Int. J. Nonlinear Anal. Appl. 5 (2014) No. 2, 111-122 ISSN: 2008-6822 (electronic) <http://www.ijnaa.semnan.ac.ir>

On approximate dectic mappings in non-Archimedean spaces: a fixed point approach

Ali Ebadian[∗] , Rasoul Aghalary, Mohammad Ali Abolfathi

^aDepartment of Mathematics, Urmia University, P.O.Box 165, Urmia, Iran.

(Communicated by M. B. Ghaemi)

Abstract

In this paper, we investigate the Hyers-Ulam stability for the system of additive, quadratic, cubic and quartic functional equations with constants coefficients in the sense of dectic mappings in non-Archimedean normed spaces.

Keywords: Hyers-Ulam stability; non-Archimedean normed space; dectic functional equation; fixed point method.

2010 MSC: Primary 39B82; Secondary 46S10; 47H10.

1. Introduction and Preliminaries

A classical equation in the theory of functional equations is the following: "when is it true that a function which approximately satisfies a functional equation must be close to an exact solution of the equation?". If the problem accepts a solution, we say that the equation is stable. The first problem concerning group homomorphisms was raised by Ulam [\[32\]](#page-11-0) in 1940. In the next year Hyers [\[14\]](#page-11-1) gave a first affirmative answer to the question of Ulam in context of Banach spaces. Subsequently, the result of Hyers was generalized by Aoki [\[2\]](#page-10-0) for additive mapping and by Rassias [\[27\]](#page-11-2) for linear mapping by considering an unbounded Cauchy difference. The result of Rassias has provided a lot of influence during the last three decades in the development of generalization of Hyers-Ulam stability concept. Furthermore, in 1994, Găvruta [\[11\]](#page-11-3) provided a further generalization of Rassias' theorem in which he replaced the bound $\varepsilon(\|x\|^p + \|y\|^p)$ by a general control function $\varphi(x, y)$. The stability problems

[∗]Corresponding author

Email addresses: a.ebadian@urmia.ac.ir (Ali Ebadian), r.aghalary@urmia.ac.ir (Rasoul Aghalary), m.abolfathi@urmia.ac.ir (Mohammad Ali Abolfathi)

of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem (see [\[1,](#page-10-1) [9,](#page-11-4) [10,](#page-11-5) [15,](#page-11-6) [28\]](#page-11-7)). In 1897, Hensel [\[13\]](#page-11-8) discovered the *p*-adic numbers as a number theoretical analogue of power series in complex analysis. The most important examples of non-Archimedean spaces are p-adic numbers. A key property of p-adic numbers is that they done not satisfy the Archimedean axiom: for all $x, y > 0$, there exists an integer n such that $x < ny$.

Fix a prime number p. For any nonzero rational number x, there exists a unique integer n_x such that $x = \frac{a}{b}$ $\frac{a}{b}p^{n_x}$, where a and b are integers not divisible by p. Then $|x|_p := p^{-n_x}$ defines a non-Archimedean norm on Q. The completion of Q with respect to the metric $d(x, y) = |x - y|_p$ is denoted by \mathbb{Q}_p , and it is called the p-adic number field. In fact, \mathbb{Q}_p is the set of all formal series $x = \sum_{k=1}^{\infty} a^k p_k$, where $|a_k| \leq p-1$ are integers. The addition and multiplication between any two elements of \mathbb{Q}_p are defined naturally. The norm $\sum_{k\geq n}^{\infty} a^k p_k |_{p} = p^{-n_x}$ is a non-Archimedean norm on \mathbb{Q}_p and it makes \mathbb{Q}_p a locally compact field $[12, 29]$ $[12, 29]$. Note that if $p \geq 3$, then $|2^n|_p = 1$ for each integer n.

During the last three decades theory of non-Archimedean spaces has gained the interest of physicists for their research, in particular the problems that emerge in quantum physics, p -adic strings and superstrings [\[21\]](#page-11-11). Although many results in the classical normed space theory have a non-Archimedean counterpart, their proofs are essentially different and require an entirely new kind of intuition. One may note that for $|n| \leq 1$ in each valuation field, every triangle is isosceles and there many be no unit vector in a non-Archimedean normed space [\[21\]](#page-11-11). These facts show that the non-Archimedean framework is of special interest. It turned out that non-Archimedean spaces have many nice applications [\[12,](#page-11-9) [29,](#page-11-10) [30,](#page-11-12) [33\]](#page-11-13). In 2007, Moslehian and Rassias [\[23\]](#page-11-14) proved the generalized Hyers-Ulam stability of the Cauchy and quadratic functional equation in non-Archimedean normed spaces.

A valuation is a function |. from a field K into $[0, \infty)$ such that 0 is the unique element having the 0, $|ab| = |a||b|$, and the triangle inequality holds, that is, for all $a, b \in \mathbb{K}$, we have $|a + b| \leq |a| + |b|$. A field K is called a valued field if K carries a valuation. The usual absolute values of R and C are examples of valuations.

Let us consider a valuation which satisfies a stronger condition than the triangle inequality. Let K be a field. A non-Archimedean absolute value on K is a function $|.| : K \to \mathbb{R}$ such that, for any $a, b \in \mathbb{K}$, we have, $|a| > 0$ and equality holds if and only if $a = 0$, $|ab| = |a||b|$, $|a+b| \leq max\{|a|, |b|\}$ (the strict triangle inequality). Note that $|1| = |-1| = 1$ and $|n| \leq 1$ for each integer n. We always assume, in addition, that |.| is non-trivial, i.e., there exists an $a_0 \in \mathbb{K}$ such that $|a_0| \notin \{0, 1\}$.

Definition 1.1. Let X be a linear space over a scaler field \mathbb{K} with a non-Archimedean nontrivial valuation $\|.\|$. A function $\|.\|: X \to \mathbb{R}$ is a non-Archimedean norm (valuation) if it satisfies the following conditions:

 $(N1)$ $||x|| = 0$ if and only if $x = 0$, $(N2)$ $\|rx\| = |r| \|x\|,$ (N3) $||x + y|| \leq max{||x||, ||y||}$ (the strict triangle inequality (ultrametric))

for all $x, y \in X$. Then $(X, \| \|)$ is called a non-Archimedean space. It follows from (N3) that

$$
||x_n - x_m|| \le \max\{||x_{i+1} - x_i|| : m \le i \le n-1\} \quad (n > m).
$$

Let $\{x_n\}$ be a sequence in a non-Archimedean normed space X. The sequence $\{x_n\}$ is called a Cauchy sequence if for any $\varepsilon > 0$, there is a positive integer N such that $||x_n - x_m|| < \varepsilon$ for all $n, m \geq N$. If every Cauchy sequence in X converges, then the non-Archimedean normed space X is called a non-Archimedean Banach space. For more detailed definition of non-Archimedean Banach space, we refer to [\[30\]](#page-11-12).

Let X be a set. A function $d: X \times X \to [0,\infty]$ is called a generalized metric on X if d satisfies (1) $d(x, y) = 0$ if and only if $x = y$;

- (2) $d(x, y) = d(y, x)$ for all $x, y \in X$;
- (3) $d(x, z) \leq d(x, y) + d(y, z)$ for all $x, y, z \in X$.

We recall the a fundamental result in fixed point theory.

Theorem 1.2. (see.[\[6,](#page-10-2) [26\]](#page-11-15)) Let (X, d) be a complete generalized metric space and $J: X \to X$ be a strictly contractive mapping with Lipshitz constant $L < 1$. Then, for each given $x \in X$, either

$$
d(J^n x, J^{n+1} x) = \infty \quad \text{for all} \quad n \ge 0,
$$

or there exists a natural number n_0 such that

(1) $d(J^n x, J^{n+1} x) < \infty$ for all $n \ge n_0$;

(2) the sequence $\{J^n x\}$ converges to a fixed point y^* of J;

- (3) y^{*} is the unique fixed point of J in the set $Y = \{y \in X : d(J^{n_0}, y) < \infty\};$
- $(4) d(y, y^*) \leq \frac{1}{1-}$ $\frac{1}{1-L}d(y, Jy)$ for all $y \in Y$.

In 1996, Isac and Rassias [\[16\]](#page-11-16) were the first to provide applications of stability theory of functional equations for the proof of new fixed-point theorems with applications. By using fixed point methods, the stability problems of several functional equations have been extensively investigated by a number of authors (see $[4, 25]$ $[4, 25]$).

Khodaei and Rassias [\[20\]](#page-11-18) investigated the solution and stability of the n-dimensional additive functional equations such that in the special case $n = 2$,

$$
f(ax + by) + f(ax - by) = 2af(x)
$$

where $a, b \in \mathbb{Z} \setminus \{0\}$ with $a \neq \pm 1, \pm b$.

The functional equation

$$
f(x+y) + f(x-y) = 2f(x) + 2f(y)
$$
\n(1.1)

is called quadratic functional equation and every solution of quadratic equation [\(1.1\)](#page-2-0) is said to be a quadratic function. The function $f(x) = x^2$ satisfies the functional equation [\(1.1\)](#page-2-0). The Hyers-Ulam stability problem for the quadratic functional equation was solved by Skof [\[31\]](#page-11-19) and, independently, by Cholewa [\[5\]](#page-10-4). In Czerwik [\[3\]](#page-10-5) proved the generalized Hyers-Ulam stability for the functional equation. Eshaghi Gordji and Khodaei [\[8\]](#page-11-20) investigated the solution and the Hyers- Ulam stability for the quadratic functional equation

$$
f(ax + by) + f(ax - by) = 2a^2 f(x) + 2b^2 f(y),
$$

where $a, b \in \mathbb{Z} \setminus \{0\}$ with $a \neq \pm 1, \pm b$. Jun and Kim [\[17\]](#page-11-21) introduced the following functional equation

$$
f(2x + y) + f(2x - y) = 2(f(x + y) + f(x - y)) + 12f(x),
$$
\n(1.2)

and established the general solution and the Hyers-Ulam stability for this functional equation. Functional equation [\(1.2\)](#page-2-1) is called cubic functional equation and every solution of cubic equation [\(1.2\)](#page-2-1) is said to be a cubic function. Obviously, the function $f(x) = x^3$ satisfies the functional equation

[\(1.2\)](#page-2-1). Jun et al. [\[18\]](#page-11-22) investigated the solution and the Hyers-Ulam stability for the cubic functional equation

$$
f(ax + by) + f(ax - by) = ab^{2}(f(x + y) + f(x - y)) + 2a(a^{2} - b^{2})f(x)
$$

where $a, b \in \mathbb{Z} \setminus \{0\}$ with $a \neq \pm 1, \pm b$.

Lee et al. [\[22\]](#page-11-23) considered the following functional equation

$$
f(2x + y) + f(2x - y) = 4(f(x + y) + f(x - y)) + 24f(x) - 6f(y).
$$
\n(1.3)

and established the general solution and the Hyers-Ulam stability for this functional equation. Functional equation [\(1.3\)](#page-3-0) is called quartic functional equation and every solution of quartic equation [\(1.3\)](#page-3-0) is said to be a quartic function. Obviously, the function $f(x) = x^4$ satisfies the functional equation [\(1.3\)](#page-3-0). Kang [\[19\]](#page-11-24) investigated the solution and the Hyers-Ulam stability for the quartic functional equation

$$
f(ax + by) + f(ax - by) = a2b2(f(x + y) + f(x - y)) + 2a2(a2 – b2)f(x) – 2b2(a2 – b2)f(y)
$$

where $a, b \in \mathbb{Z} \setminus \{0\}$ with $a \neq \pm 1, \pm b$.

Ebadian et al. [\[7\]](#page-11-25) considered the Hyers-Ulam stability of the system of additive-quartic functional equations and the system of quadratic-cubic functional equations. Recently, Park et al. [\[24\]](#page-11-26) considered the Hyers-Ulam stability of the system of additive-quadratic-quartic functional equations.

In this paper, we investigate the Hyers-Ulam stability for the system of additive-quadratic-quarticcubic functional equations

$$
\begin{cases}\nf(ax_1 + bx_2, y, z, w) + f(ax_1 - bx_2, y, z, w) = 2af(x_1, y, z, w), \\
f(x, ay_1 + by_2, z, w) + f(x, ay_1 - by_2, z, w) = 2a^2 f(x, y_1, z, w) + 2b^2 f(x, y_2, z, w), \\
f(x, y, az_1 + bz_2, w) + f(x, y, az_1 - bz_2, w) = a^2 b^2 (f(x, y, z_1 + z_2, w) \\
&+ f(x, y, z_1 - z_2, w)) + 2a^2 (a^2 - b^2) f(x, y, z_1, w) - 2b^2 (a^2 - b^2) f(x, y, z_2, w), \\
f(x, y, z, aw_1 + bw_2) + f(x, y, z, aw_1 - bw_2) = ab^2 (f(x, y, z, w_1 + w_2) \\
&+ f(x, y, z, w_1 - w_2)) + 2a(a^2 - b^2) f(x, y, z, w_1)\n\end{cases}
$$
\n(1.4)

where $a, b \in \mathbb{Z} \setminus \{0\}$ with $a \neq \pm 1, \pm b$. Also by a example we show that approximation in non-Archimedean normed spaces is better than the approximation in (Archimedean) normed spaces.

The function $f : \mathbb{R} \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ given by $f(x, y, z, w) = cxy^2z^4w^3$ is solution of [\(1.4\)](#page-3-1). In particular, putting $x = y = z = w$, we get a dectic function $g : \mathbb{R} \to \mathbb{R}$ in one variable given by $g(x) := f(x, x, x, x) = cx^{10}$. The proof of the following proposition is evident, and we omit the details.

Proposition 1.3. Let X and Y be real linear spaces. If a mappingf : $X \times X \times X \times X \rightarrow Y$ satisfies system [\(1.4\)](#page-3-1), then $f(\lambda x, \mu y, \eta z, \gamma w) = \lambda \mu^2 \eta^4 \gamma^3 f(x, y, z, w)$ for all $x, y, z, w \in X$, and all rational numbers $\lambda, \mu, \eta, \gamma$.

2. Approximation of dectic mappings

From now on, unless otherwise stated, we will assume that X is a non-Archimedean normed space and Y is a non-Archimedean Banach space. Utilizing the fixed point alternative, we investigate the Hyers-Ulam stability problem for the system of functional equations [\(1.4\)](#page-3-1) in non-Archimedean Banach spaces.

Theorem 2.1. Let $\beta \in \{-1, 1\}$ be fixed. Let $\psi_1, \psi_2, \psi_3, \psi_4 : X \times X \times X \times X \times X \rightarrow [0, \infty)$ be functions such that

$$
\Psi(x, y, z, w) := \left| \frac{1}{2} \right| \max \{ |a^{-5\beta + 4}| \psi_1(a^{\frac{\beta - 1}{2}} x, 0, a^{\frac{\beta - 1}{2}} y, a^{\frac{\beta - 1}{2}} z, a^{\frac{\beta - 1}{2}} w),
$$

$$
|a^{-5\beta + 2}| \psi_2(a^{\frac{\beta + 1}{2}} x, a^{\frac{\beta - 1}{2}} y, 0, a^{\frac{\beta - 1}{2}} z, a^{\frac{\beta - 1}{2}} w),
$$

$$
|a^{-5\beta - 2}| \psi_3(a^{\frac{\beta + 1}{2}} x, a^{\frac{\beta + 1}{2}} y, a^{\frac{\beta - 1}{2}} z, 0, a^{\frac{\beta - 1}{2}} w),
$$

$$
|a^{-5\beta - 5}| \psi_4(a^{\frac{\beta + 1}{2}} x, a^{\frac{\beta + 1}{2}} y, a^{\frac{\beta + 1}{2}} z, a^{\frac{\beta - 1}{2}} w, 0) \}
$$
\n(2.1)

for all $x, y, z, w \in X$, and for some $0 < L < 1$,

$$
\Psi(a^{\beta}x, a^{\beta}y, a^{\beta}z, a^{\beta}w) \le L|a^{10\beta}|\Psi(x, y, z, w)
$$
\n(2.2)

and

$$
\lim_{n \to \infty} |a^{-10\beta n}| \psi_1(a^{\beta n} x_1, a^{\beta n} x_2, a^{\beta n} y, a^{\beta n} z, a^{\beta n} w) = 0,\n\lim_{n \to \infty} |a^{-10\beta n}| \psi_2(a^{\beta n} x, a^{\beta n} y_1, a^{\beta n} y_2, a^{\beta n} z, a^{\beta n} w) = 0,\n\lim_{n \to \infty} |a^{-10\beta n}| \psi_3(a^{\beta n} x, a^{\beta n} y, a^{\beta n} z_1, a^{\beta n} z_2, a^{\beta n} w) = 0,\n\lim_{n \to \infty} |a^{-10\beta n}| \psi_4(a^{\beta n} x, a^{\beta n} y, a^{\beta n} z, a^{\beta n} w_1, a^{\beta n} w_2) = 0
$$
\n(2.3)

for all $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in X$. If $f : X \times X \times X \times X \times Y$ is a mapping such that $f(x, 0, z, w) = f(x, y, 0, w) = 0$ for all $x, y, z, w \in X$, and

$$
||f(ax_1 + bx_2, y, z, w) + f(ax_1 - bx_2, y, z, w) - 2af(x_1, y, z, w)|| \le \psi_1(x_1, x_2, y, z, w),
$$
(2.4)

$$
||f(x, ay_1 + by_2, z, w) + f(x, ay_1 - by_2, z, w) - 2a^2 f(x, y_1, z, w) - 2b^2 f(x, y_2, z, w)||
$$

$$
\le \psi_2(x, y_1, y_2, z, w),
$$

$$
||f(x, y, az_1 + bz_2, w) + f(x, y, az_1 - bz_2, w) - a^2 b^2 (f(x, y, z_1 + z_2, w) + f(x, y, z_1 - z_2, w))
$$
(2.5)

$$
-2a^2(a^2 - b^2)f(x, y, z_1, w) + 2b^2(a^2 - b^2)f(x, y, z_2, w)
$$
\n
$$
(2.6)
$$

$$
\leq \psi_3(x, y, z_1, z_2, w),
$$

$$
|| f(x, y, z, aw_1 + bw_2) + f(x, y, z, aw_1 - bw_2) - ab^2(f(x, y, z, w_1 + w_2)
$$

+ $f(x, y, z, w_1 - w_2)) - 2a(a^2 - b^2) f(x, y, z, w_1) ||$ (2.7)
 $\leq \psi_4(x, y, z, w_1, w_2)$

for all $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in X$, then there exists a unique dectic mapping $D: X \times$ $X \times X \times X \rightarrow Y$ satisfying [\(1.4\)](#page-3-1) and

$$
|| f(x, y, z, w) - D(x, y, z, w)|| \le \frac{1}{1 - L} \Psi(x, y, z, w)
$$
\n(2.8)

for all $x, y, z, w \in X$.

Proof. Letting $x_2 = 0$ and replacing x_1, y, z, w by $2x, 2y, 2z, 2w$ in [\(2.4\)](#page-4-0), we get

$$
||f(2ax, 2y, 2z, 2w) - af(2x, 2y, 2z, 2w)|| \le |\frac{1}{2}|\psi_1(2x, 0, 2y, 2z, 2w)|
$$
\n(2.9)

for all $x, y, z, w \in X$. Letting $y_2 = 0$ and replacing x, y_1, z, w by $2ax, 2y, 2z, 2w$ in [\(2.5\)](#page-4-1), we get

$$
||f(2ax, 2ay, 2z, 2w) - a^2 f(2ax, 2y, 2z, 2w)|| \le |\frac{1}{2}|\psi_2(2ax, 2y, 0, 2z, 2w)|
$$
\n(2.10)

for all $x, y, z, w \in X$. Letting and $z_2 = 0$ and replacing x, y, z_1, w by $2ax, 2ay, 2z, 2w$ in [\(2.6\)](#page-4-2), we get

$$
||f(2ax, 2ay, 2az, 2w) - a^4 f(2ax, 2ay, 2z, 2w)|| \le |\frac{1}{2}|\psi_3(2ax, 2ay, 2z, 0, 2w)|
$$
\n(2.11)

for all $x, y, z, w \in X$. Letting $w_2 = 0$ and replacing x, y, z, w_1 by $2ax, 2ay, 2az, 2w$ in [\(2.7\)](#page-5-0), we get

$$
||f(2ax, 2ay, 2az, 2aw) - a^3 f(2ax, 2ay, 2az, 2w)|| \le |\frac{1}{2}|\psi_4(2ax, 2ay, 2az, 2w, 0)
$$
\n(2.12)

for all $x, y, z, w \in X$. Combining $(2.9), (2.8), (2.11)$ $(2.9), (2.8), (2.11)$ $(2.9), (2.8), (2.11)$ $(2.9), (2.8), (2.11)$ $(2.9), (2.8), (2.11)$ and (2.12) , we lead to

 $|| f(2ax, 2ay, 2az, 2aw) - a^{10} f(2x, 2y, 2z, 2w)||$

$$
\leq |\frac{1}{2}| max\{|a^{9}|\psi_1(2x, 0, 2y, 2z, 2w), |a^{7}|\psi_2(2ax, 2y, 0, 2z, 2w), |a^{3}|\psi_3(2ax, 2ay, 2z, 0, 2w), \psi_4(2ax, 2ay, 2az, 2w, 0)\}
$$
\n(2.13)

for all $x, y, z, w \in X$. Replacing x, y, z and w by $\frac{x}{2}, \frac{y}{2}$ $\frac{y}{2}, \frac{z}{2}$ $\frac{z}{2}$ and $\frac{w}{2}$ in [\(2.13\)](#page-5-5), we have

$$
||f(ax, ay, az, aw) - a10f(x, y, z, w)||
$$

$$
\leq |\frac{1}{2}| max\{|a^{9}|\psi_1(x, 0, y, z, w), |a^{7}|\psi_2(ax, y, 0, z, w),
$$
\n
$$
|a^{3}|\psi_3(ax, ay, z, 0, w), \psi_4(ax, ay, az, w, 0)\}
$$
\n(2.14)

for all $x, y, z, w \in X$. It follows from (2.14) that

$$
\|\frac{1}{a^{10}}f(ax, ay, az, aw) - f(x, y, z, w)\|
$$

\n
$$
\leq |\frac{1}{2}|max\{|a^{-1}|\psi_1(x, 0, y, z, w), |a^{-3}|\psi_2(ax, y, 0, z, w),
$$

\n
$$
|a^{-7}|\psi_3(ax, ay, z, 0, w), |a^{-10}|\psi_4(ax, ay, az, w, 0)\}
$$
\n(2.15)

$$
||a^{10} f(\frac{x}{a}, \frac{y}{a}, \frac{z}{a}, \frac{w}{a}) - f(x, y, z, w)||
$$

\n
$$
\leq |\frac{1}{2}| max\{|a^{9}|\psi_1(\frac{x}{a}, 0, \frac{y}{a}, \frac{z}{a}, \frac{w}{a}), |a^{7}|\psi_2(x, \frac{y}{a}, 0, \frac{z}{a}, \frac{w}{a}),
$$

\n
$$
|a^{3}|\psi_3(x, y, \frac{z}{a}, 0, \frac{w}{a}), \psi_4(x, y, z, \frac{w}{a}, 0)\}
$$
\n(2.16)

for all $x, y, z, w \in X$. From the [\(2.15\)](#page-5-7) and [\(2.16\)](#page-6-0), we have

$$
\|\frac{1}{a^{10\beta}}f(a^{\beta}x, a^{\beta}y, a^{\beta}z, a^{\beta}w) - f(x, y, z, w)\| \le \Psi(x, y, z, w)
$$
\n(2.17)

for all $x, y, z, w \in X$.

Consider

$$
\Omega:=\{u|u:X\times X\times X\times X\to Y,\quad u(x,0,z,w)=u(x,y,0,w)=0,\forall x,y,z,w\in X\},
$$

and let us introduce a generalized metric on Ω as follows:

$$
d(u, v) = \inf \{ \eta \in \mathbb{R}^+ : ||u(x, y, z, w) - v(x, y, z, w)|| \leq \eta \Psi(x, y, z, w), \forall x, y, z, w \in X \},
$$

where, as usual, inf $\emptyset = +\infty$. The proof of the fact that (Ω, d) is a complete generalized metric space can be found in [\[4\]](#page-10-3). Now we consider the mapping $\Lambda : \Omega \to \Omega$ defined by

$$
\Lambda u(x,y,z,w):=a^{-10\beta}u(a^\beta x,a^\beta y,a^\beta z,a^\beta w)
$$

for all $u \in \Omega$ and $x, y, z, w \in X$. Let $\varepsilon > 0$ and $f, g \in \Omega$ be such that $d(f, g) < \varepsilon$. Hence

$$
\| \Lambda f(x, y, z, w) - \Lambda g(x, y, z, w) \| = \| a^{-10\beta} f(a^{\beta} x, a^{\beta} y, a^{\beta} z, a^{\beta} w) - a^{-10\beta} g(a^{\beta} x, a^{\beta} y, a^{\beta} z, a^{\beta} w) \|
$$

$$
= |a^{-10\beta}| \| f(a^{\beta} x, a^{\beta} y, a^{\beta} z, a^{\beta} w) - g(a^{\beta} x, a^{\beta} y, a^{\beta} z, a^{\beta} w) \|
$$
(2.18)

$$
\leq |a^{-10\beta}| \Psi(a^{\beta} x, a^{\beta} y, a^{\beta} z, a^{\beta} w) \leq L \varepsilon \Psi(x, y, z, w)
$$

for all $x, y, z, w \in X$, that is, if $d(f, g) < \varepsilon$, we have $d(\Lambda f, \Lambda g) \leq L\varepsilon$. This means that $d(\Lambda f, \Lambda g) \leq$ Ldf, g for all $f, g \in \Omega$. This means that, Λ is a strictly contractive self-mapping on Ω with the Lipschitz constant L. It follows from [\(2.17\)](#page-6-1) that $d(\Lambda f, f) \leq 1$. Due to Theorem 1.2, there exists a unique mapping $D: X \times X \times X \times X \to Y$ such that D is a fixed point of Λ , i.e., $D(a^{\beta}x, a^{\beta}y, a^{\beta}z, a^{\beta}w) = a^{-10\beta}D(x, y, z, w)$ for all $x, y, z, w \in X$. Also, $d(\Lambda^n f, D) \to 0$ as $n \to \infty$, which implies the equality

$$
\lim_{n \to \infty} a^{-10\beta n} f(a^{\beta n} x, a^{\beta n} y, a^{\beta n} z, a^{\beta n} w) = D(x, y, z, w)
$$

for all $x, y, z, w \in X$. By Theorem 1.2, we have

$$
d(f, D) \le \frac{1}{1 - L} d(f, \Lambda f) \le \frac{1}{1 - L}.
$$

This implies that inequality [\(2.4\)](#page-4-0).

On the other hand by (2.3) , (2.4) , (2.5) , (2.6) and (2.7) , we have $||D(ax_1 + bx_2, y, z, w) + D(ax_1 - bx_2, y, z, w) - 2aD(x_1, y, z, w)||$

$$
= \lim_{n \to \infty} |a^{-10\beta n}| ||f(a^{\beta n}ax_1 + a^{\beta n}bx_2, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w)
$$
\n
$$
+ f(a^{\beta n}ax_1 - a^{\beta n}bx_2, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w) - 2af(a^{\beta n}x_1, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w)||
$$
\n
$$
\leq \lim_{n \to \infty} |a^{-10\beta n}| \psi_1(a^{\beta n}x_1, a^{\beta n}x_2, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w) = 0,
$$
\n
$$
||D(x, ay_1 + by_2, z, w) + D(x, ay_1 - by_2, z, w) - 2a^2D(x, y_1, z, w) - 2b^2D(x, y_2, z, w)||
$$
\n
$$
= \lim_{n \to \infty} |a^{-10\beta n}| ||f(a^{\beta n}x, a^{\beta n}ay_1 + a^{\beta n}by_2, a^{\beta n}z, a^{\beta n}w)
$$
\n
$$
+ f(a^{\beta n}x, a^{\beta n}ay_1 - a^{\beta n}by_2, a^{\beta n}z, a^{\beta n}w) - 2a^2f(a^{\beta n}x, a^{\beta n}y_1, a^{\beta n}z, a^{\beta n}w)
$$
\n
$$
- 2b^2f(a^{\beta n}x, a^{\beta n}y_2, a^{\beta n}z, a^{\beta n}w) ||
$$
\n
$$
\leq \lim_{n \to \infty} |a^{-10\beta n}| |\psi_2(a^{\beta n}x, a^{\beta n}y_1, a^{\beta n}y_2, a^{\beta n}z, a^{\beta n}w) = 0,
$$
\n
$$
||D(x, y, az_1 + bz_2, w) + D(x, y, az_1 - bz_2, w) - a^2b^2(D(x, y, z_1 + z_2, w)
$$
\n
$$
+ D(x, y, z_1 - z_2, w)) - 2a^2(a^2 - b^2)D(x, y, z_1, w) + 2b^2(a^2 - b^2)D(x, y, z_2,
$$

and

$$
||D(x, y, z, aw_1 + bw_2) + D(x, y, z, aw_1 - bw_2) - ab^2(D(x, y, z, w_1 + w_2) + D(x, y, z, w_1 - w_2)) - 2a(a^2 - b^2)D(x, y, z, w_1)||
$$

=
$$
\lim_{n \to \infty} |a^{-10\beta n}| ||f(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}aw_1 + a^{\beta n}bw_2)
$$

+
$$
f(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}aw_1 - a^{\beta n}bw_2) - ab^2(f(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w_1 + a^{\beta n}w_2)
$$

+
$$
f(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w_1 - a^{\beta n}w_2)) - 2a(a^2 - b^2)f(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w_1)||
$$

$$
\leq \lim_{n \to \infty} |a^{-10\beta n} |\psi_4(a^{\beta n}x, a^{\beta n}y, a^{\beta n}z, a^{\beta n}w_1, a^{\beta n}w_2) = 0
$$
 (2.22)

for all $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in X$. It follows from (2.19) , (2.20) , (2.21) and (2.22) that D satisfies [\(1.4\)](#page-3-1), that is, D is dectic mapping. Since D is the unique fixed point of Λ in the set $\Delta = \{g \in \Omega : d(f, g) < \infty\}, D$ is the unique mapping satisfying [\(1.4\)](#page-3-1). \Box

Remark 2.2. Let X be a normed space and let Y be a Banach space in Theorem 2.1. Using the fixed point method, one can show that there exists a unique dectic mapping $D: X \times X \times X \times X \rightarrow Y$ satisfying [\(1.4\)](#page-3-1) and

$$
||f(x, y, z, w) - D(x, y, z, w)|| \le \frac{1}{1 - L} \hat{\Psi}(x, y, z, w)
$$
\n(2.23)

for all $x, y, z, w \in X$ and

$$
\begin{split}\n\widehat{\Psi}(x, y, z, w) &:= |\frac{1}{2}| \{ |a^{-5\beta+4} | \psi_1(a^{\frac{\beta-1}{2}} x, 0, a^{\frac{\beta-1}{2}} y, a^{\frac{\beta-1}{2}} z, a^{\frac{\beta-1}{2}} w) \\
&+ |a^{-5\beta+2} | \psi_2(a^{\frac{\beta+1}{2}} x, a^{\frac{\beta-1}{2}} y, 0, a^{\frac{\beta-1}{2}} z, a^{\frac{\beta-1}{2}} w) \\
&+ |a^{-5\beta-2} | \psi_3(a^{\frac{\beta+1}{2}} x, a^{\frac{\beta+1}{2}} y, a^{\frac{\beta-1}{2}} z, 0, a^{\frac{\beta-1}{2}} w) \\
&+ |a^{-5\beta-5} | \psi_4(a^{\frac{\beta+1}{2}} x, a^{\frac{\beta+1}{2}} y, a^{\frac{\beta+1}{2}} z, a^{\frac{\beta-1}{2}} w, 0) \}\n\end{split}
$$
\n(2.24)

for all $x, y, z, w \in X$.

Theorem 2.3. Let X be a normed space and let Y be a Banach space in Theorem 2.1. Using the direct method, one can show that there exists a unique dectic mapping $D: X \times X \times X \times X \rightarrow Y$ satisfying [\(1.4\)](#page-3-1) and

$$
||f(x,y,z,w) - D(x,y,z,w)|| \leq \left|\frac{1}{2}\right| \left(|a^{-1}|\widehat{\psi_1}(x,0,y,z,w) + |a^{-3}|\widehat{\psi_2}(x,y,0,z,w) + |a^{-7}|\widehat{\psi_3}(x,y,z,0,w) + |a^{-10}|\widehat{\psi_4}(x,y,z,w,0)\right)
$$
\n(2.25)

for all $x, y, z, w \in X$, where we assume that

$$
\widehat{\psi}_1(x, 0, y, z, w) := \sum_{i=\frac{1-\beta}{2}}^{\infty} a^{-10\beta i} \psi_1(a^{\beta i}x, 0, a^{\beta i}y, a^{\beta i}z, a^{\beta i}w) < \infty,
$$

$$
\widehat{\psi}_2(x, y, 0, z, w) := \sum_{i=\frac{1-\beta}{2}}^{\infty} a^{-10\beta i} \psi_2(a^{1+\beta i}x, a^{\beta i}y, 0, a^{\beta i}z, a^{\beta i}w) < \infty,
$$

$$
\widehat{\psi}_3(x, y, z, 0, w) := \sum_{i=\frac{1-\beta}{2}}^{\infty} a^{-10\beta i} \psi_3(a^{1+\beta i}x, a^{1+\beta i}y, a^{\beta i}z, 0, a^{\beta i}w) < \infty,
$$

$$
\widehat{\psi}_4(x, y, z, w, 0) := \sum_{i=\frac{1-\beta}{2}}^{\infty} a^{-10\beta i} \psi_4(a^{1+\beta i}x, a^{1+\beta i}y, a^{1+\beta i}z, a^{\beta i}w, 0) < \infty.
$$

Corollary 2.4. Let $\beta \in \{-1,1\}$ be fixed and $\delta, \rho > 0$ be real numbers such that $10\beta > \rho\beta$, and let X be a normed space and Y a Banach space. If $f : X \times X \times X \times X \times Y$ is a mapping such that $f(x, 0, z, w) = f(x, y, 0, w) = 0$ for all $x, y, z, w \in X$, and

$$
\left\{ \begin{aligned} &\|f(ax_1+bx_2,y,z,w)+f(ax_1-bx_2,y,z,w)-2af(x_1,y,z,w)\| \\ &\leq \delta(\|x_1\|^{\rho}+\|x_2\|^{\rho}+\|y\|^{\rho}+\|z\|^{\rho}+\|w\|^{\rho}), \\ &\|f(x,ay_1+by_2,z,w)+f(x,ay_1-by_2,z,w)-2a^2f(x,y_1,z,w)-2b^2f(x,y_2,z,w)\| \\ &\leq \delta(\|x\|^{\rho}+\|y_1\|^{\rho}+\|y_2\|^{\rho}+\|z\|^{\rho}+\|w\|^{\rho}), \\ &\|f(x,y,az_1+bz_2,w)+f(x,y,az_1-bz_2,w)-a^2b^2(f(x,y,z_1+z_2,w)+f(x,y,z_1-z_2,w)) \\ &-2a^2(a^2-b^2)f(x,y,z_1,w)+2b^2(a^2-b^2)f(x,y,z_2,w)\| \\ &\leq \delta(\|x\|^{\rho}+\|y\|^{\rho}+\|z_1\|^{\rho}+\|z_2\|^{\rho}+\|w\|^{\rho}), \\ &\|f(x,y,z,aw_1+bw_2)+f(x,y,z,aw_1-bw_2)-ab^2(f(x,y,z,w_1+w_2)+f(x,y,z,w_1-w_2)), \\ &-2a(a^2-b^2)f(x,y,z,w_1)\| \leq \delta(\|x\|^{\rho}+\|y\|^{\rho}+\|z\|^{\rho}+\|w\|^{\rho}) +\|w_1\|^{\rho}+\|w_2\|^{\rho}), \end{aligned} \right.
$$

for all $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in X$, then there exists a unique dectic mapping $D: X \times$ $X \times X \times X \rightarrow Y$ satisfying [\(1.4\)](#page-3-1) and a constant $M > 0$ such that

$$
|| f(x, y, z, w) - D(x, y, z, w)|| \leq M(||x||^{\rho} + ||y||^{\rho} + ||z||^{\rho} + ||w||^{\rho})
$$

for all $x, y, z, w \in X$.

Proof . Let $\psi_1, \psi_2, \psi_3, \psi_4 : X \times X \times X \times X \times X \to [0, \infty)$ be defined by

$$
\psi_1(x_1, x_2, y, z, w) := \delta(||x_1||^{\rho} + ||x_2||^{\rho} + ||y||^{\rho} + ||z||^{\rho} + ||w||^{\rho}),
$$

$$
\psi_2(x, y_1, y_2, z, w) := \delta(||x||^{\rho} + ||y_1||^{\rho} + ||y_2||^{\rho} + ||z||^{\rho} + ||w||^{\rho}),
$$

$$
\psi_3(x, y, z_1, z_2, w) := \delta(||x||^{\rho} + ||y||^{\rho} + ||z_1||^{\rho} + ||z_2||^{\rho} + ||w||^{\rho}),
$$

$$
\psi_4(x, y, z, w_1, w_2) := \delta(||x||^{\rho} + ||y||^{\rho} + ||z||^{\rho} + ||w_1||^{\rho} + ||w_2||^{\rho})
$$

for all $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \in X$. Then the corollary is followed from Theorem 2.3, where

$$
M := \frac{\delta a^{5(1-\beta)}}{2\beta(a^{10}-|a|^\rho)} \max\{(a^9 + a^7|a|^\rho + a^3|a|^\rho + |a|^\rho), (a^9 + a^7 + a^3|a|^\rho + |a|^\rho), (a^9 + a^7 + a^3 + 1)\}.
$$

 \Box

Approximation in non-Archimedean normed spaces is better than the approximation in (Archimedean) normed spaces. The following example shows that the previous corollary is not valid in non-Archimedean spaces.

Example 2.5. Let $X = Y = \mathbb{Q}_p$ for prime number $p > 3$ and define $f: X \times X \times X \times X \rightarrow Y$ by $f(x, y, z, w) = xyzw$. Then for $\delta = 1$, $\rho = 1$ and $x, y, z, w, x_1, x_2, y_1, y_2, z_1, z_2, w_1, w_2 \neq 0$ with $|x|_p < 1, |y|_p < 1, |z|_p < 1, |w|_p < 1, we have$ $|f(2x_1+x_2, y, z, w) + f(2x_1-x_2, y, z, w) - 4f(x_1, y, z, w)|_p$ $= |0|_p = 0 \le |x_1|_p + |x_2|_p + |y|_p + |z|_p + |w|_p,$ $|f(x, 2y_1 + y_2, z, w) + f(x, 2y_1 - y_2, z, w) - 8f(x, y_1, z, w) - 2f(x, y_2, z, w)|_p$ $= |xzw|_p - 4y_1 - 2y_2|_p \le \max\{|x-y_1|_p, |y_2-y_2|_p\}$ \leq max $\{|y_1|_p, |y_2|_p\}$ $\leq |x|_p + |y_1|_p + |y_2|_p + |z|_p + |w|_p$ $|f(x, y, 2z_1 + z_2, w) + f(x, y, 2z_1 - z_2, w) - 4(f(x, y, z_1 + z_2, w) + f(x, y, z_1 - z_2, w))|$ $-2a^2(a^2-b^2)f(x, y, z_1, w) + 2b^2(a^2-b^2)f(x, y, z_2, w)|_p$ $= |xyw|_p - 24z_1 + 6z_2|_p \le \max\{|x_1 - 24z_1|_p, |6z_2|_p\}$ \leq max $\{|z_1|_p, |z_2|_p\} \leq |x|_p + |y|_p + |z_1|_p + |z_2|_p + |w|_p,$

and

$$
|f(x, y, z, 2w_1 + w_2) + f(x, y, z, 2w_1 - w_2) - 2(f(x, y, z, w_1 + w_2) + f(x, y, z, w_1 - w_2))
$$

$$
- 12f(x, y, z, w_1)|_p = |xyz|_p| - 12w_1|_p \le |w_1|_p
$$

$$
\le |x|_p + |y|_p + |z|_p + |w_1|_p + |w_2|_p.
$$

On the other hand for each natural number n, we have

$$
|2^{-10\beta(n+1)}f(2^{\beta(n+1)}x,2^{\beta(n+1)}y,2^{\beta(n+1)}z,2^{\beta(n+1)}w) - 2^{-10\beta n}f(2^{\beta n}x,2^{\beta n}y,2^{\beta n}z,2^{\beta n}w)|_p \leq |xyzw|_p.
$$

Hence, for each $x, y, z, w \neq 0$, the sequence $\{2^{-10\beta n} f(2^{\beta n}x, 2^{\beta n}y, 2^{\beta n}z, 2^{\beta n}w)\}$ is not convergent.

Acknowledgement: The authors would like to thank the referees for their comments and suggestions on the manuscript.

References

- [1] M. A. Abolfathi, A. Ebadian and R. Aghalary, Stability of mixed additive-quadratic Jensen type functional equation in non-Archimedean ℓ -fuzzy normed spaces, Annali Dell 'Universita 'Di Ferrara, 2013 16 pages (2013), doi: 10.1007/s11565-013-0182-z.
- [2] T. Aoki, On the stability of linear trasformation in Banach spaces, J. Math. Soc. Japan., 2 (1950) 64–66.
- [3] S. Czerwik, On the stability the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg., 62 (1992) 59–64.
- [4] L. Cădriu and V. Radu, On the stability of the Cuachy functional equation: a fixed point approach, Grazer Math. Ber., 346 (2004) 43–52.
- [5] P. W. Cholewa, Remarks on the stability of functional equations, Aequ. Math., 27 (1984) 76–86.
- [6] J. B. Diaz and B. Margolis, A fixed point theorem of the alternative for contractions on the generalized complete metric space, Bull. Amer. Math. Soc., 74 (1968) 305–309.
- [7] A. Ebadian, A. Najati and M. Eshaghi Gordji, On approximate additive-quartic and quadratic-cubic functional equations in two variables on Abelian groups, Results Math, 58 (2010) 39–53.
- [8] M. Eshaghi Gordji, R. Khodabakhsh, S. Jung and H. Khodaei, AQCQ-functional equation in non-Archimedean normed spaces, Abstr. Appl. Anal., 2010, Article ID 741942, (2010).
- [9] M. Eshaghi Gordji and M. Bavand Savadkouhi, Stability of a mixed type cubic and quartic functional equation in random normed space, J. Inequal. Appl., 2009, Article ID 527462, (2009).
- [10] M. Eshaghi Gordji, S. Kaboli-Gharetapeh, C. Park and S. Zolfaghari, Stability of an additive-cubic-quartic functional equation, Adv. Differ. Equ., 2009, Article ID 395693, (2009).
- $[11]$ P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of the approximately additive mappings, J. Math. Anal. Appl., 184 (1994) 431–436.
- [12] F. Q. Gouvêa, *p-Adic Numbers*, An Introduction, Universitext, Springer-Verlag, Berlin, 1997.
- [13] K. Hensel, *Uber eine neue Begundung der Theorie der algebraischen Zahlen*, Jahresber. Deutsch. Math. Verein, 6 (1897) 83–88.
- [14] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941) 222-224.
- [15] D. H. Hyers, G. Isac and Th. M. Rassias, Stability of Functional Equation in Several Variables, Birkhäuse, Basel, 1998.
- [16] G. Isac, Th. M. Rassias, Stability of ψ-additive mappings: applications to nonlinear analysis, Internat. J. Math. Math. Sci., 19 (1996) 219–228 .
- [17] K. Jun and H. Kim , The generalized Hyers-Ulam-Rassias stability of cubic functional equation, J. Math. Anal. Appl., 274 (2002) 867–878.
- [18] K. Jun, H. Kim and I. Chang, On the stability of Euler-Lagrange type cubic functional equation, J. Comput. Anal. Appl., 7 (2005) 21–73.
- [19] D. Kang, On the stability of gneralized quadratic mappings in quasi β-normed space, J. Inequal. Appl., 2010, Article ID 198098 (2010).
- [20] H. Khodaei and T. M. Rassias, Appiroximately generalized additive functions in several variables, Int. J. Nonlinear Anal. Appl., 1 (2010) 22-41.
- [21] A. Khrennikov, Non-Archimedean Analysis: Quantum Paradoxes, Dynamical Systems and Biological Models, Math. Appl., vol. 427, Kluwer Academic publisher Dordrecht, 1997.
- [22] S. Im. S. Lee and I. Hawng, Quartic functional equation, J. Math. Anal. Appl., 307 (2005) 387–394.
- [23] M. S. Moslehian and Th. M. Rassias, Stability of functional equations in non-Archimedean sapaces, Appl. Anal. Discrete Math., 1 (2007) 325–334.
- [24] C. Park, M. B. Ghaemi, H. Majani, M. Eshaghi Gordji and A. Najati, Fixed points and approximately heptic mappings in non-Archimedean normed spaces, Adv. Differ. Equ., 2013 doi: 10.1186/1687-1847-2013-209 10 page (2013).
- [25] C. Park, Fixed points and Hyers-Ulam stability of Cauchy-Jensen functional equations in Banach algebras, Fixed point Theory and Applications, 2007, Article ID 50175 (2007).
- [26] V. Radu, The fixed point alternative and the stability of functional equations, Fixed point Theory, 4 no1 (2003) 91–96.
- [27] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978) 297–300.
- [28] Th. M. Rassias, On the stability of functional equations and a problem of Ulam, Acta Appl. Math., 62 (1) (2000) 23–130.
- [29] A. M. Robert, A Course in p-Adic Analysis, Grad. Texts in Math., vol 198, Springer-Verlag, New York, 2000.
- [30] N. Shilkret, Non-Archimedian Banach algebras, Ph. D. thesis, Polytechnic University, 1968.
- [31] F. Skof, Properiet `a locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano., 53 (1983) 113–129.
- [32] S. M. Ulam, Problem in Modern Mathematics, Chapter VI, Science Editions, Wiley, New York, 1964.
- [33] V. S. Valdimirov, I. V. Volovich and E. I. Zelenov, p-Adic Analysis and mathematical Physics, Vol. 1 of Series on Soviet and East Eurpean Mathematics. Word Scientific, River Edge, NJ, USA, 1994.