positive numbers k, l, a1, a2 and b with k + l < 1, a1 ≤ b

2
and a2 ≤ b such that

ρ
(
b(fx− fy)

)
≤ kρ

(
a1(fx− x)

)
+ lρ

(
a2(fy − y)

)
for all x, y ∈ X with (x, y) ∈ E(G).

The numbers k, l, a1, a2 and b are called the constants of f .

It might be valuable if we discuss these contractions a little. Our first proposition follows immediately
from Condition (M3) and Definition 2.1.

Proposition 2.2. Let X be a modular space with a graph G. If a mapping from X into itself satisfies
(B1) (respectively, (B2)) for G, then it satisfies (B1) (respectively, (B2)) for G̃. In particular, a

Banach G-ρ-contraction is also a Banach G̃-ρ-contraction. Similar statements are true for Kannan
G-ρ-contractions provided that a2 ≤ b

2
.

We also have the following remark about Kannan G-ρ-contractions.

Remark 2.3. For a Kannan G̃-ρ-contraction f : X → X, we can interchange the roles of x and y
in (K2) since E(G̃) is symmetric. Having done this, we find

ρ
(
b(fx− fy)

)
= ρ

(
b(fy − fx)

)
≤ kρ

(
a1(fy − y)

)
+ lρ

(
a2(fx− x)

)
= lρ

(
a2(fx− x)

)
+ kρ

(
a1(fy − y)

)
.

Therefore, no matter a1 ≤ b
2

or a2 ≤ b
2

whenever we are faced with Kannan G̃-ρ-contractions.
Nevertheless, both a1 and a2 must be not more than b.

We now give some examples.

Example 2.4. Let X be a modular space with any arbitrary graph G. Since E(G) contains all
loops, each constant mapping f : X → X is both a Banach and a Kannan G-ρ-contraction. In fact,
E(G) should contain all loops if we want any constant mapping to be either a Banach or a Kannan
G-ρ-contraction.
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Example 2.5. Let X be a modular space and G0 be the complete graph (X,X ×X). Then Banach
(Kannan) G0-ρ-contractions are precisely the Banach (Kannan) contractions in modular spaces.

Example 2.6. Let � be a partial order on a modular space X and consider a poset graph G1 by
V (G1) = X and E(G1) =

{
(x, y) ∈ X ×X : x � y

}
. Then Banach G1-ρ-contractions are precisely

the nondecreasing ordered ρ-contractions. A similar statement is true for Kannan G1-ρ-contractions.

Finally, we show that Banach and Kannan G-ρ-contractions are independent of each other. More
precisely, we construct two mappings on R such that one of them satisfies (B2) but not (K2), and
the other, (K2) but not (B2) for the complete graph G0.

Example 2.7. Let ρ be the usual Euclidean norm on R, i.e., ρ(x) = |x| for all x ∈ R. Define a
mapping f : R → R by fx = x

3
for all x ∈ R. Then f is a Banach G0-ρ-contraction with the

constants k = 2
3
, a = 1

2
and b = 1. Indeed, given any x, y ∈ R, we have

ρ
(
b(fx− fy)

)
=

1

3
|x− y| = kρ

(
a(x− y)

)
.

On the other hand, if k, l, a1, a2 and b are any arbitrary positive numbers satisfying k+ l < 1, a1 ≤ b
2

and a2 ≤ b, then for y = 0 and any x 6= 0 we see that

ρ
(
b(fx− f0)

)
=
b|x|
3

>
2a1k|x|

3
= kρ

(
a1(fx− x)

)
+ lρ

(
a2(f0− 0)

)
.

Therefore, (K2) fails to hold and f is not a Kannan G0-ρ-contraction.

Example 2.8. It is easy to verify that the function ρ(x) = x2 defines a modular on R and (R, ρ)
is ρ-complete because (R, | · |) is a Banach space. Now, consider a mapping f : R → R defined by
fx = 1

2
if x 6= 1 and f1 = 1

10
. Then f is a G0-ρ-Kannan contraction with the constants k = 64

81
,

l = 16
81

, a1 = 1
2

and a2 = b = 1. Indeed, given any x, y ∈ R, we have the following three possible cases:

Case 1: If x = y = 1 or x, y 6= 1, then (K2) holds trivially since fx = fy;

Case 2: If x = 1 and y 6= 1, then

ρ
(
b(fx− fy)

)
=

4

25
≤ 4

25
+

16

81

(1

2
− y
)2

= kρ
(
a1(fx− x)

)
+ lρ

(
a2(fy − y)

)
;

Case 3: Finally, if x 6= 1 and y = 1, then

ρ
(
b(fx− fy)

)
=

4

25
≤ 16

81

(1

2
− x
)2

+
4

25
= kρ

(
a1(fx− x)

)
+ lρ

(
a2(fy − y)

)
.

Note that k + l = 80
81
< 1, a1 ≤ b

2
and a2 ≤ b. But f is not a Banach G0-ρ-contraction; for if k, a

and b are any arbitrary positive numbers satisfying k < 1 and a < b, then putting x = 1 and y = 3
5

yields

ρ
(
b(fx− fy)

)
=

4b2

25
>

4a2k

25
= kρ

(
a(x− y)

)
.

Now we are going to prove our fixed point results. The first one is about the existence and uniqueness
of fixed points for Banach G̃-ρ-contractions.
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Theorem 2.9. Let X be a ρ-complete modular space endowed with a graph G and the triple (X, ρ,G)
have the following property:

(∗) If {xn} is a sequence in X such that βxn
ρ−→ βx for some β > 0 and (xn, xn+1) ∈ E(G̃) for all

n ≥ 1, then there exists a subsequence {xni
} of {xn} such that (xni

, x) ∈ E(G̃) for all i ≥ 1.

Then a Banach G̃-ρ-contraction f : X → X has a fixed point if and only if Cf 6= ∅. Moreover, this
fixed point is unique if G is weakly connected.

Proof . (⇒) It is trivial since Fix(f) ⊆ Cf .
(⇐) Let k, a and b be the constants of f and let α > 1 be the exponential conjugate of b

a
, i.e.,

a
b

+ 1
α

= 1. Choose an x ∈ Cf and keep it fixed. We are going to show that the sequence {bfnx} is
ρ-Cauchy in X. To this end, note first if n is a positive integer, then by (B2) we have

ρ
(
a(fnx− x)

)
= ρ

(
a(fnx− fx) + a(fx− x)

)
= ρ

(a
b
b
(
fnx− fx

)
+

1

α
αa
(
fx− x

))
≤ ρ

(
b(fnx− fx)

)
+ ρ
(
αa(fx− x)

)
≤ kρ

(
a(fn−1x− x)

)
+ r,

where r = ρ(αa(fx− x)). Hence using the mathematical induction, we get

ρ
(
a(fnx− x)

)
≤ kρ

(
a(fn−1x− x)

)
+ r

≤ k
[
kρ
(
a(fn−2x− x)

)
+ r
]

+ r

= k2ρ
(
a(fn−2x− x)

)
+ kr + r

...

≤ kn−1ρ
(
a(fx− x)

)
+ kn−2r + · · ·+ r

for all n ≥ 1. Since α > 1, it follows that ρ(a(fx− x)) ≤ ρ(αa(fx− x)) = r and therefore,

ρ
(
a(fnx− x)

)
≤ kn−1r + · · ·+ r =

(1− kn)r

1− k
≤ r

1− k
n = 1, 2, . . . . (2.1)

Now using (B2) once more, we find

ρ
(
b(fmx− fnx)

)
≤ kρ

(
a(fm−1x− fn−1x)

)
≤ kρ

(
b(fm−1x− fn−1x)

)
...

≤ knρ
(
a(fm−nx− x)

)
(2.2)

for all m and n with m > n ≥ 1. Consequently, by combining (2.1) and (2.2), it is seen that for all
m > n ≥ 1 we have

ρ
(
b(fmx− fnx)

)
≤ knρ

(
a(fm−nx− x)

)
≤ knr

1− k
.

Therefore, ρ(b(fmx − fnx)) → 0 as m,n → ∞, and so {bfnx} is a ρ-Cauchy sequence in X and
because X is ρ-complete, it is ρ-convergent. On the other hand, X is a real vector space and b > 0.
Thus, there exists an x∗ ∈ X such that bfnx

ρ−→ bx∗.
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We next show that x∗ is a fixed point for f . Since x ∈ Cf , it follows that (fnx, fn+1x) ∈ E(G̃) for
all n ≥ 0, and so by Property (∗), there exists a strictly increasing sequence {ni} of positive integers

such that (fnix, x∗) ∈ E(G̃) for all i ≥ 1. Hence using (B2) we get

ρ
( b

2

(
fx∗ − x∗

))
= ρ

( b
2

(
fx∗ − fni+1x

)
+
b

2

(
fni+1x− x∗

))
≤ ρ

(
b(fx∗ − fni+1x)

)
+ ρ
(
b(fni+1x− x∗)

)
= ρ

(
b(fni+1x− fx∗)

)
+ ρ
(
b(fni+1x− x∗)

)
≤ kρ

(
a(fnix− x∗)

)
+ ρ
(
b(fni+1x− x∗)

)
≤ kρ

(
b(fnix− x∗)

)
+ ρ
(
b(fni+1x− x∗)

)
→ 0

as i → ∞. So ρ( b
2
(fx∗ − x∗)) = 0, and since b > 0, it follows that fx∗ − x∗ = 0 or equivalently,

fx∗ = x∗, i.e., x∗ is a fixed point for f .
Finally, to prove the uniqueness of the fixed point, suppose that G is weakly connected and

y∗ ∈ X is a fixed point for f . Then there exists a path (xs)
N
s=0 in G̃ from x∗ to y∗, i.e., x0 = x∗,

xN = y∗, and (xs−1, xs) ∈ E(G̃) for s = 1, . . . , N . Thus, by (B1), we have

(fnxs−1, f
nxs) ∈ E(G̃) (n ≥ 0 and s = 1, . . . , N).

And using (B2) and the mathematical induction we get

ρ
( b
N

(
x∗ − y∗

))
= ρ

( b
N

(
x∗ − fnx1

)
+ · · ·+ b

N

(
fnxN−1 − y∗

))
≤ ρ

(
b(x∗ − fnx1)

)
+ · · ·+

(
b(fnxN−1 − y∗)

)
=

N∑
s=1

ρ
(
b(fnxs−1 − fnxs)

)
≤ k

N∑
s=1

ρ
(
a(fn−1xs−1 − fn−1xs)

)
≤ k

N∑
s=1

ρ
(
b(fn−1xs−1 − fn−1xs)

)
...

≤ kn
N∑
s=1

ρ
(
b(xs−1 − xs)

)
→ 0

as n → ∞. So b
N

(x∗ − y∗) = 0, and since b > 0, it follows that x∗ = y∗. Consequently, the fixed
point of f is unique. �

Setting G = G0 and G = G1, we get the following consequences of Theorem 2.9 in modular and
partially ordered modular spaces, respectively.

Corollary 2.10. Let X be a ρ-complete modular space and a mapping f : X → X satisfies

ρ
(
b(fx− fy)

)
≤ kρ

(
a(x− y)

)
(x, y ∈ X),

where 0 < k < 1 and 0 < a < b. Then f has a unique fixed point x∗ ∈ X and bfnx
ρ−→ bx∗ for all

x ∈ X.
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Corollary 2.11. Let � be a partial order on a ρ-complete modular space X such that the triple
(X, ρ,�) has the following property:

(∗∗) If {xn} is a sequence in X with successive comparable terms such that βxn
ρ−→ βx for some

β > 0, then there exists a subsequence {xni
} of {xn} such that xni

� x for all i ≥ 1.

Assume that a nondecreasing mapping f : X → X satisfies

ρ
(
b(fx− fy)

)
≤ kρ

(
a(x− y)

)
(x, y ∈ X and x � y),

where 0 < k < 1 and 0 < a < b. Then f has a fixed point if and only if there exists an x ∈ X such
that T nx is comparable to Tmx for all m,n ≥ 0. Moreover, this fixed point is unique if the following
condition holds:

label= For all x, y ∈ X, there exists a finite sequence (xs)
N
s=0 in X with comparable successive terms

such that x0 = x and xN = y.

Corollary 2.12. Let (X, ρ) be a ρ-complete modular space endowed with a graph G, where ρ is a
convex modular, and the triple (X, ρ,G) have Property (∗). Assume that f : X → X is a mapping

which preserves the edges of G̃ and satisfies

ρ
(
b(fx− fy)

)
≤ kρ

(
a(x− y)

) (
x, y ∈ X and (x, y) ∈ E(G̃)

)
,

where k, a and b are positive numbers with b > max{a, ak}. Then f has a fixed point if and only if
Cf 6= ∅. Moreover, this fixed point is unique if G is weakly connected.

Proof . Set c = max{a, ak} and choose any a0 ∈ (c, b). Then by the hypothesis and convexity of ρ,
we have

ρ
(
b(fx− fy)

)
≤ kρ

(
a(x− y)

)
= kρ

( a
a0
a0
(
x− y

)
+
(
1− a

a0

)
0
)

≤ ak

a0
ρ
(
a0(x− y)

)
for all x, y ∈ X with (x, y) ∈ E(G̃). Since a0 < b, and ak

a0
< 1, it follows that f satisfies (B2) for the

graph G̃ with the constants k and a replaced with ak
a0

and a0, respectively, and b kept fixed. Since f

preserves the edges of G̃, it follows that f is a Banach G̃-ρ-contraction and the results are concluded
immediately from Theorem 2.9. �

Our next result is about the existence and uniqueness of fixed points for Kannan G̃-ρ-contractions.

Theorem 2.13. Let X be a ρ-complete modular space endowed with a graph G and the triple
(X, ρ,G) have Property (∗). Then a Kannan G̃-ρ-contraction f : X → X has a fixed point if
and only if Cf 6= ∅. Moreover, this fixed point is unique if k < 1

2
and X satisfies the following

condition:

(?) For all x, y ∈ X, there exists a z ∈ X such that (x, z), (y, z) ∈ E(G̃).
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Proof . (⇒) It is trivial since Fix(f) ⊆ Cf .
(⇐) Let k, l, a1, a2 and b be the constants of f . Choose an x ∈ Cf and keep it fixed. We are

going to show that the sequence {bfnx} is ρ-Cauchy in X. Given any integer n ≥ 2, by (K2) we
have

ρ
(
b(fnx− fn−1x)

)
≤ kρ

(
a1(f

nx− fn−1x)
)

+ lρ
(
a2(f

n−1x− fn−2x)
)

≤ kρ
(
b(fnx− fn−1x)

)
+ lρ

(
b(fn−1x− fn−2x)

)
,

which yields
ρ
(
b(fnx− fn−1x)

)
≤ δρ

(
b(fn−1x− fn−2x)

)
,

where δ = l
1−k ∈ (0, 1). Hence using the mathematical induction, we get

ρ
(
b(fnx− fn−1x)

)
≤ δnρ

(
b(fx− x)

)
n = 1, 2, . . . .

Now using (K2) once more, we find

ρ
(
b(fmx− fnx)

)
≤ kρ

(
a1(f

mx− fm−1x)
)

+ lρ
(
a2(f

nx− fn−1x)
)

≤ kρ
(
b(fmx− fm−1x)

)
+ lρ

(
b(fnx− fn−1x)

)
≤ kδmρ

(
b(fx− x)

)
+ lδnρ

(
b(fx− x)

)
for all m,n ≥ 1. Therefore, ρ(b(fmx − fnx)) → 0 as m,n → ∞, and so {bfnx} is a ρ-Cauchy
sequence in X and because X is ρ-complete, it is ρ-convergent. Thus, there exists an x∗ ∈ X such
that bfnx

ρ−→ bx∗.
We next show that x∗ is a fixed point for f . Since x ∈ Cf , it follows that (fnx, fn+1x) ∈ E(G̃) for

all n ≥ 0, and so by Property (∗), there exists a strictly increasing sequence {ni} of positive integers

such that (fnix, x∗) ∈ E(G̃) for all i ≥ 1. Hence using (K2), we get

ρ
( b

2

(
fx∗ − x∗

))
= ρ

( b
2

(
fx∗ − fni+1x

)
+
b

2

(
fni+1x− x∗

))
≤ ρ

(
b(fx∗ − fni+1x)

)
+ ρ
(
b(fni+1x− x∗)

)
≤

[
kρ
(
a1(fx

∗ − x∗)
)

+ lρ
(
a2(f

ni+1x− fnix)
)]

+ ρ
(
b(fni+1x− x∗)

)
≤ kρ

( b
2

(
fx∗ − x∗

))
+ lρ

(
b(fni+1x− fnix)

)
+ ρ
(
b(fni+1x− x∗

))
for all k ≥ 1. Hence

ρ
( b

2

(
fx∗ − x∗

))
≤ δρ

(
b(fni+1x− fnix)

)
+

1

1− k
ρ
(
b(fni+1x− x∗)

)
→ 0

as i → ∞. So ρ( b
2
(fx∗ − x∗)) = 0, and since b > 0, it follows that fx∗ − x∗ = 0 or equivalently,

fx∗ = x∗, i.e., x∗ is a fixed point for f .
Finally, to prove the uniqueness of the fixed point, suppose that Condition (?) holds and y∗ ∈ X

is a fixed point for f . We consider the following two cases:

Case 1: (x∗, y∗) is an edge of G̃.
In this case, using (K2), we find

ρ
(
b(x∗ − y∗)

)
= ρ
(
b(fx∗ − fy∗)

)
≤ kρ

(
a1(fx

∗ − x∗)
)

+ lρ
(
a2(fy

∗ − y∗)
)

= 0.



58 Aghanians, Nourouzi

Therefore, ρ(b(x∗ − y∗)) = 0, and so x∗ = y∗ because b > 0.

Case 2: (x∗, y∗) is not an edge of G̃.
In this case, by Condition (?), there exists a z ∈ X such that both (x∗, z) and (y∗, z) are edges

of G̃. So by (K1), we have (x∗, fnz), (y∗, fnz) ∈ E(G̃) for all n ≥ 0 since x∗ is a fixed point for f .
Therefore, by (K2) we find

ρ
(
b(fnz − x∗)

)
= ρ

(
b(fnz − fnx∗)

)
≤ kρ

(
a1(f

nz − fn−1z)
)

+ lρ
(
a2(f

nx∗ − fn−1x∗)
)

≤ kρ
( b

2

(
fnz − fn−1z

))
= kρ

( b
2

(
fnz − fnx∗

)
+
b

2

(
fn−1x∗ − fn−1z

))
≤ kρ

(
b(fnz − fnx∗)

)
+ kρ

(
b(fn−1x∗ − fn−1z)

)
= kρ

(
b(fnz − x∗)

)
+ kρ

(
b(fn−1z − x∗)

)
for all n ≥ 1, which yields

ρ
(
b(fnz − x∗)

)
≤ λρ

(
b(fn−1z − x∗)

)
,

where λ = k
1−k ∈ (0, 1) because k < 1

2
. So by the mathematical induction, we get

ρ
(
b(fnz − x∗)

)
≤ λnρ

(
b(z − x∗)

)
n = 0, 1, . . . .

Since λ < 1, it follows that bfnz
ρ−→ bx∗. Similarly, one can show that bfnz

ρ−→ by∗, and so
bx∗ = by∗ because the limit of a ρ-convergent sequence in a modular space is unique. Thus, from
b > 0, it follows that x∗ = y∗.

Consequently, the fixed point of f is unique. �
Setting G = G0 and G = G1 once again, we get the following consequences of Theorem 2.13 in

modular and partially ordered modular spaces, respectively.

Corollary 2.14. Let X be a ρ-complete modular space and a mapping f : X → X satisfies

ρ
(
b(fx− fy)

)
≤ kρ

(
a1(fx− x)

)
+ lρ

(
a2(fy − y)

)
(x, y ∈ X),

where k, l, a1, a2 and b are positive with k + l < 1, a1 ≤ b
2

and a2 ≤ b. Then f has a unique fixed

point x∗ ∈ X and bfnx
ρ−→ bx∗ for all x ∈ X.

Corollary 2.15. Let � be a partial order on a ρ-complete modular space X such that the triple
(X, ρ,�) has Property (∗∗). Assume that a nondecreasing mapping f : X → X satisfies

ρ
(
b(fx− fy)

)
≤ kρ

(
a1(fx− x)

)
+ lρ

(
a2(fy − y)

)
(x, y ∈ X, and either x � y or y � x),

where k, l, a1, a2 and b are positive with k+ l < 1, a1 ≤ b
2

and a2 ≤ b. Then f has a fixed point if and
only if there exists an x ∈ X such that T nx is comparable to Tmx for all m,n ≥ 0. Moreover, this
fixed point is unique if k < 1

2
and each pair of elements of X has either an upper or a lower bound.

As another consequence of Theorem 2.13, we have the convex version of it as follows:
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Corollary 2.16. Let (X, ρ) be a ρ-complete modular space endowed with a graph G, where ρ is a
convex modular, and the triple (X, ρ,G) have Property (∗). Assume that f : X → X is a mapping

which preserves the edges of G̃ and satisfies

ρ
(
b(fx− fy)

)
≤ kρ

(
a1(fx− x)

)
+ lρ

(
a2(fy − y)

) (
x, y ∈ X and (x, y) ∈ E(G̃)

)
,

where k, l, a1, a2 and b are positive numbers with b > 4 max{a1, a2, a1k, a2l}. Then f has a fixed
point if and only if Cf 6= ∅. Moreover, this fixed point is unique if X satisfies Condition (?).

Proof . Set c = 2 max{a1, a2, a1k, a2l} and choose any a0 ∈ (c, b
2
]. Then by the hypothesis and

convexity of ρ, we have

ρ
(
b(fx− fy)

)
≤ kρ

(
a1(fx− x)

)
+ lρ

(
a2(fy − y)

)
= kρ

(a1
a0
a0
(
fx− x

)
+
(
1− a1

a0

)
0
)

+ lρ
(a2
a0
a0
(
fy − y

)
+
(
1− a2

a0

)
0
)

≤ a1k

a0
ρ
(
a0(fx− x)

)
+
a2l

a0
ρ
(
a0(fy − y)

)
for all x, y ∈ X with (x, y) ∈ E(G̃). Since a0 ≤ b

2
< b, and a1k

a0
+ a2l

a0
< 1, it follows that f satisfies

(K2) for the graph G̃ with the constants k, l, a1 and a2 replaced with a1k
a0

, a2l
a0

, a0 and a0, respectively,

and b kept fixed. Since f preserves the edges of G̃, it follows that f is a Kannan G̃-ρ-contraction
and the first assertion is concluded immediately from Theorem 2.13.

On the other hand, since a0 > c ≥ 2a1k, it follows that a1k
a0

< 1
2
, and because X satisfies Condition

(?), Theorem 2.13 guarantees the uniqueness of the fixed point of f . �
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