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Abstract

In this paper, sufficient conditions are investigated for the existence of periodic (not necessarily pos-
itive) solutions for nonlinear several time delay population system with feedback control. Nonlinear
system affected by an periodic external source is studied. Existence of a control variable provides
the extension of some previous results obtained in other studies. We give a illustrative example in
order to indicate the validity of the assumptions.
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1. Introduction and preliminaries

The analysis of periodic systems has long been a topic of interest. In particular, in the last few
years the problem of the existence of periodic solutions for the nonlinear delay differential equations
has received considerable attention (see, for example [10, 17, 11, 5, 6, 7, 3]). In this direction, an
important question, which has been studied extensively by a number or authors is whether nonlinear
equations can support periodic solutions or not. For example, in theoretical aspects, knowledge of
periodic solutions is important for understanding the phase portrait of the nonlinear equations and
specially the qualitative behavior of solutions (see, for example [13, 12, 4, 15, 8]). On the applied side,
in the problem of periodic optimization, arising for instance in design of solar heating systems where
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the ambient temperature represents a periodic input, there occurs the need to compute the periodic
solutions of a differential equation with periodic coefficients. As a matter of fact, the idea of running
processes in a periodic way is not at all a new one. Many applications can be found in literature,
particularly in the field of chemical engineering and mathematical biology. Indeed, the performance
of many processes, even of industrial size, can be considerably improved by the implementation of a
periodic control [1]. An important class of nonlinear equations can be represented by the following
nonlinear delay population equation:

dx

dt
= x(t)[ρ(x)− a(x)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)], (1.1)

where α, βi > 0, and ρ, a, bi, (i = 1, 2, . . . , n) are continuous functions. Eq. (1.1) may be regarded as
a nonlinear prototypical model for variation of the population of an organism, when there is density
dependent growth which depends not only on the population at time t, but also on the population
at previous times. Considering the biological and environment periodicity it is reasonable to study
system with periodic coefficients. Thus, ρ, a, bi, (i = 1, 2, . . . , n) are continuous T -periodic functions.

On the other hand, in some situation, one may wish to alter the position of x(t), but to keep its
stability. This is of significance in the control procedure of ecology balance. One of the techniques
to achieve this aim is to alter system (1.1) structurally by introducing ”indirect” control variables.
In this regards, Eq. (1.1) can be extended to the following nonlinear delay population equation with
control variable:

dx

dt
= x(t)[ρ(x)− a(x)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)− c(t)u(t)], (1.2)

du

dt
= −η(t)u(t) +

n∑
i=1

g(t)xβi(t− σi), (1.3)

where α, βi > 0, a, bi, g, c, ρ and η, (i = 1, 2, . . . , n) are continuous, T -periodic functions with∫ T
0
η 6= 0 and

∫ T
0
ρ 6= 0. During the last decade, many scholars has paid their attention to Eq. (1.2)

and to other nonlinear population equations as special cases of (1.2) (see, for instance [16, 10] and
the references therein). In this paper, we deal with system (1.2). In the light of above discussion, it
seems reasonable to consider (1.2) and asks when this system has a periodic solution. In addition,
one may take into account the nonlinear system (1.2) while the time variation of the population
density, namely, dx/dt is directly affected by an periodic external source, denoted by S(t). In such
a case, the population system (1.2) should be recast in the following form

dx

dt
= x(t)[ρ(x)− a(x)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)− c(t)u(t)]− S(t) (1.4)

du

dt
= −η(t)u(t) +

n∑
i=1

g(t)xβi(t− σi), (1.5)

where S(t) is continuous, periodic function.
The rest of this paper is organized as follows. In section 2, we give certain conditions to guarantee

the existence of at least one periodic solution for (1.2). The proof hinges on methods for finding
Green’s function and Schauder’s fixed point theorem applied to integral operator (2.3) which is a
reformulation of (2.2). In addition, the existence problem of periodic solutions of system (1.2) is
equivalent to that of periodic solutions of (2.2). In section 3, we deal with the nonlinear population
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system with source. Similarly, proof is based on Schauders fixed point theorem, applied to integral
equation (3.4) which is a reformulation of (3.1).

Theorem 1.1. (Schauder [2]) Let X be a Banach space and Λ be a closed, bounded and convex
subset of X. If Γ : Λ 7→ Λ is a compact operator, then Γ has at least one fixed point on Λ.

Besides, we also invoke the following weak version of Arzela-Ascoli theorem [9].

Theorem 1.2. (Arzela-Ascoli) Let {ξn(t)} be a sequence of real functions on [0, T ] which is uni-
formly bounded and equicontinuous. Then {ξn(t)} has a uniformly convergent subsequence.

2. Main results

In this section, we shall study the existence of periodic solutions of system (1.2). To do this, we
transform this system of couple equations into one integral equation. In this way, we introduce the
following integral operator Ξ on the Banach space (CT , ‖.‖),

Ξ : CT → CT ,

(Ξx)(t) =

∫ T

0

G(t, s){
n∑
i=1

g(s)xβi(s− σi)}ds, (2.1)

where, CT = {ξ | ξ is a continuous T-perodic function on R } and for ξ ∈ CT we define ‖ξ‖ =
supt∈[0,T ] |ξ(t)|. Clearly, (CT , ‖.‖)is a Banach space. The kernel of the integral operator (2.1) is
given by:

G(t, s) =


exp(

∫ T
0 η(θ)dθ)

exp(
∫ T
0 η(θ)dθ)−1

exp(
∫ s
t
η(θ)dθ) 0 ≤ s ≤ t ≤ T,

1

exp(
∫ T
0 η(θ)dθ)−1

exp(
∫ s
t
η(θ)dθ) 0 ≤ t ≤ s ≤ T,

where
∫ T
0
η 6= 0. The following lemma is useful for introducing the integral operator (2.3).

Lemma 2.1. Let g and η are belong to CT as well as
∫ T
0
η 6= 0. Suppose that u is a continuous real

function such that for some ξ ∈ CT , Ξ ξ = u. Then u is a T -periodic solution of the second equation
in (1.2).

Proof . By assumption,

u = (Ξ ξ)(t) =

∫ T

0

G(t, s){
n∑
i=1

g(s)ξβi(s− σi)}ds

=

∫ t

0

G(t, s){
n∑
i=1

g(s)ξβi(s− σi)}ds+

∫ T

t

G(t, s){
n∑
i=1

g(s)ξβi(s− σi)}ds

=
exp(

∫ T
0
η(θ)dθ)

exp(
∫ T
0
η(θ)dθ)− 1

∫ t

0

exp(

∫ s

t

η(θ)dθ){
n∑
i=1

g(s)ξβi(s− σi)}ds

+
1

exp(
∫ T
0
η(θ)dθ)− 1

∫ T

t

exp(

∫ s

t

η(θ)dθ){
n∑
i=1

g(s)ξβi(s− σi)}ds
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and so

u =
exp(

∫ T
0
η(θ)dθ) exp(−

∫ t
0
η(θ)dθ)

exp(
∫ T
0
η(θ)dθ)− 1

∫ t

0

exp(

∫ s

0

η(θ)dθ){
n∑
i=1

g(s)ξβi(s− σi)}ds

+
exp(−

∫ t
0
η(θ)dθ)

exp(
∫ T
0
η(θ)dθ)− 1

∫ T

t

exp(

∫ s

0

η(θ)dθ){
n∑
i=1

g(s)ξβi(s− σi)}ds.

So, we obtains

du

dt
=
−η(t) exp(

∫ T
0
η(θ)dθ) exp(−

∫ t
0
η(θ)dθ)

exp(
∫ T
0
η(θ)dθ)− 1

∫ t

0

exp(

∫ s

0

η(θ)dθ){
n∑
i=1

g(s)ξβi(s− σi)}ds

+
exp(

∫ T
0
η(θ)dθ)

exp(
∫ T
0
η(θ)dθ)− 1

{
n∑
i=1

g(t)ξβi(t− σi)}

+
−η(t) exp(−

∫ t
0
η(θ)dθ)

exp(
∫ T
0
η(θ)dθ)− 1

∫ T

t

exp(

∫ s

0

η(θ)dθ){
n∑
i=1

g(s)ξβi(s− σi)}ds

− 1

exp(
∫ T
0
η(θ)dθ)− 1

{
n∑
i=1

g(t)ξβi(t− σi)}

= −η(t)u(t) +
n∑
i=1

g(t)ξβi(t− σi).

Which shows that u is a solution of the second equation in (1.2) with x = ξ. Clearly, u is a continuous
T -periodic function.

Note that G(t, s) is, in fact, the Green’s function of the second equation in (1.2). Therefore, by
using methods for Green’s function, we may find the kernel of the integral operator (2.1). However,
our approach is different, but for going through the details of finding Greens function we refer the
reader to [14].

According to Lemma 2.1, it may be deduced that existence problem of T -periodic solution of the
system (1.2) is equivalent to that of T -periodic solution of the following equation

dx

dt
= x(t)[ρ(t)− a(t)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)− c(t)(Ξx)(t)]. (2.2)

We introduce the following integral operator on CT ,

(Γx)(t) =

∫ T

0

H(t, s)x(s){a(s)xα(s) +
n∑
i=1

bi(s)x
βi(s− σi) + c(s)(Ξx)(s)}ds, (2.3)

where, the kernel is given by

H(t, s) =


1

exp(
∫ T
0 ρ(θ)dθ)−1

exp(−
∫ s
t
ρ(θ)dθ) 0 ≤ s ≤ t ≤ T,

∫ T
0 ρ(θ)dθ)

exp(
∫ T
0 ρ(θ)dθ)−1

exp(−
∫ s
t
ρ(θ)dθ) 0 ≤ t ≤ s ≤ T.

�

Now, similar to the proof of Lemma 2.1 we can consider the following lemma.
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Lemma 2.2. Let a, bi, g, µ, ρ, η, c are belong to CT as well as
∫ T
0
ρ 6= 0. Suppose that x is

a continuous T -periodic function, then (Γx)(t) is T -periodic function and satisfies the following
differential equation:

(Γx)′(t) = x(t)[ρ(t)− a(t)xα(t)−
n∑
i=1

bi(t)x
βi(t− σi)− c(t)(Ξx)(t)]. (2.4)

Corollary 2.3. Let a, bi, g, µ, ρ, η, c are belong to CT as well as
∫ T
0
ρ 6= 0. Suppose that x is a

continuous T -periodic function and x ∈ CT be a fixed point of the operator Γ, i.e., Γx = x, then x is
a T -periodic solution of equation (2.2).

Lemma 2.2 and Corollary 2.3 are useful for proving the following main theorem. We set,
Q = supt∈[0,T ] |G(s, t)|, K = supt∈[0,T ] |H(s, t)|,
W = supt∈[0,T ]{|a(t)|+

∑n
i=1 |bi(t)|+ nTQ|c(t)| |g(t)|},

M(A) = max{Aα, Aβ1 , . . . , Aβn}, A ∈ R.

Theorem 2.4. Let BR be the closed sphere in CT and let∫ T

0

{|a(s)|+
n∑
i=1

|bi(s)|+ n|c(s)|
∫ T

0

|G(θ, s)g(θ)|dθ}ds ≤ 1

KM(R)
. (2.5)

Then, the integral operator Γ, is defined by (2.3), maps BR into BR and has at least one fixed point.

Proof . First, we indicate that Γ maps BR into BR. To do this, let ξ be an arbitrary periodic
function belong to BR. For any z ∈ {α, β1, . . . , βn} we have,

‖ξ‖z ≤ Rz ≤M(R),

therefore,

|(Γξ)(t)| = |
∫ T

0

H(t, s)x(s){a(s)xα(s) +
n∑
i=1

bi(s)x
βi(s− σi) + c(s)(Ξx)(s)}ds|

≤
∫ T

0

|H(t, s)|‖x(s)‖{|a(s)|‖x(s)‖α +
n∑
i=1

|bi(s)|‖x‖βi

+ |c(s)|
∫ T

0

|G(θ, s)|{
n∑
i=1

|g(θ)|‖x‖βi}dθ}ds

≤
∫ T

0

|H(t, s)|R {|a(s)|Rα +
n∑
i=1

|bi(s)|Rβi + |c(s)|
∫ T

0

|G(θ, s)|{
n∑
i=1

|g(θ)|Rβi}dθ}ds

≤ RKM(R)

∫ T

0

{|a(s)|+
n∑
i=1

|bi(s)|+ |c(s)|
∫ T

0

|G(θ, s)|{
n∑
i=1

|g(θ)|}dθ}ds

≤ R.

Thus (Γξ)(t) is belong to BR. Since ξ is an arbitrary periodic function belong to BR, the integral
operator Γ maps BR into BR. In the sequel, we show that Γ is a compact operator on the Banach
space CT . To do this, suppose that {ξm} is an arbitrary sequences on BR, that is bounded and for all
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m ∈ N and t ∈ [0, T ], we have |ξm(t)| ≤ R. According to Lemma 2.2, for any m ∈ N and t ∈ [0, T ],
we have

(Γξm)′(t) = ξm(t)[ρ(t)− a(t)ξαm(t)−
n∑
i=1

bi(t)ξ
βi
m (t− σi)− c(t)(Ξξm)(t)].

Therefore,

|(Γξm)′(t)|

≤ |ξm(t)|[|ρ(t)|+ |a(t)ξαm(t)|+
n∑
i=1

|bi(t)ξβim (t− σi)|+ |c(t)(Ξξm)(t)|]

≤ R [|ρ(t)|+ M(R){|a(t)|+
n∑
i=1

|bi(t)|+ n|c(t)|
∫ T

0

|G(θ, t)g(θ)|dθ}]

≤ R [‖ρ‖+ M(R){‖a‖+
n∑
i=1

‖bi‖+ nTQ‖c‖‖g‖}]

≤ R [‖ρ‖+ M(R)W ].

Thus, for any t, s ∈ [0, T ], one obtains

|(Γξm)(t)− (Γξm)(s)| ≤ R [‖ρ‖+ M(R)W ]|t− s|.

In this way, for given ε > 0, if we consider δ = ε
R [‖ρ‖+M(R)W ]

, then

|(Γξm)(t)− (Γξm)(s)| ≤ ε for all m ∈ N and |t− s| ≤ δ.

Thus, {(Fξm)(t)} as a sequence of functions on [0, ω] is equicontinuous. Therefore, based on Arzela-
Ascoli theorem there exist a subsequent of {(Fξm)(t)}, denoted by {(Fξmi

)(t)}, which is uniformly
convergence on [0, T ]. This means that {(Fξmi

)(t)} is convergent on BR and consequently, Γ is a
compact bounded operator. Therefore, Theorem 1.1 implies that the integral operator Γ has at least
a fixed point on BR, in which, by Corollary 2.3, is a T -periodic solution of the equation (2.2) or,
equivalently, T -periodic solution of the nonlinear population system (1.2). This completes the proof
of theorem. �

3. Nonlinear population system with source

In such a case, the population system (1.2) transforms into the system (1.4). With due attention
to the population source term, namely S(t) in (1.4), Eq. (2.2) and the operator defined in 2.3 are
converted into the following forms, respectively:

dx

dt
= x(t)[ρ(t)− a(t)xα(t)−

n∑
i=1

bi(t)x
βi(t− σi)− c(t)(Ξx)(t)]− S(t), (3.1)

and
(ΓSx)(t) = (Γx)(t) + SH(t). (3.2)

Wherein, SH(t) =
∫ T
0
H(t, θ)S(θ)dθ.
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Theorem 3.1. Let
Λ = B(SH , ‖SH‖) = {ξ ∈ CT : ‖ξ − SH‖ ≤ ‖SH‖},

be the close sphere of radius ‖SH‖ with center SH in CT .
Suppose that∫ T

0

{|a(s)|+
n∑
i=1

|bi(s)|+ n|c(s)|
∫ T

0

|G(θ, s)g(θ)|dθ}ds ≤ 1

2KM(2‖SH‖)
. (3.3)

Then, the integral operator ΓS maps Λ into Λ and has at least one fixed point.

Proof . Let ξ ∈ Λ, then

|ξ(t)− SH(t)| ≤ ‖SH‖ for any t ∈ [0.T ],

thus
‖ξ(t)‖ ≤ 2‖SH‖.

This shows that, for any z ∈ {α, β1, . . . , βn} and all ξ ∈ Λ we have,

‖ξ‖z ≤ (2‖SH‖)z ≤M(2‖SH‖).
Consequently, for arbitrary ξ ∈ Λ, as proceed in the proof of Theorem 2.4, we obtain

|(ΓSx)(t)− SH(t)| = |(Γx)(t)|

≤ 2‖SH‖KM(2‖SH‖)
∫ T

0

{|a(s)|+
n∑
i=1

|bi(s)|

+ n|c(s)|
∫ T

0

|G(θ, s)g(θ)|dθ}ds

≤ ‖SH‖.

Therefore, the operator ΓS maps Λ into Λ. Compactness of the ΓS , with due attention to the
following inequality

|(ΓSξm)′(t)| ≤ 2 ‖SH‖[‖ρ‖+ M(2‖SH‖)W ] + ‖S‖,

is proofed similar to the Theorem 2.4. Therefore, Theorem 1.1 implies that the integral operator
ΓS has at least a fixed point on B(SH , ‖SH‖). Consequently, system (1.4) has at least a T -periodic
solution on B(SH , ‖SH‖), since fixed points of the integral operator ΓS are the T -periodic solutions
of system equation (1.4). This completes the proof of theorem. �

4. Illustrative example

Consider the following system of neutral population dynamics with delay and feedback control

dN

dt
= N(t)[

10− sin(2πt)

2 + cos(2πt)
− sin(4πt)− cos(4πt)

36− 4 sin(4πt)− cos(2πt)
N

1
3 (t)− 1− 2 sin(4πt)

32 + sin(2πt)− cos(2πt)
N

5
3 (t− σ1)

− 1 + 2 cos(4πt)

32 + sin(2πt)− cos(2πt)
N4(t− σ2)−

cos(8πt)

104− 7 sin(2πt) + cos(2πt)
u(t)]

du

dt
= (
−4− sin(2πt) + 2 cos(2πt)

10 + 2 sin(2πt)− 3 cos(2πt)
)u(t) +

sin(8πt)

28− cos(8πt)
(N

5
3 (t− σ1) +N4(t− σ2)),
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which is an example of nonlinear population dynamics system (1.2) with

Q = sup
t∈[0,T ]

|G(s, t)| = 3.1329, K = sup
t∈[0,T ]

|H(s, t)| = 1.0031, ρ(t) =
10− sin(2πt)

2 + cos(2πt)
,

G(t, s) =


3.1329 exp(

∫ s
t
η(θ)dθ) 0 ≤ s ≤ t ≤ T,

2.1329 exp(
∫ s
t
η(θ)dθ) 0 ≤ t ≤ s ≤ T,

η(t) =
4 + sin(2πt)− 2 cos(2πt)

10 + 2 sin(2πt)− 3 cos(2πt)
,

H(t, s) =


0.0031 exp(

∫ t
s
ρ(θ)dθ) 0 ≤ s ≤ t ≤ T,

1.0031 exp(
∫ t
s
ρ(θ)dθ) 0 ≤ t ≤ s ≤ T,

n = 2, T = 1, R = 1,

M(R) = 1, ‖SH‖ = 0.0017, M(2‖SH‖) = 0.1518,

a(t) =
sin(4πt)− cos(4πt)

36− 4 sin(4πt)− cos(2πt)
, c(t) =

cos(8πt)

104− 7 sin(2πt) + cos(2πt)
,

g(t) =
sin(8πt)

28− cos(8πt)
, S(t) =

1− sin(2πt)

2 + sin(4πt)
,

b1(t) =
1− 2 sin(4πt)

32 + sin(2πt)− cos(2πt)
, b2(t) =

1 + 2 cos(4πt)

32 + sin(2πt)− cos(2πt)
,

α =
1

3
, β1 =

5

3
, β2 = 4.

With due attention to the data above, we have∫ T

0

{|a(s)|+
n∑
i=1

|bi(s)|+ n|c(s)|
∫ T

0

|G(θ, s)g(θ)|dθ}ds

≤
∫ T

0

{|a(s)|+
n∑
i=1

|bi(s)|+ nTQ|c(s)|
∫ T

0

|g(θ)|dθ}ds

= 0.1137 ≤ 1

KM(R)
= 0.9969.

Also, for the system with external source, S(t) = 1−sin(2πt)
2+sin(4πt)

, we have

∫ T

0

{|a(s)|+
n∑
i=1

|bi(s)|+ nTQ|c(s)|
∫ T

0

|g(θ)|dθ}ds = 0.1137 ≤ 1

2KM(2‖SH‖)
= 3.2836.

Therefore, the Inequality 2.5 in Theorem 2.4 and Inequality 3.3 for the nonlinear system with source
in Theorem 3.1 are valid for our examples.
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