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Abstract

In this paper, firstly, we obtain some inequalities which estimates complex polynomials on the circles.
Then, we use these estimates and a Moebius transformation to obtain the dual of this estimates for
the lines in upper half-plane. Finally, for an increasing weight υ on the upper half-plane with
certain properties and holomorphic functions f on the upper half-plane we obtain an equivalent
representation for weighted supremum norm.
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1. Introduction

In [3], W. Lusky used convolution with de-la-valle Poussion kernel on a certain sequence of integers
to obtain a representation equivalent to the weighted supremum norm ‖f‖ν , for holomorphic or
harmonic functions f from unit disc into complex plane. In this paper, we obtain an equivalent
representation for weighted supremum norm for holomorphic functions form upper half-plane into
complex plane whenever our weights satisfy certain properties. Paper is organized as follows: in
section two we present some necessary notations and definitions. Section three is devoted to some
technical lemmas which we need for the proof of the main result of the paper in Theorem 3.8.

Definition 1.1. Suppose x ∈ C and y ∈ R (y > 0), x + γy denotes the circle with center x and
radius y in x ∈ C.
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Definition 1.2. By x+γy ⊆ x′+γy′ we mean that the circle x+γy is inside of the the circle x′+γy′

Definition 1.3. Suppose f : Ω ⊆ C −→ C is a complex function. We define M∞(f,Ω) = supz∈Ω |
f(z) |

Definition 1.4. D = {z ∈ C : | z |< 1} and G = {ω ∈ C : Im ω > 0} are unit disc and upper
half-plane respectively.

Definition 1.5. For any δ ≥ 0 we define Lδ := {ω ∈ G : Im ω = δ} and Gδ := {ω ∈ C : Im ω ≥ δ}.
In particular L0 := {ω ∈ C : Im ω = 0} is the real line.

Definition 1.6. Define α : D −→ G by α(z) = 1+z
1−z i, so α−1 : G −→ D is α−1(ω) = ω−i

ω+i
. If ω ∈ Lδ

then | α−1(ω)− δ
δ+1
|= 1

1+δ
. So α−1(ω) maps the line Lδ to the circle δ

1+δ
+ γ 1

1+δ
\ {(1, 0)}.

Definition 1.7. A continuous function υ : G −→ (0,+∞) is called a weight. We say a weight ν

satisfies (∗) if a = supn∈N∪{0}
υ(2−ni)
υ(2−n−1i)

<∞.

Remark 1.8. From now on, we always assume weight ν is increasing, satisfies (∗), depends only on
the imaginary part, that is ν(ω) = ν(Im ω i) and limt→0 ν(ti) = 0.

Definition 1.9. For a function f : G −→ C we consider, the weighted sup-norm

‖f‖υ := sup
z∈G
| f(z) | υ(z)

and the spaces

H(G) := {f | f : G −→ C, f is holomorphic}

Hυ(G) := {f | f : G −→ C, f is holomorphic and ‖f‖υ <∞}

2. Inequalities and Estimations

Lemma 2.1. Suppose f : Ω ⊆ C −→ C defined by f(z) =
∑n

k=m αkz
k (where m,n ∈ N and m < n).

Also r, s ∈ R , 0 < r < s, a, b ∈ C such that a+ γr ⊆ b+ γs ⊂ Ω and 0 /∈ b+ γs then

M∞(f, a+ γr) ≤ (
r+ | a |
s− | b |

)mM∞(f, b+ γs)

Proof . Firstly note that z ∈ a+ γr and ω ∈ b+ γs imply
| z |≤ r+ | a | and 1

|ω| ≤
1

s−|b| respectively. Define g : Ω ⊂ C −→ C by g(z) =
∑n−m

k=0 αk+mz
k so

f(z) = zmg(z).

M∞(f, a+ γr) = sup
z∈a+γr

| f(z) |= sup
z∈a+γr

| z |m| g(z) |

≤ sup
z∈a+γr

| z |m sup
z∈a+γr

| g(z) |≤ (r+ | a |)m sup
z∈a+γr

| g(z) | .

Now, using maximum modulus principle we have

M∞(f, a+ γr) ≤ (r+ | a |)m sup
z∈b+γs

| g(z) |
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Since | g(z) | is a holomorphic function, there is a ω ∈ b+ γs such that | g(z) | attains its supremum
in the point ω. So

M∞(f, a+ γr) ≤ (r+ | a |)m | g(ω) |= (r+ | a |)m

| ω |m
| ω |m| g(ω) |

≤ (
r+ | a |
s− | b |

)m | f(ω) |≤ (
r+ | a |
s− | b |

)mM∞(f, b+ γs)

�

Lemma 2.2. Suppose f : Ω ⊆ C −→ C defined by f(z) =
∑n

k=0 αkz
k and 0 < r < s, a, b ∈ C such

that a+ γr ⊆ b+ γs ⊂ Ω. Also (0, 0) /∈ a+ γr and (0, 0) /∈ b+ γs then

M∞(f, b+ γs) ≤ (
s+ | b |
r− | a |

)nM∞(f, a+ γr)

Proof . Again we have | z |≤ s+ | b | and 1
|ω| ≤

1
1−|a| . Define g : Ω \ {(0, 0)} = Ω1 ⊂ C −→ C by

g(z) =
∑n

k=0 αk(
1
z
)n−k =

∑n
k=0 αkz

k−n. So f(z) = zng(z) ∀z ∈ Ω1.
Now, maximum modulus principle implies that

M∞(g, b+ γs) ≤M∞(g, a+ γr)

M∞(f, b+ γs) = sup
z∈b+γs

| f(z) |= sup
z∈b+γs

| z |n| g(z) |

≤ sup
z∈b+γs

| z |n sup
z∈b+γs

| g(z) |≤ (s+ | b |)nM∞(g, b+ γs)

≤ (s+ | b |)nM∞(g, a+ γr)

Since | g | is holomorphic, there exists a ω ∈ a+ γr such that | g | attains its maximum in ω. So

M∞(f, b+ γs) ≤ (s+ | b |)n | g(ω) |= (s+ | b |)n

| ω |n
| ω |n| g(ω) |≤

(
s+ | b |
| r− | a |

)n | f(ω) |≤ (
(s+ | b |)
| r− | a |

)nM∞(f, a+ γr)

�

Lemma 2.3. Suppose 0 < δ1 < δ2 and f : G −→ C is defined by f(ω) =
∑∞

k=0 αk(
ω−i
ω+i

)k. Then
M∞(f, Lδ1) ≥M∞(f, Lδ2)

Proof . We recall that if ω ∈ Lδ1 and ω ∈ Lδ2 then α−1(ω) ∈ δ1
1+δ1

+ γ 1
1+δ1

\ {(1, 0)} = C1 and

α−1(ω) ∈ δ2
1+δ2

+ γ 1
1+δ2

\ {(1, 0)} = C2 respectively.

Since δ1 < δ2, C2 ⊆ C1 ⊆ D. Define f1 : D −→ C by f1(ω′) =
∑∞

k=0 αk(ω
′)k thus M∞(f, Lδ1) =

supω∈Lδ1
| f(ω) |= supω′∈C1

| f1(ω′) | Using maximum modulus principle we have

sup
ω′∈C1

| f1(ω′) |≥ sup
ω′∈C2

| f1(ω′) |

Therefore,

M∞(f, Lδ1) ≥ sup
ω′∈C2

| f1(ω′) |= sup
ω∈Lδ2

| f(ω) |= M∞(f, Lδ2)

�
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Lemma 2.4. Suppose f : G −→ C is defined by f(ω) =
∑∞

k=0 αk(
ω−i
ω+i

)k. If 0 < δ1 < δ2 < 1 or
1 < δ1 < δ2, then for any n ∈ N

M∞(f, Lδ1) ≤ (
1 + δ2

1− δ2

)nM∞(f, Lδ2) (2.1)

Proof . Let C1 and C2 be as in the Lemma 2.3. Note that if ω′ ∈ C1 then | ω′ |≤ 1 and if ω ∈ C2

then 1
|ω| ≤

1+δ2
1−δ2 .

Now, define f1 : C1 ⊆ D −→ C by f1(ω) =
∑∞

k=0 αkω
k and

g1 : C1 ⊆ D −→ C by g1(ω) =
∑∞

k=0 αk(
1
ω

)k−n ( since δ1 6= 1, (0, 0) /∈ C1 and g1 is well-defined)
therefore, f1(ω) = ωng1(ω)

M∞(f, Lδ1) = sup
ω∈Lδ1

| f(ω) |= sup
ω′=ω−i

ω+i

| f1(ω′) |

= sup
ω′∈C1

| (ω′)n || g1(ω′) |≤ sup
ω′∈C1

| (ω′)n sup
ω′∈C1

| g1(ω′) |≤ sup
ω′∈C1

| g1(ω′) |

thus, M∞(f, Lδ1) ≤ M∞(g1, C1). Since g1 defined by variable 1
ω

instead of ω, maximum modulus
principle implies that M∞(g1, C1) ≤M∞(g1, C2).
Again, g1 is a holomorphic function so there exists a ω ∈ C2 such that g1 attains its maximum on
C2 in ω. Therefore,

M∞(f, Lδ1) ≤M∞(g1, C1) ≤M∞(g1, C2) =| g1(ω) |

but

| g1(ω) |= 1

| ω |n
| ω |n| g1(ω) |≤ (

1 + δ2

1− δ2

)n | f1(ω) |

so

M∞(f, Lδ1) ≤ (
1 + δ2

1− δ2

)n | f1(ω) |≤ (
1 + δ2

1− δ2

)nM∞(f1, C2)

≤ (
1 + δ2

1− δ2

)nM∞(f, Lδ2)

�

Remark 2.5. Indeed, if relation 2.1 is true for n = 1, then it’s true for all n > 1.

Lemma 2.6. Suppose h : G −→ C is defined by h(ω) =
∑n

k=m αk(
ω−i
ω+i

)k where m ∈ N ∪ {0}, n ∈ N
and 0 < δ < τ, δ 6= 1. Then for any fixed point ω0 ∈ Lτ we have

| h(ω0) |≤| ω0 − i
ω0 + i

|m (
1 + δ

1− δ
)mM∞(h, Lδ)

Proof . Firstly, note that since δ 6= 1, (0, 1) /∈ Lδ. Thus for each ω ∈ Lδ α−1(ω) = ω−i
ω+i
6= 0. Define

g : G −→ C by g(ω) =
∑n

k=m αk(
ω−i
ω+i

)k−m so h(ω) = (ω0−i
ω0+i

)mg(ω). We have

| g(ω0) |≤ sup
ω∈Lτ

| g(ω) |= M∞(g, Lτ ) ≤M∞(g, Lδ)
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The last inequality is a consequence of Lemma 2.3. Now, since g is holomorphic, there exists a point
in Lδ (call it again ω) such that g attains its maximum on Lδ in ω, thus | g(ω0) |≤| g(ω) |.

| h(ω0) |=| ω0 − i
ω0 + i

|m | g(ω0) |≤| ω0 − i
ω0 + i

|m | g(ω) |

| h(ω0) |≤| ω0−i
ω0+i
|m | ω−i

ω+i
|m | h(ω) |. Therefore,

| h(ω0) |≤| ω0 − i
ω0 + i

|m | ω − i
ω + i

|m M∞(h, Lδ) (2.2)

Now, we make an upper bound for the factor | ω−i
ω+i
|m. Since ω is a point in Lδ, there exists a x ∈ R

such that ω = x+ iδ. | ω+ i |2= (ω+ i)(ω − i) = (ω+ i)(ω− i) =| ω |2 −iω+ iω+ 1 = x2 + (1 + δ)2.

Similarly, | ω − i |2= x2 + (1− δ)2. So |ω+i|2
|ω−i|2 = x2+(1+δ)2

x2+(1−δ)2 = f(t) = t+a
t+b

where t = x2, (1 + δ)2 = a and

(1− δ)2 = b.
|ω+i|2
|ω−i|2 = x2+(1+δ)2

x2+(1−δ)2 = f(t) = t+a
t+b

where t = x2, (1 + δ)2 = a and (1− δ)2 = b. Since f ′(t) = b−a
(t+b)2

< 0,

f : [0,∞) −→ R is a decreasing function and max f = f(0) = a
b
. This gives |ω+i|2

|ω−i|2 ≤
(1+δ)2

(1−δ)2 . Therefore,

| ω − i
ω + i

|m≤ (
1 + δ

1− δ
)m (2.3)

By inserting relation 2.3 in relation 2.2 we are done. �
Put m1 = 1, since ν is an increasing function and limt→0 ν(ti) = 0, we can find an integer m2 such

that m2 is the smallest integer larger than m1 for which
ν( 1

2m2 i)

ν( 1
2m1 i)

≤ 1
2
. Hence, by induction, we can

define a sequence of integers {mn} such that mn+1 is the smallest integer larger than mn, for which

we have
ν( 1

2
mn+1 i)

ν( 1
2mn

i)
≤ 1

2
.

Clearly in the above construction we can begin with m1 = 0, m1 = 2 or any other integers.

Remark 2.7. From now on , we always assume sequence {mn} has constructed such that

ν( 1
2mn+1 i)

ν( 1
2mn

i)
≤ 1

2
.

Lemma 2.8. Let 0 < τ ≤ 1
2

be given. If f : G −→ C is defined by f(ω) =
∑2mn+1

k′=2mn αk′(
ω−i
ω+i

)k
′

where
mn,mn+1 ∈ {mn}, then there exists a universal constant C > 0 such that

| f(iτ) | ν(τi) ≤ CM∞(f, L 1

2
mn+1−1

)ν(
1

2mn+1−1
i)

Proof . Firstly, note that, we can find mk ∈ {mn} such that 1
2mk+1 ≤ τ ≤ 1

2mk
. We prove the lemma

in two cases.
Case 1: (τ > 1

2mn+1−1
): Now, by using Lemma 2.6 for ω0 = iτ, h = f and δ = 1

2mn+1−1
, we have

| f(iτ) |≤| 1− τ
1 + τ

|2mn (
1 + δ

1− δ
)2mnM∞(f, Lδ)

Before continuing the proof we recall that for all nonnegative x we have

1 + x ≤ ex & 1− x ≤ e−x.
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Since 0 < δ < 1 and 1+δ
1−δ = 1 + 2δ

1−δ , (1+δ
1−δ )

2mn ≤ e
2δ
1−δ 2mn . Also

2δ
1−δ = 2

2mn+1−1−1
. Hence, e

2δ
1−δ 2mn = e

2

2
mn+1−1−1

2mn
= e

2

2
mn+1−mn−1−2−mn . Since {mn} is an increasing

sequence, mn+1 −mn − 1 ≥ 0. So

2mn+1−mn−1 ≥ 20 which implies that 2
2mn+1−mn−1 ≤ 2

20−2−mn
. consequently, e

2

2
mn+1−mn−1−2−mn ≤

e
2

20−2−mn .
mn ≥ 1⇒ 1

20−2−mn
≤ 1

20−21
. Hence, e

2
20−2−mn ≤ e20−21 = e4 and we have

(
1 + δ

1− δ
)2mn ≤ e4.

1−τ
1+τ

= 1− 2τ
1+τ
⇒| 1−τ

1+τ
|2mn≤ e−

2τ
1+τ

2mn . Since, τ ≥ 1
2mk+1 , 1 + 1

τ
≤ 1 + 2mk+1 ⇒ −2τ

1+τ
≤ −2

1+2mk+1 . Thus,

e−
2τ
1+τ

2mn ≤ e
−2 2mn

1+2
mk+1 .

Up to now, we have shown

| f(iτ) |≤ e4e
−2 2mn

1+2
mk+1 M∞(f, Lδ) where δ =

1

2mn+1−1
.

Above relation implies that

| f(iτ) | ν(τi) ≤ e4e
−2 2mn

1+2
mk+1 M∞(f, Lδ)ν(

1

2mn+1−1
i)

ν(τi)

ν( 1
2mn+1−1 i)

.

Since ν is increasing and τ ≤ 1
2mk

, we have

| f(iτ) | ν(τi) ≤ e4M∞(f, Lδ)ν(
1

2mn+1−1
i)e

−2 2mn

1+2
mk+1

ν( 1
2mk

i)

ν( 1
2mn+1−1 i)

(2.4)

By the construction of the sequence {mn}, we have
ν( 1

2
mn+1 i)

ν( 1
2mn

i)
≤ 1

2
∀n ∈ N. Thus,

ν( 1

2
mn+1−1 i)

ν( 1
2mn

i)
> 1

2
∀n ∈ N and this gives

ν( 1
2mn

i)

ν( 1
2mn+1−1 i)

< 2 ∀n ∈ N (2.5)

Clearly,

ν( 1
2mk

i)

ν( 1
2mn+1−1 i)

=
ν( 1

2mk
i)

ν( 1
2mk+1 i)

ν( 1
2mk+1 i)

ν( 1
2mk+2 i)

...
ν( 1

2mn
i)

ν( 1
2mn+1−1 i)

(2.6)

Now, we estimate each factor of the right hand side of relation 2.6. Obviously,

ν( 1
2mk

i)

ν( 1
2mk+1 i)

=
ν( 1

2mk
i)

ν( 1

2mk+1−1 i)

ν( 1

2mk+1−1 i)

ν( 1
2mk+1 i)

Since, ν satisfies (∗) (see Definition 1.7 and Remark 1.8) and relation relation 2.5 holds, we have

ν( 1
2mk

i)

ν( 1
2mk+1 i)

≤ 2a
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Similarly, each factor of the right hand side of relation 2.6 is less than or equal to 2a. Thus,

ν( 1
2mk

i)

ν( 1
2mn+1−1 i)

≤ (2a)n−k+1 (2.7)

Clearly, we can find a nonnegative constant M such that a ≤ eM . Hence,

(2a)n−k+1 ≤ en−k+1eMn−Mk+M = en−k+1+Mn−Mk+M (2.8)

Relations 2.7 and 2.8 imply that

e
−2 2mn

1+2
mk+1

ν( 1
2mk

i)

ν( 1
2mn+1−1 i)

≤ e
−2 2mn

1+2
mk+1

+n−k+1+Mn−Mk+M
:= D (2.9)

Now, we make an upper bound for −2 2mn

1+2mk+1

−2 2mn

1+2mk+1 = −2 2mn−mk+1

2−mk+1+1
.

mn −mk+1 ≥ n− k − 1⇒ 2mn−mk+1 ≥ 2n−k−1 ⇒ −2 2mn−mk+1 ≥ −2n−k. Also 1

1+2−mk+1
≤ 1. Thus,

D ≤ e−2n−k+n−k+1+Mn−Mk+M := eE

Since, M and k are fixed, for large enough n, E ≤ 1 and D ≤ e.
Finally, relation 2.4 and relation 2.9 imply that

| f(iτ) | ν(τi) ≤ e5M∞(f, Lδ)ν(δi) where δ =
1

2mn+1−1

which completes the proof in Case 1.
Case 2: (τ ≤ 1

2mn+1−1 ): Note that, | f(iτ) |≤ M∞(f, Lδ). Since τ ≤ 1
2mn+1−1 , Using Lemma 2.4, we

have

M∞(f, Lτ ) ≤ (
1 + δ

1− δ
)2mn+1

M∞(f, Lδ) whereδ =
1

2mn+1−1

Thus,

| f(iτ) | ν(τi) ≤ (
1 + δ

1− δ
)2mn+1

M∞(f, Lδ) ν(τi)

≤ (
1 + δ

1− δ
)2mn+1

M∞(f, Lδ) ν(δi)

1+δ
1−δ = 1 + 2δ

1−δ ⇒
1+δ
1−δ

2mn+1

≤ e
2δ
1−δ 2mn+1

. Also 2δ
1−δ2

mn+1 = 2
2−1− 1

2
mn+1

.

Since, mn+1 ≥ 2, 2
2−1− 1

2
mn+1

≤ 8. Hence, (1+δ
1−δ )

2mn+1 ≤ e8. Therefore,

| f(iτ) | ν(τi) ≤ e8 M∞(f, Lδ) ν(δi) where δ =
1

2mn+1−1
.

Above relation proves the lemma in Case 2. Now, put C = e8, we are done. �
We say two real factors A and B are equivalent and we write A ∼ B iff there are universal constants
a and b such that aA ≤ B ≤ bB.
We conclude this section with the following three corollaries.

Corollary 2.9. Suppose f : G −→ C is defined by f(ω) =
∑2mn+1

k=2mn αk(
ω−i
ω+i

)k, where mn,mn+1 ∈
{mn} and δ = 1

2mn+1−1 . Then M∞(f, L0) ∼M∞(f, Lδ)
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Proof . Using Lemmas 2.3 and 2.4 for δ1 = 0 < δ2 = δ we have the following relations.
M∞(f, Lδ) ≤M∞(f, L0) and M∞(f, Lδ) ≤ (1+δ

1−δ )
2mn+1

M∞(f, Lδ).

Now similar to the proof of the Lemma 2.8 again, (1+δ
1−δ )

2mn+1 ≤ e8. Therefore,

M∞(f, Lδ) ≤M∞(f, L0) ≤ e8M∞(f, Lδ)

�

Corollary 2.10. f : G −→ C is defined by f(ω) =
∑2mn+1

k=2mn αk(
ω−i
ω+i

)k, where mn,mn+1 ∈ {mn} and

δ1 = 1
2mn+1 and δ2 = 1

2mn+1−1 . Then M∞(f, Lδ1) ν(δ1i) ∼M∞(f, Lδ2) ν(δ2i)

Proof . Lemma 2.3 implies M∞(f, Lδ1) ≥M∞(f, Lδ2). Since ν satisfies (∗), ν(δ2i) ≤ aν(δ1i). Hence,

a M∞(f, Lδ1) ν(δ1i) ≥M∞(f, Lδ2) ν(δ2i) (2.10)

Using Lemma 2.4 and the argument of Lemma 2.8 we have M∞(f, Lδ1) ≤ e8M∞(f, Lδ2).
ν is increasing so

M∞(f, Lδ1) ν(δ1i) ≤ e8M∞(f, Lδ2) ν(δ2i) (2.11)

Now, relation 2.10 and relation 2.11 prove the corollary. �

Corollary 2.11. Under the assumptions of Corollary 2.10

M∞(f, Lδ3) ν(δ3i) ≤ 2 M∞(f, Lδ2) ν(δ2i) ≤ 2a M∞(f, Lδ1) ν(δ1i)

where δ3 = 1
2mn

.

Proof . Since δ2 ≤ δ3, Lemma 2.3 implies that M∞(f, Lδ2) ≥ M∞(f, Lδ3). Relation relation 2.5 in
Lemma 2.8 gives

M∞(f, Lδ3) ν(δ3i) ≤ 2M∞(f, Lδ2) ν(δ2i)

Now, use relation 2.10 in Corollary 2.10 to conclude the proof. �

3. Main result

For arriving to the main result of this paper, we need to introduce following concepts.
For a map f : G −→ C is defined by f(ω) =

∑N
k=0 αk(

ω−i
ω+i

)k (N ∈ N ∪ {∞}), we denote the

composition map f ◦ α by f̃ which is defined from D into D by

(f ◦ α)(z) = f̃(z) = f(α(z)) =
N∑
k=0

αk(
α(z)− i
α(z) + i

)k =
N∑
k=0

αkz
k

Now, consider f : G −→ C defined by f(ω) =
∑N

k=0 αk(
ω−i
ω+i

)k (N ∈ N ∪ {∞}), for any n ∈ N, we

define Rnf, R̃nf̃ as follows.

(R̃nf̃)(z) =
2n∑
k=0

αkz
k +

2n+1∑
k=2n+1

2n+1 − k
2n

αkz
k

(Rnf)(ω) =
2n∑
k=0

αk(
ω − i
ω + i

)k +
2n+1∑

k=2n+1

2n+1 − k
2n

αk(
ω − i
ω + i

)k

R̃n is a convolution with a de-la-valle-Poussion kernel on D.
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Remark 3.1. Note that, if N < n then Rnf = f and R̃nf̃ = f̃ . Also, it is clear that R̃nR̃mf̃ =
R̃min(m,n) and RnRmf = Rmin(m,n)f ∀ m,n ∈ N such that m 6= n.

Remark 3.2. For f : G −→ C defined by f(ω) =
∑N

k′=0 αk′(
ω−i
ω+i

)k
′

(N ∈ N ∪ {∞}) we have

(Rmk+1
−Rmk)(f) =

∑2mk+1

k′=2mk αk′(
k′−2mk

2mk
)(ω−i
ω+i

)k
′
+
∑2mk+1

k′=2mk+1+1 αk′(
ω−i
ω+i

)k
′
+
∑2mk+1+1

k′=2mk+1+1 αk′
2mk+1+1−k′

2mk+1 (ω−i
ω+i

)k
′

where mk,mk+1 ∈ {mn}.
Also, we can rewrite (Rmk+1

−Rmk)(f) in the following shorter form.

(Rmk+1
−Rmk)(f) =

∑2mk+1+1

k′=2mk βk′(
ω−i
ω+i

)k
′
.

Lemma 3.3. Suppose f : G −→ C defined by f(ω) =
∑∞

k′=0 αk′(
ω−i
ω+i

)k
′

and let 0 < τ ≤ 1
2

be given.
Then there exists a universal constant C > 0 such that

| f(iτ) | ν(τi) ≤ C sup
k∈N∪{0}

M∞((Rmk+1
−Rmk)f, Lδk)ν(δki)

where δk = 1

2mk+1+1 and mk,mk+1 ∈ {mn} for any k ∈ N.

Proof . For each k ∈ N, we define gk(ω) := (Rmk+1
− Rmk)(f)(ω) =

∑2mk+1+1

k′=2mk βk′(
ω−i
ω+i

)k
′
. Since

0 < τ ≤ 1
2
, there exists l ∈ N such that 1

2ml+1 ≤ τ ≤ 1
2ml

. If we assume m0 = 0 and Rm0f = 0, then∑M
k=0 gk(ω) = RmM+1

(f)(ω) which implies that
∑∞

k=0 gk(ω) = f(ω) since limM→∞(f) = f . Hence, in
particular f(iτ) =

∑∞
k=0 gk(iτ). Now, we have

| f(iτ) |≤
∑∞

k=0 | gk(iτ) |=
∑

δk≥τ | gk(iτ) | +
∑

δk<τ
| gk(iτ) |

≤
l−2∑
k=0

| gk(iτ) | +
∞∑

k=l−1

| gk(iτ) |

Firstly, we compute
∑∞

k=l−1 | gk(iτ) |. Here, δk < τ ∀ k ≥ l − 1. Therefore, by using Lemma 2.6 for
ω = iτ we have

| gk(iτ) |≤| τ − 1

τ + 1
|2mk (

1 + δk
1− δk

)2mkM∞(gk, Lδk) (3.1)

for all k ≥ l − 1.

Since δk < τ < 1
2ml

, ν(τi)
ν(δki)

≤ ν( 1
2ml

)

ν( 1

2
mk+1+1 )

≤ (2a)k−l+1 (see the proof of the Case 1 of Lemma 2.8).

Thus,

ν(τi) ≤ (2a)k−l+1ν(δki) ∀k, k ≥ l − 1

Again, as in the proof of the Case 1 of Lemma 2.8 there exists a positive M such that

(2a)k−l+1 ≤ e(M+1)(k−l+1)

Now, insert the above relations in relation relation 3.1 we have

| gk(iτ) | ν(τi) ≤| τ − 1

τ + 1
|2mk (

1 + δk
1− δk

)2mkM∞(gk, Lδk)e
(M+1)(k−l+1)ν(δki) (3.2)

for all k ≥ l − 1.
Now, we find upper bounds for factors | τ−1

τ+1
|2mk and (1+δk

1−δk
)2mk .
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Since, 0 < τ < 1, | τ−1
τ+1
|2mk= (1−τ

τ+1
)2mk ≤ e−

2τ
1+τ

2mk .

τ ≥ 1
2ml+1 ⇒ − 2τ

1+τ
2mk ≤ −2 2mk

1+2ml+1 = −2 2mk−ml−1

2−ml−1+1
.

Since mk−ml−1 > k− l−1, 2mk−ml−1 > 2k−l−1 ⇒ −2 2mk−ml−1 < −2k−l ⇒ −2 2mk

1+2ml+1 <
−2k−l

2−ml−1+1
<

−2k−l. Thus,

| τ − 1

τ + 1
|2mk≤ e−2k−l (3.3)

Also, (1+δk
1−δk

)2mk ≤ e
2δk
1−δk and 2δk

1−δk
= 2

2mk+1−mk+1−2−mk
. Since mk+1 − mk + 1 ≥ 2, 2mk+1−mk+1 ≥

22. mk ≥ 1⇒ −2−mk ≥ −2−1.

Therefore, 2

2mk+1−mk+1−2−mk
≤ 4

7
which implies that

(
1 + δk
1− δk

)2mk ≤ e
4
7 (3.4)

Now, put relations 3.3 and 3.4 in relation 3.2 we have

| gk(iτ) | ν(τi) ≤ e−2k−le
4
7 e(M+1)(k−l)e(M+1)M∞(gk, Lδk)ν(δki)

for all k ≥ l − 1.
Thus,

∞∑
k=l−1

| gk(iτ) | ν(τi) ≤ e
4
7 e(M+1) sup

k≥l−1
M∞(gk, Lδk)ν(δki)

∞∑
k=l−1

e−2k−l+(k−l)(M+1)

Use the root test to see
∑∞

k=l−1 e
−2k−l+(k−l)(M+1) is convergent (say to C1). Therefore,

∞∑
k=l−1

| gk(iτ) | ν(τi) ≤ e
4
7 e(M+1) C1 sup

k≥l−1
M∞(gk, Lδk)ν(δki)

Now, we estimate
∑l−2

k=0 | gk(iτ) | ν(τi). Here δk > τ , so Lemma 2.4 implies that

| gk(iτ) |≤ (
1 + δk
1− δk

)2mk+1+1

M∞(gk, Lδk) (3.5)

for all k, 0 ≤ k ≤ l − 2. It easy to see that

(
1 + δk
1− δk

)2mk+1+1

≤ e
8
3 (3.6)

ν( 1
2ml

i)

ν( 1

2mk+1+1 i)
=

ν( 1
2mk+2 i)

ν( 1

2mk+1+1 i)

ν( 1
2mk+3 i)

ν( 1
2mk+2 i)

...
ν( 1

2ml
i)

ν( 1
2ml−1 i)

(3.7)

Remark 2.7 and Remark 1.8 imply that

ν( 1
2mk+2 i)

ν( 1

2mk+1+1 i)
=
ν( 1

2mk+2 i)

ν( 1
2mk+1 i)

ν( 1
2mk+1 i)

ν( 1

2mk+1+1 i)
≤ 1

2
a
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The other factors of the right hand side of relation 3.7 are less than 1
2
, hence

ν( 1
2ml

i)

ν( 1

2mk+1+1 i)
≤ (

1

2
)l−k−1a

Since ν is increasing, τ < 1
2ml

and δk = 1

2mk+1+1 , we have

ν(τi) ≤ (
1

2
)l−k−1a ν(δki) (3.8)

Considering relations 3.5, 3.6 and 3.8 we have

| gk(iτ) | ν(τi) ≤ e
8
3 (

1

2
)l−k−1a M∞(gk, Lδk)ν(δki)

which implies that

l−2∑
k=0

| gk(iτ) | ν(τi) ≤ ae
8
3 sup

0≤k≤l−2
M∞(gk, Lδk) ν(δki)

since
∑l−2

k=0(1
2
)l−k−1 ≤ 1. Now, using Corollary 2.10 (m2−1) times inductively we can find a universal

constant C ′ such that

M∞(g0, Lδ0) ν(δ0i) ≤M∞(g1, Lδ1) ν(δ1i)

Hence,

sup
0≤k≤l−2

M∞(gk, Lδk)ν(δki) ≤ C ′ sup
k∈N

M∞(gk, Lδk) ν(δki)

Therefore,

l−2∑
k=0

| gk(iτ) | ν(τi) ≤ C ′a e
8
3 sup
k∈N∪{0}

M∞(gk, Lδk) ν(δki)

Finally, we have

| f(iτ) | ν(τi) ≤
∑l−2

k=0 | gk(iτ) | ν(τi)+
∑∞

k=l−1 | gk(iτ) | ν(τi) ≤ C ′a e
8
3 supk∈N∪{0}M∞(gk, Lδk)ν(δki)+

C2 supk∈N∪{0}M∞(gk, Lδk)ν(δki)

Where C2 = e
4
7 e(M+1) C1. Now, put C = max(C ′a e

8
3 , C2). Since gk = (Rmk+1

− Rmk)(f), proof is
complete. �

Lemma 3.4. Let ν be a bounded weight on G 1
2

and A := {z ∈ G : Im z ≤ 1
2
}. Then

‖f‖ν ∼ sup
z∈A
| f(z) | ν(z)

Proof . Obviously, supz∈A | f(z) | ν(z) < ‖f‖ν . By Lemma 2.3
supz∈A | f(z) |≥ supz∈Lδ | f(z) | for any δ > 1

2
. Hence, supz∈G | f(z) |≤ supz∈A | f(z) |. Since ν

is increasing and bounded, there exists a constant C such that ν(z) = ν(z)

ν( 1
2
i)
ν(1

2
i) ≤ Cν(1

2
i) for all

z ∈ G. Therefore,

‖f‖ν ≤ C sup
z∈A
| f(z) | ν(

1

2
i) ≤ C sup

z∈A
| f(z) | ν(z)

�
For any a ∈ R, we define Ta : Hν(G) −→ Hν(G) by (Taf)(z) = f(z + a). It is easy to see that
‖Taf‖ν = ‖f‖ν . Thus, Ta is an isometric isomorphism.
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Lemma 3.5. Suppose f ∈ H(G) and ν is a bounded weight on G 1
2
. Then there exists a positive

universal constant C such that

‖f‖ν ≤ sup
a∈R

sup
k∈N∪{0}

M∞((Rmk+1
−Rmk)Taf, Lδk)ν(δki)

where δk = 1

2mk+1+1 and mk,mk+1 ∈ {mn} for any k ∈ N.

Proof . Consider a fixed z in the strip A := {z ∈ G : Im z ≤ 1
2
}. For τ = Im z we have

| f(z) | ν(τi) =| (TRe zf(iτ) | ν(τi)

By Lemma 3.3, there exists a C > 0 such that

| (TRe zf(iτ) | ν(τi) ≤ C sup
k∈N∪{0}

M∞((Rmk+1
−Rmk)TRe zf, Lδk)ν(δki)

where δk = 1

2mk+1+1 and mk,mk+1 ∈ {mn} for any k ∈ N. Hence,

| f(z) | ν(τi) ≤ C sup
k∈N∪{0}

M∞((Rmk+1
−Rmk)TRe zf, Lδk)ν(δki)

Since ν depends only on the imaginary part and z ∈ A is arbitrary , we have

sup
z∈A
| f(z) | ν(z) ≤ C sup

Re z
sup

k∈N∪{0}
M∞((Rmk+1

−Rmk)TRe zf, Lδk)ν(δki)

Put a = Re z. When z runs over A, a runs over R. Therefore,

sup
z∈A
| f(z) | ν(z) ≤ C sup

a∈R
sup

k∈N∪{0}
M∞((Rmk+1

−Rmk)Taf, Lδk)ν(δki)

Now, Lemma 3.4 completes the proof. �

Lemma 3.6. Suppose f ∈ H(G) and a ∈ R is arbitrary. Then there exists a universal constant C
such that

M∞((Rmk+1
−Rmk)Taf, Lδk) ≤ CM∞(Taf, Lδk) (3.9)

where δk = 1

2mk+1+1 and mk,mk+1 ∈ {mn} for any k ∈ N ∪ {0}.
Proof . We prove the equivalent relation with relation 3.9, which is

M∞((R̃mk+1
− R̃mk)h̃,

δk
1 + δk

+ γ 1
1+δk

) ≤ CM∞(h̃,
δk

1 + δk
+ γ 1

1+δk

)

where h = Taf and h̃ = h ◦ α. For each k ∈ N δk < 1, hence circle δk
1+δk

+ γ 1
1+δk

includes the origin

for each k ∈ N. Thus, the concentric circle γ 1−δk
1+δk

is dominated by the circle δk
1+δk

+ γ 1
1+δk

. Put

g = (R̃mk+1
− R̃mk)h̃. Since g is a polynomial of deg = 2mn+1+1, using Lemma 2.2 we have

M∞(g,
δk

1 + δk
+ γ 1

1+δk

) ≤ (
1 + δk
1− δk

)2mk+1+1

M∞(g, γ 1−δk
1+δk

)

Similar to the proof of Lemma 3.3, (1+δk
1−δk

)2mk+1+1 ≤ e
8
3 . It is wellknown that for any n ∈ N ∪

{0} ‖R̃n‖ ≤ 3 ( see [2]). Hence,

M∞((R̃mk+1
− R̃mk)h̃, γ 1−δk

1+δk

) ≤ 6 M∞(h̃, γ 1−δk
1+δk

)

Therefore, by maximum modulus principle we have

M∞((R̃mk+1
−R̃mk)h̃,

δk
1+δk

+γ 1
1+δk

) ≤ 6e
8
3M∞(h̃, γ 1−δk

1+δk

) ≤ 6e
8
3M∞(h̃, δk

1+δk
+γ 1

1+δk

) �
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Lemma 3.7. Suppose f ∈ H(G) and ν is a bounded weight on G 1
2
. Then there exists a universal

constant C such that

sup
a∈R

sup
k∈N∪{0}

M∞((Rmk+1
−Rmk)Taf, Lδk)ν(δki) ≤ C‖f‖ν

where δk = 1

2mk+1+1 and mk,mk+1 ∈ {mn} for any k ∈ N ∪ {0}.

Proof . Lemma 3.6 implies that there exists a universal constant C > 0 such that for any a ∈ R
and any k ∈ N ∪ {0}

M∞((Rmk+1
−Rmk)Taf, Lδk)ν(δki) ≤ C M∞(Ta, Lδk)

Since M∞(Taf, Lδk) = M∞(f, Lδk),

sup
a∈R

sup
k∈N∪{0}

M∞((Rmk+1
−Rmk)Taf, Lδk)ν(δki) ≤ C sup

k∈N∪{0}
M∞(f, Lδk)ν(δki)

(note that M∞(f, Lδk) does not depend on a). But

sup
k∈N∪{0}

M∞(f, Lδk)ν(δki) ≤ sup
δ>0

M∞(f, Lδ)ν(δi) = ‖f‖ν

Therefore, we are done. �

Theorem 3.8. Suppose f ∈ H(G) and ν is a bounded weight on G 1
2
. Then

‖f‖ν ∼ sup
a∈R

sup
k∈N∪{0}

M∞((Rmk+1
−Rmk)Taf, Lδk)ν(δki)

where δk = 1

2mk+1+1 and mk,mk+1 ∈ {mn} for any k ∈ N ∪ {0} and ν satisfies required conditions.

Proof . Is a consequence of Lemma 3.6 and Lemma 3.7 �
At the end we present some examples of weights which satisfies required conditions in Theorem 3.8

Example 3.9. Following weights are increasing satisfy condition (∗) and are bounded on G 1
2
.

ν1(ω) = (Im ω)β for any 0 < β < 1, ν2(ω) = min((Im ω)β, 1) for any 0 < β.

Proof . Clearly, these weights are increasing and bounded on G 1
2
. Also they satisfy condition (∗) (see

[1]). �
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