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Abstract

For every 1 ≤ s < n, the sth derivative of a polynomial P (z) of degree n is a polynomial P (s)(z)
whose degree is (n− s). This paper presents a result which gives generalizations of some inequalities
regarding the sth derivative of a polynomial having zeros outside a circle. Besides, our result gives
interesting refinements of some well-known results.
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1. Introduction and preliminaries

If P (z) is a polynomial of degree n, then concerning the estimate of |P ′(z)| on the unit disk |z| = 1,
we have

max
|z|=1
|P ′(z)| ≤ nmax

|z|=1
|P (z)|. (1.1)

The above inequality is an immediate consequence of Bernstein’s inequality [3] on the derivative of a
Trigonometric polynomial and is best possible with equality holding for the polynomial P (z) = λzn, λ
being a complex number.

If we restrict ourselves to the class of polynomials having no zeros in |z| < 1, then the above
inequality can be sharpened. In fact, Erdös conjectured and later Lax [8] proved that if P (z) 6= 0 in
|z| < 1, then

max
|z|=1
|P ′(z)| ≤ n

2
max
|z|=1
|P (z)|. (1.2)
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The above inequality is best possible and equality holds for all polynomials having their zeros on
|z| = 1.

As an extension of (1.2), Malik [9] proved that if P (z) 6= 0 in |z| < k, k ≥ 1, then

max
|z|=1
|P ′(z)| ≤ n

1 + k
max
|z|=1
|P (z)|. (1.3)

Govil and Rahman [6] extended inequality (1.3) to the sth derivative of a polynomial and proved
under the same hypothesis for 1 ≤ s < n, that

max
|z|=1

∣∣∣P (s)(z)
∣∣∣ ≤ n(n− 1) · · · (n− s+ 1)

1 + ks
max
|z|=1
|P (z)|. (1.4)

Inequality (1.4) was further refined by Govil [5] who under the same hypothesis proved for 1 ≤ s < n,
that

max
|z|=1

∣∣∣P (s)(z)
∣∣∣ ≤ n(n− 1) · · · (n− s+ 1)

1 + ks

(
max
|z|=1
|P (z)| − min

|z|=k
|P (z)|

)
. (1.5)

Inequality (1.4) was also refined by Aziz and Rather [2] by involving the binomial coefficient and

coefficients of the polynomial P (z). In fact, they proved that, if P (z) =
n∑
ν=0

aνz
ν 6= 0 in |z| < k, k ≥ 1,

then for 1 ≤ s < n,

max
|z|=1

∣∣∣P (s)(z)
∣∣∣ ≤ n(n− 1) · · · (n− s+ 1)

1 + δk,s
max
|z|=1
|P (z)|, (1.6)

where

δk,s = ks+1

{
1 + 1

C(n,s)

∣∣∣asa0 ∣∣∣ks−1
1 + 1

C(n,s)

∣∣∣asa0 ∣∣∣ks+1

}
. (1.7)

In this paper, we shall prove the following result which refines the inequalities (1.5) and (1.6).
Besides this, many other results can be also easily deduced.

Theorem 1.1. If P (z) =
n∑
ν=0

aνz
ν is a polynomial of degree n which does not vanish in |z| < k k ≥ 1,

then for 1 ≤ s < n,

max
|z|=1

∣∣∣P (s)(z)
∣∣∣ ≤ n(n− 1) · · · (n− s+ 1)

φk,s + 1

(
max
|z|=1
|P (z)| −m

)
, (1.8)

where

φk,s = ks+1

{
1 + 1

C(n,s)
|as|
|a0|−mk

s−1

1 + 1
C(n,s)

|as|
|a0|−mk

s+1

}
, m = min

|z|=k
|P (z)|. (1.9)

Remark 1.2. For m = 0, inequality (1.8) reduces to (1.6). Also, for s = 1 and m = 0, inequality
(1.8) reduces to a result of Govil et.al. [7] and for k = s = 1, (1.8) gives a result of Aziz and Dawood
[1]. In general, Theorem 1.1 sharpens results of Malik [9], Govil and Rahman [6], Govil [5] and Aziz
and Rather [2].
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We need the following lemmas for the proof of Theorem 1.1.

Lemma 1.3. If P (z) =
n∑
v=0

avz
v is a polynomial of degree n which does not vanish in |z| < k, k ≥ 1,

then for 1 ≤ s < n and |z| = 1,
δk,s
∣∣P (s)(z)

∣∣ ≤ ∣∣Q(s)(z)
∣∣ (1.10)

and
1

C(n, s)

∣∣∣∣asa0
∣∣∣∣ ks ≤ 1, (1.11)

where here and throughout this paper Q(z) = znP (1
z
) and δk,s is defined by (1.7).

The above lemma is due to Aziz and Rather [2].

Lemma 1.4. If P (z) =
n∑
v=0

avz
v is a polynomial of degree n with P (z) 6= 0 for |z| < k, k ≥ 1, then

|P (z)| > m for |z| < k, and in particular |a0| > m, where m = min|z|=k |P (z)|. The above lemma is
due to Gardner, Govil and Musukula [4].

Lemma 1.5. The function

T (x) = ks+1

1 + 1
C(n,s)

(
|as|
x

)
ks−1

1 + 1
C(n,s)

(
|as|
x

)
ks+1


is an increasing function of x.

Proof . The proof follows by considering the first derivative test of T (x). �

The following two lemmas are due to Govil [5].

Lemma 1.6. If P (z) is a polynomial of degree n having no zeros in |z| < k, k ≥ 1, then for |z| ≥ 1
k
,∣∣Q(s)(z)

∣∣ ≥ mn(n− 1) . . . (n− s+ 1)|z|n−s, (1.12)

where m = min|z|=k |P (z)|.

Lemma 1.7. If P (z) is a polynomial of degree n such that P (z) 6= 0 in |z| < k, k ≥ 1, then

ks
∣∣P (s)(z)

∣∣ ≤ ∣∣Q(s)(z)
∣∣ for |z| = 1. (1.13)

2. Proof of Theorem

Proof of Theorem 1.1. Since P (z) has all its zeros in |z| ≥ k ≥ 1 and m = min|z|=k |P (z)|,
therefore,

m ≤ |P (z)| for |z| = k.
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Hence it follows by Rouche’s theorem that for m > 0 and for every real or complex number λ with
|λ| < 1, the polynomial P (z) − λm does not vanish in |z| < k, k ≥ 1. Applying inequality (1.10) of
Lemma 1.3 to the polynomial P (z)− λm, we get for |z| = 1 that

ks+1

{
1 + 1

C(n,s)

(
|as|

|a0−λm|

)
ks−1

1 + 1
C(n,s)

(
|as|

|a0−λm|

)
ks+1

}∣∣∣∣P (s)(z)

∣∣∣∣
≤
∣∣∣∣Q(s)(z)− λmn(n− 1) . . . (n− s+ 1)zn−s

∣∣∣∣. (2.1)

Since for every λ with |λ| < 1, we have

|a0 − λm| ≥ |a0| − |λ|m ≥ |a0| −m, (2.2)

and |a0| > m by Lemma 1.4, we get on combining (2.1), (2.2) and Lemma 1.5 that for every λ with
|λ| < 1,

ks+1

1 + 1
C(n,s)

(
|as|
|a0|−m

)
ks−1

1 + 1
C(n,s)

(
|as|
|a0|−m

)
ks+1

∣∣P (s)(z)
∣∣

≤
∣∣Q(s)(z)− λmn(n− 1) . . . (n− s+ 1)zn−s

∣∣ , for |z| = 1. (2.3)

Now choosing the argument of λ on the right hand side of (2.3) so that on |z| = 1,∣∣∣Q(s)(z)−λmn(n− 1) . . . (n− s+ 1)zn−s
∣∣∣

=
∣∣∣Q(s)(z)

∣∣∣− |λ|mn(n− 1) . . . (n− s+ 1),

which is possible by inequality (1.12) of Lemma 1.6. Hence we conclude from (2.3) that on |z| = 1,

ks+1

{
1 + 1

C(n,s)

(
|as|
|a0|−m

)
ks−1

1 + 1
C(n,s)

(
|as|
|a0|−m

)
ks+1

}∣∣P (s)(z)
∣∣

≤
∣∣Q(s)(z)

∣∣− |λ|mn(n− 1) . . . (n− s+ 1). (2.4)

Letting |λ| → 1 in (2.4), we obtain

φk,s
∣∣P (s)(z)

∣∣ ≤ ∣∣Q(s)(z)
∣∣−mn(n− 1) . . . (n− s+ 1). (2.5)

Now, if p(z) is a polynomial of degree n having all its zeros in |z| ≤ 1, then g(z) = znp(1
z
) has no

zero in |z| < 1. Hence by inequality (2.4) of Lemma 1.7 with k = 1, we have for |z| = 1,∣∣g(s)(z)
∣∣ ≤ ∣∣p(s)(z)

∣∣. (2.6)

Let M = max|z|=1 |P (z)|, then for every γ with |γ| > 1, it follows by Rouche’s theorem that the

polynomial T (z) = P (z)− γMzn has all zeros in |z| < 1. Taking S(z) = znT (1
z
) = Q(z)− γM and

apply inequality (2.6) to T (z), we get for 1 ≤ s < n and for |z| = 1,∣∣S(s)(z)
∣∣ ≤ ∣∣T (s)(z)

∣∣,
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which implies ∣∣Q(s)(z)
∣∣ ≤ ∣∣P (s)(z)− γMn(n− 1) · · · (n− s+ 1)zn−s

∣∣ for |z| = 1. (2.7)

Since P (z) is of degree n, it follows for every 1 ≤ s < n that the polynomial P (s)(z) is of degree
(n− s). By the repeated application of inequality (1.1), we obtain for |z| = 1,∣∣P (s)(z)

∣∣ ≤ n(n− 1) · · · (n− s+ 1)M. (2.8)

Choose argument of γ suitably and note inequality (2.8), we obtain from inequality (2.7) for |z| = 1,∣∣Q(s)(z)
∣∣ ≤Mn(n− 1) · · · (n− s+ 1)−

∣∣P (s)(z)
∣∣.

That is, for |z| = 1 ∣∣P (s)(z)
∣∣+
∣∣Q(s)(z)

∣∣ ≤Mn(n− 1) · · · (n− s+ 1). (2.9)

Combining inequalities (2.5) and (2.9), we have for |z| = 1,(
1 + φk,s

)∣∣P (s)(z)
∣∣ ≤ ∣∣P (s)(z)

∣∣+
∣∣Q(s)(z)

∣∣−mn(n− 1) . . . (n− s+ 1)

≤Mn(n− 1) · · · (n− s+ 1)−mn(n− 1) . . . (n− s+ 1)

= n(n− 1) . . . (n− s+ 1)(M −m),

which is equivalent to the desired result.

Remark 2.1. As is seen in the proof of Theorem 1.1 that the polynomial P (z) − λm doses not
vanish in |z| < k, k ≥ 1 for every λ with |λ| < 1, it follows by applying inequality (1.11) of Lemma
1.3 to P (z)− λm, that

C(n, s)|a0 − λm| ≥ |as|ks.

Choosing argument of λ suitably and noting Lemma 1.4, we get

C(n, s)
(
|a0| − |λ|m

)
≥ |as|ks.

Letting |λ| → 1, we get

C(n, s)(|a0| −m) ≥ |as|ks,

which in turn implies φk,s ≥ ks for 1 ≤ s < n. From this, it follows that inequality (1.8) is a
refinement of inequality (1.5).
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