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Abstract

In this paper, an attempt is made to present an extension of Darbo’s theorem, and its application
to study the solvability of a functional integral equation of Volterra type.
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1. Introduction and preliminaries

The concept of measures of noncompactness was first devised by Kuratowski [13]. Another measure
of noncompactness is called Hausdorff measure of noncompactness which has been introduced by
Gohberg, Goldenstein, Markus [12], Sadovskii [15] and Geobel [11]. Moreover, for instance, in [1]
general definitions of tow measures of noncompactness (Kuratowski, Hausdorff) and their connections
are presented. Kuratowski and Hausdorff measures of noncompactness are useful tools in many
branches of nonlinear analysis. However, since we don’t know the compactness criterion in all Banach
spaces, applying them is sometimes difficult and in some cases impossible [8]. Moreover in different
Banach spaces we need to look for equivalent relations for measures of Hausdorff and Kuratowski so
that we are able to analyze these measures of noncompactness better [7].

Sadovskii for the first time, presented the measures of noncompactness in the form of axiomatic
ways in [14]. Presenting the axiomatic ways of the measures of noncompactness solves the above
problems to a great extent [6]. For introducing the axioms of the measures of noncompactness, at the
outset, we give notation, definitions and some supporting facts which will be necessary afterward.
For this reason, suppose that E is a given Banach space which has the norm ‖.‖ and zero element

∗Corresponding author
Email addresses: aghajani@iust.ac.ir (Asadollah Aghajani ), Mahdialiaskari66@gmail.com (Mahdi

Aliaskari)

Received: August 2013 Revised: April 2014

http://www.ijnaa.semnan.ac.ir


Generalization of Darbo’s fixed point theorem and application 2 (2011) No. 2,86-95 87

θ. If the closed ball in E is centered at x and has radius r, we show it by B(x, r). In order to show
B(θ, r), we write Br. If X is a subset of E, in that case, we can show the closure and the closed
convex hull of X with the symbols X and ConvX respectively. Also X + Y and λX (λ ∈ R) are
used to show the algebraic operation on sets. Furthermore ME is used to denote the family of all
nonempty bounded subsets of E and NE denote its subfamily includes all relatively compact sets.

Definition 1.1 ([7]). A mapping µ : ME → R+ is said to be measure of noncompactness in E if
it satisfies the following conditions

(1) The family kerµ = {X ∈ME : µ(X) = 0} is nonempty and kerµ ⊂ NE.

(2) X ⊂ Y ⇒ µ(X) ≤ µ(Y ).

(3) µ(X) = µ(X).

(4) µ(ConvX) = µ(X).

(5) µ(λX + (1− λ)Y ) ≤ λµ(X) + (1− λ)µ(Y ) for λ ∈ [0, 1].

(6) If (Xn) is a nested sequence of closed sets from ME such that limn→∞ µ(Xn) = 0, then the
intersection set X∞ = ∩∞n=1Xn is nonempty.

Observe that the intersection set X∞ from axiom (6) is a member of the kerµ. In fact, since µ(X∞) ≤
µ(Xn) for any n, we have that µ(X∞) = 0. This yields that X∞ ∈ kerµ (see [4]).

Definition 1.2 ([9]). A measure µ is called sublinear, if satisfies the following tow conditions

(1) µ(λX) = |λ|µ(Y ) for λ ∈ R,

(2) µ(X + Y ) ≤ µ(X) + µ(Y ),

where X, Y ∈ME.

Definition 1.3 ([9]). A measure µ satisfying the condition µ(X ∪ Y ) = max{µ(X), µ(Y )}, will be
referred to as a measure with maximum property.

Other properties of measures of noncompactness may be found in [7].
In 1995, Darbo used the concept of measures of noncompactness and concluded the existence of

a fixed point for condensing operators. The Darbo theorem is stated as follows.

Theorem 1.4 ([10]). Let Ω be a nonempty, bounded, closed and convex subset of a Banach space
E and let T : Ω → Ω be a continuous mapping. Assume that there exists a constant k ∈ [0, 1) such
that

µ(TX) ≤ kµ(X)

for any nonempty subset X of Ω, where µ is a measure of noncompactness defined in E. Then T has
a fixed point in set Ω.

In fact we can consider the Darbo theorem, an extension of Schauder fixed point theorem which
can be stated as follows

Theorem 1.5 ([2]). If Ω is a nonempty, convex and compact subset of a Banach space E and
F : Ω→ Ω is continuous on the set Ω, then the operator F has at least one fixed point in the set Ω.

In this paper, we are going to present an integral type extension of the Darbo theorem in Banach
spaces. Then we will have a look at its application, using a number of remarks and examples.
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2. Main results

In this section, using the technique of measure of noncompactness, we prove the main result of
this paper.

Theorem 2.1. Let E be a Banach space, and Ω be a nonempty, closed, bounded and convex subset of
a Banach space E and let T : Ω→ Ω be a continuous operator which satisfies the following inequality∫ µ(TX)

0

ϕ(t)dt ≤ ψ
(∫ µ(X)

0

ϕ(t)dt
)

for any nonempty subset X of Ω, where µ is an arbitrary measure of noncompactness and ψ : R+ →
R+ is a nondecreasing function, such that limn→∞ ψ

n(t) = 0 for any t ≥ 0. Also, ϕ : [0+∞[→ [0+∞]
is a Lebesgue-integrable mapping which is summable on each compact subset of [0 +∞[ and for each
ε > 0,

∫ ε
0
ϕ(t)dt > 0. Then T has at least one fixed point in Ω.

Proof . We define the sequence Ωn as follows

Ω0 = Ω and Ωn = ConvTΩn−1, n ≥ 1.

If there exists a natural number such as n0 such that µ(Ωn0) = 0, then Ωn0 is compact and in such
case, by using Theorem 1.5, T in Ω has at least one fixed point. So without loss of generality, we
assume for every n ≥ 1, µ(Ωn) > 0. Taking into account such assumption, we have∫ µ(Ωn+1)

0
ϕ(t)dt =

∫ µ(convTΩn)

0
ϕ(t)dt

=
∫ µ(TΩn)

0
ϕ(t)dt

6 ψ
( ∫ µ(Ωn)

0
ϕ(t)dt

)
6 ψ2

( ∫ µ(Ωn−1)

0
ϕ(t)dt

)
6 ...

6 ψn
( ∫ µ(Ω)

0
ϕ(t)dt

)
.

Now regarding the fact that for every ε > 0,
∫ ε

0
ϕ(t)dt > 0 we can conclude that µ(Ωn) → 0 as

n → ∞. Now since Ωn is a nested sequence, in view of axiom 6 of Definition 1.1, we deduce that
Ω∞ =

⋂∞
n−1 Ωn is a nonempty, closed and convex subset of the set Ω. Moreover, we know that Ω∞ is

a member of Kerµ. So Ω0 is compact. Keeping in mind that T , maps Ω∞ into itself it is possible to
apply Schauder fixed point theorem. Therefore the operator T , has at least one fixed point in Ω∞.
Since Ω∞ ⊂ Ω, the proof of the theorem is completed. �

More, in this section, there are some remarks and examples of Theorem 2.1.

Remark 2.2. By letting

ϕ(t) = 1 and ψ(t) = k 0 ≤ k < 1 ,

in Theorem 2.1, then we have∫ µ(TX)

0

ϕ(t)dt = µ(TX) ≤ kµ(x) = ψ(

∫ µ(X)

0

ϕ(t)dt).

So in such case the Darbo theorem is obtained.
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Now, we present an application of Theorem 2.1 in fixed point problems in metric spaces.

Corollary 2.3. Let Ω be a nonempty, bounded, closed and convex subset of the Banach space E and
let T : Ω→ Ω be an operator sech that for each x, y ∈ Ω,∫ ‖Tx−Ty‖

0

ϕ(t)dt ≤ ψ
(∫ ‖x−y‖

0

ϕ(t)dt
)
,

where ψ : R+ → R+ is a nondecreasing function with limn→∞ ψ
n(t) = 0 for every t > 0 and

ϕ : [0 +∞[→ [0 +∞] is a Lebesque-integrable mapping which is summable on each compact subset
of [0 +∞[. Also, for each ε > 0,

∫ ε
0
ϕ(t)dt > 0. Then T has at least one fixed point in Ω.

Proof . We define

µ : ME → R+ µ(X) = diamX, X ∈ME .

Checking axioms 1-6 of Definition 1.1, we can understand the above defined µ, is a measure of
noncompactness on the space E (cf. [5]). Moreover, under the above assumption, we have∫ supx,y∈X ‖Tx−Ty‖

0

ϕ(t)dt ≤ ψ
(∫ supx,y∈X ‖x−y‖

0

ϕ(t)dt
)
.

So, we can get∫ µ(TX)

0

ϕ(t)dt ≤ ψ
(∫ µ(X)

0

ϕ(t)dt
)
.

Now Theorem 2.1 guarantees the existence of a fixed point for the operator T . �

3. Application

In this section, we use Theorem 2.1, to prove the existence of a solution for the integral equation
of Voltera type

x(t) = f(t, x(t)) +

∫ t

0

g(t, s, x(s))ds, t ∈ R+. (3.1)

We work on the Banach space BC(R+) which consists of all defined, bounded and continuous func-
tions on R+.

We endow the space BC(R+) with the standard norm

‖x‖ = sup{|x(t)| : t ≥ 0}.

Let us fix a nonempty and bounded subset X of BC(R+) and a positive number L > 0 for x ∈ X
and ε ≥ 0, we denote the modules of continuity of the function x on the interval [0, L] by WL(x, ε)
and define it as follows

ωL(x, ε) = sup{|x(t)− x(s)| : t, s ∈ [0, L], |t− s| ≤ ε}.

Moreover, let us put

ωL(X, ε) = sup{ωL(x, ε) : x ∈ X},
ωL0 (X) = limε→0 ω

L(X, ε),
ω0(X) = limL→∞ ω

L
0 (X).
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Furthermore, for a fixed real number t ∈ R, we put

X(t) = {x(t) : x ∈ X}.

Now, we define the function µ on family MBC(R+) as follows

µ(X) = ω0(X) + lim sup
t→∞

diamX(t),

where diamX(t) is understood as

diamX(t) = sup{|x(t)− y(t)| : x, y ∈ X}.

The function µ is a sublinear measure of noncompactness which has maximum property on the space
BC(R+) (see[3]) and Kerµ consists of nonempty bounded sets X such that members of X on R+

are locally continuous and tend to zero in infinity.
Let Ψ be the family of all functions such as ψ : R+ → R+ which are nondecreasing on R+ and

also for each t > 0, limn→∞ ψ
n(t) = 0.

Now assume that the functions f, g in equation 3.1 satisfy the following conditions.

(I) f : R+ → R+ is a continuous function. Moreover, t→ f(t, 0) is a member of the space BC(R+).

(II) There exists an upper semicontinuous function ψ ∈ Ψ and a Lebesque-integrable mapping
ϕ : [0,+∞[→ [0,+∞] which is summable on every compact subset of [0,+∞[ and for every
ε > 0,

∫ ε
0
ϕ(ρ)dρ > 0 we have that

∫ |f(t,x)−f(t,y)|

0

ϕ(ρ)dρ ≤ ψ
(∫ |x−y|

0

ϕ(ρ)dρ
)
, t ∈ R+, x, y ∈ R.

Moreover, we assume that ψ is superadditive i.e., for each t, s,∈ R+, ψ(t) + ψ(s) 6 ψ(t+ s).

(III) g : R+×R+×R→ R is a continuous function and there exist continuous functions c, d : R+ →
R+ such that limt→∞ c(t)

∫ t
0
d(s)ds = 0 and |g(t, s, x)| ≤ c(t)d(s) for t, s ∈ R+ such that s ≤ t,

and for each x ∈ R.

(IV ) The inequality ψ
( ∫ r

0
ϕ(ρ)dρ

)
+ q ≤

∫ r
0
ϕ(ρ)dρ has a positive solution r0 in which q is constant

and defined as

q = sup
{∫ |f(t,0)|+c(t)

∫ t
0 d(s)ds

0

ϕ(ρ)dρ : t ≥ 0
}
.

To prove Theorem 3.2, we need the below lemma.

Lemma 3.1 ([3]). Let ψ : R+ → R+ be a nondecreasing and upper semicontinuous function. Then
the following two conditions are equivalent

(1) limn→∞ ψ
n(t) = 0 for each t > 0.

(2) ψ(t) < t for any t > 0.

Theorem 3.2. Under the assumptions (I) to (IV ) the integral equation 3.1 has at least one solution
in the space BC(R+).
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Proof . We define the operator T on the space BC(R+) as follows

(Tx)(t) = f(t, x(t)) +

∫ t

0

g(t, s, x(s))ds, t ∈ R+.

With regard to the above assumptions, the function Tx is a continuous function on R+ for any
x ∈ BC(R+). For an arbitrary fixed function x ∈ BC(R+), we have∫ |(Tx)(t)|

0
ϕ(ρ)dρ ≤

∫ |f(t,x(t))−f(t,0)|+|f(t,0)|+
∫ t
0 |g(t,s,x(s))|ds

0
ϕ(ρ)dρ

≤ ψ
( ∫ |x(t)|

0
ϕ(ρ)dρ

)
+
∫ |f(t,0)|+

∫ t
0 |g(t,s,x(s))|ds

0
ϕ(ρ)dρ

≤ ψ
( ∫ |x(t)|

0
ϕ(ρ)dρ

)
+
∫ |f(t,0)|+c(t)

∫ t
0 d(s)ds

0
ϕ(ρ)dρ

So, we get∫ ‖Tx‖
0

ϕ(ρ)dρ ≤ ψ
(∫ ‖x(t)‖

0

ϕ(ρ)dρ
)

+ q,

in which q is a constant, defined in assumption (IV ). So T maps the space BC(R+) in to itself.
Moreover in view of assumption (IV ), we deduce that T maps the ball Br0 into itself in which r0 is
a constant appearing in assumption (IV ). Now we show that operator T is continuous on the ball
Br0 . To do so, fix an arbitrary ε > 0 and x, y ∈ Br0 such that ‖x− y‖ ≤ ε. So we can conclude∫ |(Tx)(t)−(Ty)(t)|

0
ϕ(ρ)dρ ≤ ψ

( ∫ |x(t)−y(t)|
0

ϕ(ρ)dρ
)

+
∫ ∫ t

0 |g(t,s,x(s))−g(t,s,y(s))|ds
0

ϕ(ρ)dρ

≤ ψ
( ∫ |x(t)−y(t)|

0
ϕ(ρ)dρ

)
+

∫ ∫ t
0 |g(t,s,x(s))|ds

0
ϕ(ρ)dρ

+
∫ ∫ t

0 |g(t,s,y(s))|ds
0

ϕ(ρ)dρ

≤ ψ
( ∫ ε

0
ϕ(ρ)dρ

)
+
∫ 2k(t)

0
ϕ(ρ)dρ,

(3.2)

where we denoted

k(t) = c(t)

∫ t

0

d(s)ds.

Further, in view of assumption (III), we deduce that there exists a number L > 0 such that

2k(t) = 2c(t)

∫ t

0

d(s)ds ≤ ε, (3.3)

for each t ≥ L. Thus, taking into account Lemma 3.1 and linking 3.3 and 3.2, for an arbitrary t ≥ L
we get∫ |(Tx)(t)−(Ty)(t)|

0
ϕ(ρ)dρ ≤

∫ ε
0
ϕ(ρ)dρ+

∫ ε
0
ϕ(ρ)dρ

≤
∫ 2ε

0
ϕ(ρ)dρ.

So, for t ≥ L, we get

|(Tx)(t)− (Ty)(t)| ≤ 2ε. (3.4)
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Now, we define the quantity ωL(g, ε) as follows

ωL(g, ε) = sup{
∫ |g(t,s,x)−g(t,s,y)|

0

ϕ(ρ)dρ : t, s ∈ [0, L], x, y ∈ [−r0, r0], ‖x− y‖ ≤ ε}.

Now with regard to the fact that the function g(t, s, x) is uniformly continuous on the set [0, L] ×
[0, L]× [−r0, r0], so

lim
ε→0

ωL(g, ε) = 0.

Now by considering 3.2 for an arbitrary fixed t ∈ [0, L], we conclude that∫ |(Tx)(t)−(Ty)(t)|
0

ϕ(ρ)dρ ≤ ψ(
∫ ε

0
ϕ(ρ)dρ) +

∫ ∫ L
0 ωL(g,ε)ds

0
ϕ(ρ)dρ

= ψ(
∫ ε

0
ϕ(ρ)dρ) +

∫ LωL(g,ε)

0
ϕ(ρ)dρ. (3.5)

Combining 3.4 and 3.5, it is possible to conclude that the operator T is continuous on the ball Br0 .
Now, let X be an arbitrary nonempty subset of the ball Br0 . Fix numbers ε > 0 and L > 0. Next,
choose t, s ∈ [0, L] such that ‖t − s‖ ≤ ε. Without loss of generality, we assume that s < t. Then,
for x ∈ X we conclude∫ |Tx)(t)−(Tx)(s)|

0
ϕ(ρ)dρ ≤

∫ |f(t,x(t))−f(s,x(s))|+|
∫ t
0 g(t,τ,x(τ))dτ−

∫ s
0 g(s,τ,x(τ))dτ |

0
ϕ(ρ)dρ

≤
∫ |f(t,x(t))−f(s,x(t))|+|f(s,x(t))−f(s,x(s))|+|

∫ t
0 g(t,τ,x(τ))dτ−

∫ t
0 g(s,τ,x(τ))dτ |+

∫ t
0 g(s,τ,x(τ))dτ−

∫ s
0 g(s,τ,x(τ))dτ |

0
ϕ(ρ)dρ

≤
∫ ωL

1 (f,ε)

0
ϕ(ρ)dρ

+ψ(
∫ |x(t)−x(s)|

0
ϕ(ρ)dρ+

∫ ∫ t
0 |g(t,τ,x(τ))−g(s,τ,x(τ))|dτ

0
ϕ(ρ)dρ+

∫ ∫ t
s |g(s,τ,x(τ))|dτ

0
ϕ(ρ)dρ

≤
∫ ωL

1 (f,ε)

0
ϕ(ρ)dρ

+ψ
( ∫ ωL(x,ε)

0
ϕ(ρ)dρ

)
+
∫ ∫ t

0 ω
L
1 (g,ε)dτ

0
ϕ(ρ)dρ+

∫ c(s) ∫ t
s d(τ)dτ

0
ϕ(ρ)dρ

≤
∫ ωL

1 (f,ε)

0
ϕ(ρ)dρ

+ψ
( ∫ ωL(x,ε)

0
ϕ(ρ)dρ

)
+
∫ LωL

1 (g,ε)

0
ϕ(ρ)dρ+

∫ ε sup{c(s)d(t):t,s∈[0,L]}
0

ϕ(ρ)dρ

(3.6)

where we denote

ωL1 (f, ε) = sup{|f(t, x)− f(s, x)| : t, s ∈ [0, L], x ∈ [−r0, r0], |t− s| < ε},
ωL1 (g, ε) = sup{|g(t, t, x)− g(s, t, x)| : t, s, t ∈ [0, L], x ∈ [−r0, r0], |t− s| < ε}.

Now with regard to the fact that f is uniformly continuous on the set [0, L] × [−r0, r0] and g is

uniformly continuous on the set [0, L] × [0, L] × [−r0, r0], we can conclude
∫ ωL

1 (f,ε)

0
ϕ(ρ)dρ → 0

and
∫ ωL

1 (g,ε)

0
ϕ(ρ)dρ → 0 as ε → 0. Moreover, since c = c(t) and d = d(t) are continuous on R+, the

quantity sup{c(s)d(t) : t, s ∈ [0, L]} is finite. From 3.6, we conclude∫ ωL
0 (TX)

0

ϕ(ρ)dρ ≤ lim
ε→0

ψ
(∫ ωL(X,ε)

0

ϕ(ρ)dρ
)
.

Now with regard to the fact that ψ is upper semicontinuous, so∫ ωL
0 (TX)

0

ϕ(ρ)dρ ≤ ψ
(∫ ωL

0 (X)

0

ϕ(ρ)dρ
)
,
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and so∫ ω0(TX)

0

ϕ(ρ)dρ ≤ ψ
(∫ ω0(X)

0

ϕ(ρ)dρ
)
. (3.7)

Now we choose two arbitrary functions x, y ∈ X. Then for t ∈ R we have∫ |(Tx)(t)−(Ty)(t)|
0

ϕ(ρ)dρ ≤
∫ |f(t,x(t))−f(t,y(t))|+

∫ t
0 |g(t,s,x(s))|ds+

∫ t
0 |g(t,s,y(s))|ds

0
ϕ(ρ)dρ

≤ ψ
( ∫ |x(t)−y(t)|

0
ϕ(ρ)dρ

)
+
∫ 2c(t)

∫ t
0 d(s)ds

0
ϕ(ρ)dρ

≤ ψ
( ∫ |x(t)−y(t)|

0
ϕ(ρ)dρ

)
+
∫ 2k(t)

0
ϕ(ρ)dρ.

This estimate allows us to get the following one∫ diam(TX)(t)

0

ϕ(ρ)dρ ≤ ψ
(∫ diamX(t)

0

ϕ(ρ)dρ
)

+

∫ 2k(t)

0

ϕ(ρ)dρ.

Now with regard to the upper semicontinuity of the functions ψ we obtain∫ lim supt→∞ diam(TX)(t)

0

ϕ(ρ)dρ ≤ ψ
(∫ lim supt→∞ diamX(t)

0

ϕ(ρ)dρ
)
. (3.8)

So, combining 3.7 and 3.8, we can conclude∫ ω0(TX)

0
ϕ(ρ)dρ+

∫ lim supt→∞ diam(TX)(t)

0
ϕ(ρ)dρ

≤ ψ
( ∫ ω0(X(t))

0
ϕ(ρ)dρ

)
+ ψ

( ∫ lim supt→∞ diam(TX)(t)

0
ϕ(ρ)dρ

)
≤
( ∫ ω0(X(t))+lim supt→∞ diam(TX)(t)

0
ϕ(ρ)dρ

)
,

or, equivalently∫ µ(TX)

0

ϕ(ρ)dρ ≤ ψ
(∫ µ(X)

0

ϕ(ρ)dρ
)
,

in which µ is the defined measure of noncompactness on the space BC(R+). Now, Theorem 2.1
completes the proof. �

Example 3.3. Consider the following functional integral equation

x(t) =
t2

2 + 2t4
ln(1 + |x(t)|) +

∫ t

0

se−t sinx

3 + | cosx|
ds, (3.9)

for t ∈ R+. Observe that Eq. (3.9) is a special case of the functional integral equation (3.1) with

f(t, x) = t2

2+2t4
ln(1 + |x|)

g(t, s, x) = se−t sinx
3+| cosx|

We show that all the conditions of Theorem 3.2 are satisfied for the functional integral equation
(3.9). Conditions (I) is clearly evident. The function ψ(t) = ln (1 + t) is nondecreasing and concave
on R+ and ψ(t) < t for all t > 0, and it is also easily seen that ϕ(ρ) ≡ 2 satisfies assumption (II),
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and for every ε > 0,
∫ ε

0
ϕ(ρ)dρ > 0. In addition, for arbitrarily fixed x, y ∈ R+ such that |x| ≥ |y|

and for t > 0 we get∫ |f(t,x)−f(t,y)|
0

ϕ(ρ)dρ = 2t2

2+2t4
ln (1+|x|

1+|y|)

≤ ln (1 + |x|−|y|
1+|y| )

< ln (1 + |x− y|)
< ln (1 + 2|x− y|)
= ψ

( ∫ |x−y|
0

ϕ(ρ)dρ
)

The case |y| ≥ |x| can be treated in the same way. Thus, keeping in mind Remark 3.1 we conclude
that the function f satisfies assumption (II) of Theorem 3.2. In addition, observe that the function
g is continuous and maps the set R+ × R+ × R into R. Also, we have

|g(t, s, x)| ≤ e−ts

for t, s ∈ R and x ∈ R. So, if we put c(t) = e−t, and d(s) = s, then we can see that assumption (III)
is satisfied. Indeed, we have

lim
t→∞

c(t)

∫ t

0

d(s)ds = 0

Now, let us compute the constant q appearing in assumption (IV). We obtain

q = sup
{∫ |f(t,0)|+c(t)

∫ t
0 d(s)ds

0

ϕ(ρ)dρ : t ≥ 0
}

= sup{2t2e−t/2 : t ≥ 0} = 4e−2.

Moreover, we can check that the inequality from assumption (IV) takes the form

ln (1 + 2r) + q ≤ 2r.

Obviously this inequality has a positive solution r0. For example, r0 = 2. Consequently, all the
conditions of Theorem 3.2 are satisfied. Hence the functional integral equation 3.9 has at least one
solution in the space BC(R+).
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