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Abstract

In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation
of the form

f(2x+ y) + f(2x− y)− f(4x) = 2f(x+ y) + 2f(x− y)− 8f(2x) + 10f(x)− 2f(−x),

with x⊥y, where ⊥ is orthogonality in the sense of Ratz.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of S. M. Ulam ([12]) in 1940,
concerning the stability of group homomorphisms. D. H. Hyers [8] gave a partial affirmative answer
to the question of Ulam in the context of Banach spaces. In 1950, a generalized version of Hyers’
theorem for approximate additive mappings was given by T. Aoki [2]. In 1978, Th. M. Rassias [10]
extended the theorem of Hyers by considering the unbounded cauchy difference inequality

‖f(x+ y)− f(x)− f(y)‖ 6 ε(‖x‖p + ‖y‖p). (ε ≥ 0, p ∈ [0, 1))
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Stability problems for some functional equations have been extensively investigated by several au-
thors, and in particular one of the most important functional equation in this topic is

f(x+ y) + f(x− y) = 2f(x) + 2f(y),

which is studied by M. Adam [1], P. Gǎvruta [5], M. Eshaghi Gordji [4] and A. Najati [9].
Recently, many articles have been devoted to the study of the orthogonal stability of quadratic

functional equations of Pexider type on the restricted domain of orthogonal vectors in the sens of
Ratz.

We remind the definition of orthogonality space(see [10]). Let X be a real vector space with
dimX ≥ 2 and ⊥ is a binary relation on X with the following properties:

(a) totality of ⊥ for zero : x⊥0 , 0⊥x for all x ∈ X;
(b) independence : if x, y ∈ X − {0} , then x, y are linearly independent;
(c) homogeneity : if x, y ∈ X , x⊥y, then αx⊥βy for all α, β ∈ X;
(d) the Thalesian property : Let P be a 2- dimensional subspace of X. If x ∈ P and λ ∈ R+,

then there exists y0 ∈ P such that x⊥y0 and x+ y0⊥λx− y0.
The pair (X,⊥) is called an orthogonality space (in the sense of Ratz). By an orthogonality

normed space, we mean an orthogonality space equipped with a norm. Some examples of special
interest are

(i) The trivial orthogonality on a vector space X defined by (a), and for non-zero elements
x, y ∈ X, x⊥y if and only if x, y are linearly independent,

(ii) The ordinary orthogonality on an inner product space (X, (., .)) given by x⊥y if and only if
(x, y) = 0,

(iii) The Birkhoff- James orthogonality on a normed space (X, ‖.‖) defined by x⊥y if and only if
‖x+ y‖ ≥ ‖x‖ for all λ ∈ R.

The relation ⊥ is called symmetric if x⊥y implies that y⊥x for all x, y ∈ X. Clearly conditions
(i) and (ii) are symmetric but (iii) is not. It is remarkable to note, however, that a real normed
space of dimension greater than or equal to 3 is an inner product space if and only if the Birkhoff-
James orthogonality is symmetric.

The orthogonal Cauchy functional equation

f(x+ y) = f(x) + f(y), (x, y ∈ A, x⊥y) (1.1)

in which ⊥ is an abstract orthogonally was first investigated by S. Gudder and D. Strawther [7]. R.
Ger and J. Sikkorska discussed the orthogonal stability of the equation (1.1) in [6]. M. Arunkumar
and S. Hema Latha investigated the problem of the orthogonal stability, of a generalized quartic
functional equation

7[f(2x+ y) + f(2x− y)] = 28[f(x+ y) + f(x− y)]− 3[f(2y)− 2f(y)] + 14[f(2x)− 4f(x)],

in Banach spaces [3].
In this paper, we deal with the next functional equation deriving from cubic- additive functions:

f(2x+ y) + f(2x− y)− f(4x) = 2f(x+ y) + 2f(x− y)− 8f(2x) + 10f(x)− 2f(−x). (1.2)

It is easy to see that the function f(x) = ax3 + bx is a solution of the functional equation (1.2).
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2. Orthogonal stability of mixed type additive and cubic functional equation

Let (A,⊥) denote an orthogonality normed space with norm ‖.‖A and (B, ‖.‖B) be a Banach space.
We define

Df (x, y) = f(2x+ y) + f(2x− y)− f(4x)− 2f(x+ y)− 2f(x− y) + 8f(2x)− 10f(x) + 2f(−x),

for all x, y ∈ A, with x⊥y. In this section, we present the Hyers- Ulam- Aoki- Rassias stability of
the orthogonal functional equation (1.2).

Lemma 2.1. Let α and s(s < 1) be nonnegative real numbers and fo : A −→ B be an odd mapping
satisfying

‖Dfo(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}, (2.1)

for all x, y ∈ A, with x⊥y. Then there is a unique orthogonally cubic- additive mapping Á1 : A −→ B
such that

‖fo(2x)− 8fo(x)− Á1(x)‖B ≤
1

2− 2s
α‖x‖sA (2.2)

for all x ∈ A. The function Á1(x) is defined by

Á1(x) = lim
n→∞

α(2nx)

2n
, α(x) = fo(2x)− 8fo(x), (x ∈ A). (2.3)

Proof . In inequality (2.1), by letting (x, y) = (0, 0), we get fo(0) = 0. Replacing (x, y) by (x, 0) in
(2.1), we obtain

‖ − fo(4x) + 10fo(2x)− 16fo(x)‖B ≤ α‖x‖sA, (x ∈ A).

Hence
‖ − fo(4x) + 8fo(2x) + 2fo(2x)− 16fo(x)‖B ≤ α‖x‖sA, (2.4)

for all x ∈ A. By letting α(x) = fo(2x)− 8fo(x) in (2.4), we get

‖ 1

2
α(2x)− α(x) ‖B≤

α

2
‖ x ‖sA, (2.5)

for all x ∈ A. Now replacing x by 2x and dividing by 2 in (2.5) and using triangle inequality, we
arrive to

‖α(22x)

22
− α(x)‖B ≤

α

2
(1 + 2s−1)‖x‖sA,

for all x ∈ A. In general, using induction on a positive integer n , we obtain

‖ α(2nx)

2n
− α(x) ‖B≤

α

2

n−1∑
k=0

2k(s−1) ‖ x ‖sA

≤ α

2

∞∑
k=0

2k(s−1)‖x ‖sA, (2.6)
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for all x ∈ A. In order to prove the convergence of the sequence
{
α(2nx)

2n

}
, replace x by 2nx and

divide by 2m in (2.6), for any m,n > 0, we obtain

‖α(2m2nx)

2m2n
− α(2mx)

2m
‖B =

1

2m
‖α(2m2nx)

2n
− α(2mx)‖B

≤ α

2

n−1∑
k=0

2m(s−1)2k(s−1)‖x‖sA

=
α

2

n−1∑
k=0

2(s−1)(m+k)‖x‖sA, (2.7)

for all x ∈ A. As s < 1, right hand side of (2.7) tends to zero as m → ∞ for all x ∈ A. Thus{
α(2nx)

2n

}
is a Cauchy sequence. Since B is complete, there exists a mapping Á1 : A −→ B such that

Á1(x) = lim
n→∞

α(2nx)

2n
, (x ∈ A).

Letting n→∞ in (2.6), we arrive the formula (2.2), for all x ∈ A. To prove Á1 satisfies (1.2), replace
(x, y) by (2n+1x, 2n+1y) in (2.1) and divide by 2n, it follows that

1

2n
‖fo(2n+1(2x+ y)) + fo(2

n+1(2x− y))− fo(2n+1(4x)))− 2fo(2
n+1(x+ y))

− 2fo(2
n+1(x− y)) + 8fo(2

n+1(2x))− 10fo(2
n+1(x)) + 2fo(2

n+1(−x))‖

≤ 2s+12n(s−1){‖x‖sA + ‖y‖sA}, (2.8)

for all x ∈ A. Again replace (x, y) by (2nx, 2ny) in (2.3) and divide by 2n, it follows that

1

2n
‖fo(2n(2x+ y)) + fo(2

n(2x− y))− fo(2n(4x)))− 2fo(2
n(x+ y))

− 2fo(2
n(x− y)) + 8fo(2

n(2x))− 10fo(2
n(x)) + 2fo(2

n(−x))‖

≤ 2× 2n(s−1){‖x‖sA + ‖y‖sA}. (2.9)

By summing (2.8) and (2.9), also using triangle inequality and taking limit as n→∞, we get

Á1(2x+ y) + Á1(2x− y)− Á1(4x) = 2Á1(x+ y) + 2Á1(x− y)− 8Á1(2x) + 10Á1(x)− 2Á1(−x),

for all x, y ∈ A with x⊥y. Therefore, Á1 : A −→ B is an orthogonally cubic- additive mapping
which satisfying (1.2). To prove the uniqueness of Á1, let À1 be another orthogonally cubic- additive
mapping satisfying (1.2) and inquality (2.2). Then

‖Á1(x)− À1(x)‖ =
1

2n
‖Á1(2

nx)− À1(2
nx)‖

≤ 1

2n
(‖Á1(2

nx)− fo(2n+1x) + 2fo(2
nx)‖+ ‖fo(2n+1x)− 2fo(2

nx)− À1(2
nx)‖

≤ 2n(s−1)
2α

2− 2s
‖x‖sA,

which right hand side tends to zero as n −→∞, for all x ∈ A. �
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Lemma 2.2. Let α and s(s < 3) be nonnegative real number and fo : A −→ B be an odd mapping
satisfying

‖Dfo(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}, (2.10)

for all x, y ∈ A, with x⊥y. Then there is a unique orthogonally cubic- additive mapping Ć1 : A −→ B
such that

‖fo(2x)− 2fo(x)− Ć1(x)‖B ≤
1

8− 2s
α‖x‖sA, (2.11)

for all x ∈ A. The function Ć(x) is defined by

Ć(x) = lim
n→∞

β(2nx)

8n
, β(x) = fo(2x)− 2fo(x), (x ∈ A). (2.12)

Proof . By letting (x, y) = (0, 0) in (2.10), we get fo(0) = 0. Putting y = 0 in (2.10), we obtain

‖ − fo(4x) + 10fo(2x)− 16fo(x)‖B ≤ α‖x‖sA, (x ∈ A).

Hence
‖ − fo(4x) + 2fo(2x) + 8fo(2x)− 16fo(x)‖B ≤ α‖x‖sA, (2.13)

for all x ∈ A. By letting β(x) = fo(2x)− 2fo(x) in (2.13), we get

‖1

8
β(2x)− β(x)‖B ≤

α

8
‖x‖sA, (2.14)

for all x ∈ A. Now replacing x by 2x and dividing by 8 in (2.14) and using triangle inequality, we
arrive to

‖β(22x)

82
− β(2x)

8
‖B ≤

α

8
(1 + 2s−3)‖x‖sA,

for all x ∈ A. In general, using induction on a positive integer n, we obtain

‖ β(2nx)

8n
− β(x) ‖B≤

α

8

n−1∑
k=0

2k(s−3) ‖ x ‖sA

≤ α

8

∞∑
k=0

2k(s−3) ‖ x ‖sA, (2.15)

for all x ∈ A. Since
{
α(2nx)

2n

}
is a Cauchy sequence ( proof is similar to the proof of Lemma (2.1))

and B is complete, there exists a mapping Ć1 : A −→ B such that

Ć1(x) = lim
n→∞

β(2nx)

8n
, (x ∈ A).

Letting n → ∞ in (2.15), we arrive the formula (2.11). The proof of satisfying Ć1 in (1.2) (whit
x⊥y) and uniquness of Ć1, are similar to the proof of Lemma 2.1. �

Theorem 2.3. Let α and s(s < 1) be nonnegative real number and fo : A −→ B be an odd mapping
satisfying

‖Dfo(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA},
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for all x, y ∈ A, with x⊥y. Then there is a unique orthogonally cubic- additive mapping A1 : A −→ B
such that

‖ fo(x)− A1(x)‖B ≤
α

6
{ 1

2− 2s
+

1

8− 2s
} ‖ x ‖sA,

for all x ∈ A. The function A1 is defined by

A1(x) =
−1

6
Á1(x) +

1

6
Ć1(x), (x ∈ A).

Proof . By Lemmas 2.1 and 2.2, we have

‖fo(2x)− 8fo(x)− Á1(x)‖B ≤
1

2− 2s
α‖x‖sA, ‖fo(2x)− 2fo(x)− Ć1(x)‖B

≤ 1

8− 2s
α‖x‖sA,

for all x ∈ A. Thus, for all x in A, we have

‖fo(x) +
1

6
Á1(x)− 1

6
Ć1(x)‖B

= ‖{fo(2x)

6
− 8fo(x)

6
− Á1(x)

6
}+ {−fo(2x)

6
+

2fo(x)

6
+
Ć1(x)

6
}‖B

≤ 1

6
{‖fo(2x)− 8fo(x)− Á1(x)‖B + ‖fo(2x)− 2fo(x)− Ć1(x)‖B}

≤ α

6
{ 1

2− 2s
+

1

8− 2s
}‖x‖sA.

�

Lemma 2.4. Let fe : A −→ B be even real mapping satisfying (1.2) (whit x⊥y), so f = 0 on A.

Proof . In inequality (1.2), by letting (x, y) = (0, 0), we get fe(0) = 0. Letting x = 0 in (1.2), we
have

fe(0 + y) + fe(0− y)− fe(0) = 2fe(0 + y) + 2fe(0− y)− 8fe(0) + 10fe(0)− 2fe(0).

Hence, fe(y) = 0 for all y ∈ A. �

Lemma 2.5. Let α and s(s < 1) be nonnegative real number and fe : A −→ B be an even mapping
satisfying

‖Dfe(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}, (2.16)

for all x, y ∈ A, with x⊥y. Then

‖fe(y)‖B ≤
α

2

1 + 2s−1

1− 2s−1
‖y‖sA, (2.17)

for all y ∈ A.
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Proof . In inequality (2.16), by letting (x, y) = (0, 0), we get fe(0) = 0. Putting x = 0 in (2.16), we
obtain

‖ − 2fe(y)‖B = ‖2fe(y)‖ ≤ α‖y‖sA,
and, therefore

‖fe(y)‖B ≤
α

2
‖y‖sA, (2.18)

for all y ∈ A. Now, replacing y by 2y in (2.18), we get

‖fe(2y)‖B ≤ 2s−1α‖y‖sA, (2.19)

for all y ∈ A. From (2.18), (2.19) and using triangle inequality, we obtain

‖1

2
fe(2y)− fe(y)‖B ≤ ‖

1

2
fe(2y)‖B + ‖ − fe(y)‖B ≤

α

2
(1 + 2s−1)‖y‖sA, (2.20)

for all y ∈ A. Now replacing y by 2y and dividing by 2 in (2.20), we have

‖fe(2
2y)

22
− fe(y)‖B ≤

α

2
(1 + 2s−1)‖y‖sA, (x ∈ A) (2.21)

In general, using induction on a positive integer n, we obtain

‖fe(2
ny)

2n
− fe(y)‖B ≤

α

2
(2s−1 + 1)

n−1∑
k=0

2k(s−1)‖y‖sA

≤ α

2
(2s−1 + 1)

∞∑
k=0

2k(s−1)‖y‖sA, (2.22)

for all y ∈ A. Since
{
fe(2ny)

2n

}
is a Cauchy sequence(The proof is similar to that of Lemma (2.1)) and

B is complete, there exists a mapping Á2 : A −→ B such that

Á2(y) = lim
n→∞

fe(2
ny)

2n
, (y ∈ A).

Letting n→∞ in (2.22), we have

‖fe(y)− Á2(y)‖B ≤
α

2

1 + 2s−1

1− 2s−1
‖y‖sA, (y ∈ A).

The proof of satisfying Á2 in (1.2) (whit x⊥y), is similar to the proof of Lemma 2.1. Á2 is even
orthogonally cubic- additive mapping, by Lemma 2.4, Á2(x) = 0(x ∈ A), and this completes the
proof. �

Theorem 2.6. Let α and s(s < 1) be nonnegative real number and f : A −→ B be a mapping
satisfying

‖Df(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}, (2.23)

for all x, y ∈ A, with x⊥y. Then there is a unique orthogonally cubic- additive mapping A1 : A −→ B
such that

‖f(x)− A1(x)‖B ≤
α

2
{ 1

3(2− 2s)
+

1

3(8− 2s)
+

1 + 2s−1

2(1− 2s−1)
}‖x‖sA,

for all x ∈ A.
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Proof . We can see that f = fe + fo, where fe and fo are even and odd part of the f . Hence, by
(2.23), we have

‖fe(2x+ y) + fo(2x+ y) + fe(2x− y) + fo(2x− y)− fe(4x)

− fo(4x)− 2fe(x+ y)− 2fo(x+ y)− 2fe(x− y)

− 2fo(x− y) + 8fe(2x) + 8fo(2x)

− 10fe(x)− 10fo(x) + 2fe(−x) + 2fo(−x)‖
≤ α{‖x‖sA + ‖y‖sA}, (x, y ∈ A, x⊥y).

(2.24)

Replacing (x, y) by (−x,−y) in (2.24), and since fe(−x) = fe(x), fo(−x) = −fo(x), (x ∈ A), we have

‖fe(2x+ y)− fo(2x+ y) + fe(2x− y)− fo(2x− y)− fe(4x) + fo(4x)

− 2fe(x+ y) + 2fo(x+ y)− 2fe(x− y) + 2fo(x− y) + 8fe(2x)

− 8fo(2x)− 10fe(x) + 10fo(x) + 2fe(−x)− 2fo(−x)‖
≤ α{‖x‖sA + ‖y‖sA}, (x, y ∈ A, x⊥y).

(2.25)

Also, we have

‖ − fe(2x+ y) + fo(2x+ y)− fe(2x− y) + fo(2x− y)

+ fe(4x)− fo(4x) + 2fe(x+ y)− 2fo(x+ y) + 2fe(x− y)− 2fo(x− y)

− 8fe(2x) + 8fo(2x) + 10fe(x)− 10fo(x)− 2fe(−x) + 2fo(−x)‖
≤ α{‖x‖sA + ‖y‖sA}, (x, y ∈ A, x⊥y).

(2.26)

By summing (2.24) and (2.25), we arrive to

‖Dfe(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}, (x, y ∈ A, x⊥y)

and by summing (2.24) and (2.26), we obtain

‖Dfo(x, y)‖B ≤ α{‖x‖sA + ‖y‖sA}, (x, y ∈ A, x⊥y).

By Theorem 2.3 and Lemma 2.5, there exists a orthogonally cubic- additive mapping A1 : A → A,
such that

‖fo(x)− A1(x)‖B ≤
α

6
{ 1

2− 2s
+

1

8− 2s
}‖x‖sA,

‖fe(x)‖B ≤
α

2

1 + 2s−1

1− 2s−1
‖x‖sA,

for all x ∈ A. Therefore

‖f(x)− A1(x)‖B ≤
α

2
{ 1

3(2− 2s)
+

1

3(8− 2s)
+

1 + 2s−1

2(1− 2s−1)
}‖x‖sA, (x ∈ A)

and this completes the proof. �
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