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Abstract

We provide necessary and sufficient conditions for Ψ-conditional asymptotic stability of the solution
of a linear matrix Lyapunov system and sufficient conditions for Ψ-conditional asymptotic stability
of the solution of a first order non-linear matrix Lyapunov system X ′ = A(t)X +XB(t) + F (t,X).
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1. Introduction

The importance of matrix Lyapunov systems, which arise in a number of areas of control engineering
problems, dynamical systems, and feedback systems are well known. In this paper, we focus our
attention to study of Ψ-conditional asymptotic stability of solutions of the first order non-linear
matrix Lyapunov system

X ′ = A(t)X +XB(t) + F (t,X) (1.1)

as a perturbed system of

X ′ = A(t)X +XB(t), (1.2)

where A(t), B(t) are square matrices of order ‘n’, whose elements are real valued continuous functions
of ‘t’ on the interval R+ = [0,∞) and F (t,X) is a continuous square matrix of order ‘n’ on R+×Rn×n,
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such that F (t, O) = O (zero matrix), where Rn×n denotes the space of all n×n real valued matrices.
The continuity of A,B and F ensures the existence of a solution of (1.1).

Akinyele [1] introduced the notion of Ψ-stability and this concept extended to solutions of ordinary
differential equations by Constantin [3]. Later Marchalo [10] introduced the concept of Ψ-(uniform)
stability, Ψ-asymptotic stability of trivial solutions of linear and non-linear system of differential
equations. The study of conditional asymptotic stability of differential equations was motivated by
Coppel [4]. Further, the concept of Ψ-conditional asymptotic stability to non-linear Volterra integro-
differential equations were studied by Diamandescu [5]. Recently, Murty and Suresh Kumar [[11],
[12],[13]] extended the concept of Ψ-boundedness, Ψ-stability and Ψ-instability to Kronecker product
matrix Lyapunov system associated with first order matrix Lyapunov systems.

The purpose of this paper is to provide sufficient conditions for Ψ-conditional asymptotic stability
of (1.1). We investigate conditions on the two fundamental matrices of

X ′ = AX, (1.3)

X ′ = BTX (1.4)

and F (t,X) under which the solution of (1.1) or (1.2) are Ψ-conditionally asymptotically stable on
R+. Here, Ψ is a continuous matrix function. The introduction of the matrix function Ψ permits to
obtain a mixed asymptotic behavior of the solutions.

This paper is well organized as follows. In section 2, we present some basic definitions, notations,
lemmas and properties relating to Kronecker product of matrices and Ψ-conditionally asymptotically
stability, which are useful for later discussion. In Section 3, we obtain necessary and sufficient
conditions for Ψ-conditionally asymptotic stability of solutions of linear matrix Lyapunov system
(1.2). The results of this section illustrated with suitable examples. In section 4, we obtain sufficient
conditions for the Ψ-conditional asymptotic stability of (1.1).

This paper extends some of the results of Diamandescu [5] to matrix Lyapunov systems. The
main tool used in this paper is Kronecker product of matrices.

2. Priliminaries

In this section we present some basic definitions, notations and results which are useful for later
discussion.

Let Rn be the Euclidean n-dimensional space. Elements in this space are column vectors, denoted
by u = (u1, u2, u3, . . . , un)T (T denotes transpose) and their norm defined by

‖u‖ = max{|u1|, |u2|, |u3|, . . . , |un|}.

For A = [aij] ∈ Rn×n, we define the norm |A| = sup‖u‖≤1 ‖Au‖. It is well-known that

|A| = max
1≤i≤n

{
n∑

j=1

|aij|}.

On denote the zero matrix of order n× n and 0n is the zero vector of order n.

Definition 2.1. [8] Let A ∈ Rm×n and B ∈ Rp×q then the Kronecker product of A and B written
A⊗B is defined to be the partitioned matrix

A⊗B =


a11B a12B . . . a1nB
a21B a22B . . . a2nB
. . . . . .

am1B am2B . . . amnB


is an mp× nq matrix and is in Rmp×nq.
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Definition 2.2. [8] Let A = [aij] ∈ Rm×n, then the vectorization operator V ec : Rm×n → Rmn,
defined and denote by

Â = V ecA =


A.1

A.2

.

.
A.n

 , where A.j =


a1j
a2j
.
.
amj

 (1 ≤ j ≤ n) .

Lemma 2.3. [6] The vectorization operator V ec : Rn×n → Rn2
, is a linear and one-to-one operator.

In addition, V ec and V ec−1 are continuous operators.

Regarding properties and rules for vectorization operator and Kronecker product of matrices we refer
to [8].

Let Ψk : R+ → (0,∞), k = 1, 2, . . . n, be continuous functions, and let

Ψ = diag[Ψ1,Ψ2, . . . ,Ψn].

Then the matrix Ψ(t) is an invertible square matrix of order n, for all t ∈ R+.

Definition 2.4. [5] A function φ : R+ → Rn is said to be Ψ- bounded on R+ if Ψ(t)φ(t) is bounded
on R+.

Extend this definition for matrix functions.

Definition 2.5. [6] A matrix function F : R+ → Rn×n is said to be Ψ bounded on R+ if the matrix
function ΨF is bounded on R+(
i.e., sup

t≥0
|Ψ(t)F (t)| <∞

)
.

Definition 2.6. [5] The solution of the vector differential equation x′ = f(t, x) (where x ∈ Rn and
f is a continuous n vector function) is said to be Ψ-stable on R+, if for every ε > 0 and any t0 ∈ R+,
there exists a δ = δ(ε, t0) > 0 such that any solution x̃ of x′ = f(t, x), which satisfies the inequality
‖Ψ(t0)(x̃(t0) − x(t0))‖ < δ(ε, t0) exists and satisfies the inequality ‖Ψ(t)(x̃(t) − x(t))‖ < ε, for all
t ≥ t0. Otherwise, is said that the solution x(t) is Ψ-unstable on R+.

Extend this definition for matrix differential equations.

Definition 2.7. The solution of the matrix differential equation X ′ = F (t,X) (where X ∈ Rn×n

and F is a continuous n×n matrix function) is said to be Ψ-stable on R+, if for every ε > 0 and any
t0 ∈ R+, there exists a δ = δ(ε, t0) > 0 such that any solution X̃ of X ′ = F (t,X), which satisfies the
inequality ‖Ψ(t0)(X̃(t0)−X(t0))‖ < δ(ε, t0) exists and satisfies the inequality ‖Ψ(t)(X̃(t)−X(t))‖ < ε,
for all t ≥ t0. Otherwise, is said that the solution X(t) is Ψ-unstable on R+.

Definition 2.8. [5] The solution of the vector differential equation x′ = f(t, x) is said to be Ψ-
conditionally stable on R+ if it is not Ψ-stable on R+ but there exists a sequence {xm(t)} of solutions
of x′ = f(t, x) defined for all t ≥ 0 such that

lim
m→∞

Ψ(t)xm(t) = Ψ(t)x(t), uniformly on R+.

If the sequence {xm(t)} can be chosen so that

lim
t→∞

Ψ(t) (xm(t)− x(t)) = 0n, for m = 1, 2, 3, . . . ,

then x(t) is said to be Ψ-conditionally asymptotically stable on R+.



10 Suresh Kumar, Appa Rao and Murthy

We can easily extend this definition for matrix differential equations.

Definition 2.9. The solution of the matrix differential equation X ′ = F (t,X) is said to be Ψ-
conditionally stable on R+ if it is not Ψ-stable on R+ but there exists a sequence {Xm(t)} of solutions
of X ′ = F (t,X) defined for all t ≥ 0 such that

lim
m→∞

Ψ(t)Xm(t) = Ψ(t)X(t), uniformly onR+.

If the matrix sequence {Xm(t)} can be chosen so that

lim
t→∞

Ψ(t) (Xm(t)−X(t)) = On, for m = 1, 2, 3, . . . ,

then X(t) is said to be Ψ-conditionally asymptotically stable on R+.

Remark 2.10. It is easy to see that if |Ψ(t)| and |Ψ−1(t)| are bounded on R+, then the Ψ-stability,
Ψ-bounded and Ψ-conditionally asymptotically stability implies classical stability, boundedness and
conditional asymptotic stability.

The following lemmas play a vital role in the proof of main result.

Lemma 2.11. [? ] For any matrix function F ∈ Rn×n, we have

1

n
|Ψ(t)F (t)| ≤ ‖(In ⊗Ψ(t))F̂ (t)‖ ≤ |Ψ(t)F (t)|, for all, t ∈ R+.

Lemma 2.12. [7] The matrix function X(t) is a solution of (1.1) on the interval J ⊂ R+ if and

only if the vector valued function X̂(t) = V ecX(t) is a solution of the differential system

X̂ ′(t) = (BT ⊗ In + In ⊗ A)X̂(t) +G(t, X̂(t)), (2.1)

where G(t, X̂) = V ecF (t,X), on the same interval J .

Definition 2.13. [7] The above system (2.1) is called the corresponding Kronecker product system
associated with (1.1).

The linear system corresponding to (2.1) is

X̂ ′(t) = (BT ⊗ In + In ⊗ A)X̂(t). (2.2)

Lemma 2.14. The solution of the system (1.1) is Ψ-unbounded on R+ if and only if the solution of
the corresponding Kronecker product system (2.1) is In ⊗Ψ-unbounded on R+.

Proof . It is easily seen from Lemma 5 of [6] and Lemma 2.12. �

Lemma 2.15. The solution of the system (1.1) is Ψ-unstable on R+ if and only if the corresponding
Kronecker product system (2.1) is In ⊗Ψ-unstable on R+.

Proof . It is easily seen from Lemma 7 of [7]. �

Lemma 2.16. The solution of the system (1.1) is Ψ-conditionally asymptotically stable on R+ if
and only if the corresponding Kronecker product system (2.1) is In ⊗Ψ-conditionally asymptotically
stable on R+.
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Proof . Suppose that the solution of the system (1.1) is Ψ-conditionally asymptotically stable on
R+. From Definition 2.9, we have that the solution X(t) of (1.1) is Ψ-unstable and there exists a
sequence of solutions Xn(t) of (1.1) on R+ such that

lim
m→∞

Ψ(t)Xm(t) = Ψ(t)X(t), uniformly on R+ (2.3)

and

lim
t→∞

Ψ(t) (Xm(t)−X(t)) = On, for m = 1, 2, 3, · · · . (2.4)

Since X(t) is a Ψ-unstable solution of (1.1), from Lemmas 2.12 and 2.15, we have that X̂(t) is
In ⊗ Ψ-unstable solution of (2.1) on R+. Now applying vectorization(Vec) operator to (2.3) and
(2.4), we have

lim
m→∞

(In ⊗Ψ(t)) X̂m(t) = (In ⊗Ψ(t))X̂(t), uniformly on R+ (2.5)

and

lim
t→∞

(In ⊗Ψ(t))
(
X̂m(t)− X̂(t)

)
= 0n2 , for m = 1, 2, 3, · · · . (2.6)

From Definition 2.8, X̂(t) is In ⊗Ψ-conditionally asymptotically stable on R+.
Conversely suppose that, the solution of (2.1) is In ⊗ Ψ-conditionally asymptotically stable on

R+. From Definition 2.8, we have that the solution X̂(t) of (2.1) is In ⊗Ψ-unstable and there exists

a sequence of solutions X̂m(t) of (2.1) on R+, which satisfies (2.5) and (2.6). Since X̂(t) is a In⊗Ψ-

unstable solution of (2.1), again from Lemmas 2.12 and 2.15, we have that X(t) = V ec−1X̂(t) is a
Ψ-unstable solution of (1.1) on R+. By applying Vec−1 operator to (2.5) and (2.6), we have that the

sequence of solutions Xm(t)=Vec−1X̂m(t) of (1.1) satisfying (2.3) and (2.4). Thus, from Definition 2.9
the solution X(t) of (1.1) is Ψ-conditionally asymptotically stable on R+. �

Lemma 2.17. Let Y (t) and Z(t) be the fundamental matrices for the systems (1.3) and (1.4) re-
spectively. Then the matrix Z(t)⊗ Y (t) is a fundamental matrix of (2.2).

Proof . It is easily seen from Lemma 2.4 of [13]. �

Theorem 2.18. Let A(t), B(t) and F (t,X) be continuous matrix functions on R+. If Y (t), Z(t)
are the fundamental matrices for the systems (1.3), (1.4) respectively and P1, P2 are non-zero sup-
plementary projections, then

X̂(t) =

t∫
0

(Z(t)⊗ Y (t))P1(Z
−1(s)⊗ Y −1(s))G(s, X̂(s))ds

+

∞∫
t

(Z(t)⊗ Y (t))P2(Z
−1(s)⊗ Y −1(s))G(s, X̂(s))ds (2.7)

is a solution of (2.1) on R+.

Proof . It is easily seen that X̂(t) is the solution of (2.1) on R+. �
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3. Linear Matrix Lyapunov Systems

In this section, we prove necessary and sufficient conditions for the Ψ-conditional asymptotic
stability of the linear matrix Lyapunov system (1.2). The results of this section are illustrated with
suitable examples.

Theorem 3.1. The linear matrix Lyapunov system (1.2) is Ψ-conditionally asymptotically stable on
R+ if and only if it has a Ψ-unbounded solution and a non-trivial solution W (t) such that

lim
t→∞

(In ⊗Ψ(t))Ŵ (t) = 0n2 . (3.1)

Proof . Suppose that the solution of linear matrix Lyapunov system (1.2) is Ψ-conditionally asymp-
totically stable on R+. From Lemmas 2.12 and 2.16 with F = On, it follows that the solution of
(2.2) is In ⊗ Ψ-conditionally asymptotically stable on R+. From Theorem 3.1 of [5], we have that

the linear system (2.2) has an In ⊗Ψ-unbounded solution and a non-trivial solution Ŵ (t) such that
(3.1) satisfied. Since (2.2) has a In ⊗ Ψ-unboubed solution and from Lemmas 2.12 and 2.14, the

linear system (1.2) has a Ψ-unbounded solution. Since Ŵ (t) is a non-trivial solution of (2.2), then

W (t)=Vec−1Ŵ (t) is the corresponding non-trivial solution of (1.2).
Conversely suppose that (1.2) has at least one Ψ-unbounded solution on R+ and at least one

non-trivial solution W (t) exists and satisfies (3.1). From Lemma 2.14 and Theorem 3.1 of [5], it

follows that the solution Ŵ (t) of (2.2) is In ⊗ Ψ-conditionally asymptotically stable on R+. Again
from Lemmas 2.12 and 2.16, it follows that the solution of (1.2) is Ψ-conditionally asymptotically
stable on R+. �

Example 3.2. Consider the linear matrix Lyapunov matrix system (1.2) with

A =

(
1

t+1
0

0 − 1
t+1

)
and B =

(
1 0
0 −2

)
.

Then the fundamental matrices of (1.3) and (1.4) are

Y (t) =

(
t+ 1 0

0 1
t+1

)
and Z(t) =

(
et 0
0 e−2t

)
Let Ψ(t) =

(
et 0
0 e−t

)
. Clearly,

X(t) =

(
(t+ 1)et (t+ 1)e−2t

et

t+1
e−2t

t+1

)
is a solution of (1.2) and |Ψ(t)X(t)| = (t+ 1)e2t, t ≥ 0. Therefore, X(t) is a Ψ-unbounded solution

of (1.2). Let W (t) =

(
0 (t+ 1)e−2t
et

t+1
e−2t

t+1

)
. Clearly, W (t) is a non-trivial solution of (1.2) and

(I2 ⊗Ψ(t))Ŵ (t) =


0
1

t+1

(t+ 1)e−t
e−3t

t+1

 .

Also, limt→∞(I2 ⊗ Ψ(t))Ŵ (t) = 04. From Theorem (3.1), the linear system (1.2) is Ψ-conditionally
asymptotically stable on R+.

The conditions for Ψ-conditional asymptotic stability of (1.2) can be expressed in terms of fun-
damental matrices of (1.3) and (1.4) in the following theorems.
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Theorem 3.3. Let Y (t) and Z(t) be the fundamental matrices of (2.4) and (2.5). Then the linear
matrix Lyapunov system (1.2) is Ψ-conditionally asymptotically stable on R+ if and only if the
following conditions are satisfied;

(i) there exists a projection P1, such that (Z(t)⊗Ψ(t)Y (t))P1 is unbounded on R+.

(ii) there exists a projection P2 6= On2 such that

lim
t→∞

(Z(t)⊗Ψ(t)Y (t))P2 = On2 .

Proof . Suppose that the linear system (1.2) is Ψ-conditional asymptotic stable on R+. From
Lemmas 2.12 and 2.16 with F = On, the Kronecker product system (2.2) is In ⊗ Ψ-conditionally
asymptotically stable on R+. From Lemma 2.17 and Theorem 3.2 of [5], it follows that the funda-
mental matrix S(t) = Z(t)⊗ Y (t) of (2.2) satisfies the following conditions;

1. there exists a projection P1 such that (In ⊗Ψ(t))S(t)P1 is unbounded on R+.
2. there exists a projection P2 6= On2 such that

lim
t→∞

(In ⊗Ψ(t))S(t)P2 = On2 .

Substitute S(t) = Z(t) ⊗ Y (t) in (1) and (2) and simplifying with the use of Kronecker product
properties, we have that the fundamental matrices of (1.3) and (1.4) satisfies conditions (i) and (ii).

Conversely suppose that, the fundamental matrices of (1.3) and (1.4) satisfies the conditions
(i) and (ii). From Theorem 3.2 of [5], Lemma 2.12 and properties of Kronecker products, the
corresponding Kronecker product system (2.2) is In ⊗Ψ-conditionally asymptotically stable on R+.
Again from Lemmas 2.12 and 2.16, the linear system (1.2) is Ψ-conditionally asymptotically stable
on R+. �

Example 3.4. In Example 3.2, taking

Ψ(t) =

(
e−t 0
0 et

)
.

There exists two non-zero projections

P1 =

(
I2 O2

O2 O2

)
and P2 =

(
O2 O2

O2 I2

)
such that

(Z(t)⊗Ψ(t)Y (t))P1 =


t+ 1 0 0 0

0 e2t

t+1
0 0

0 0 0 0
0 0 0 0


and

(Z(t)⊗Ψ(t)Y (t))P2 =


0 0 0 0
0 0 0 0
0 0 e−3t(t+ 1) 0
0 0 0 e−t

t+1


Clearly, (Z(t)⊗Ψ(t)Y (t))P1 is unbounded on R+ and
(Z(t) ⊗ Ψ(t)Y (t))P2 → O4 as t → ∞. Therefore, from Theorem 3.3 the system (1.2) is Ψ-
conditionally asymptotically stable on R+.
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A sufficient condition for Ψ-conditional asymptotically stability is given by the following theorem.

Theorem 3.5. If there exist two supplementary projections P1, P2

(Pi 6= On2, i=1, 2) and a positive constant L such that the fundamental matrices Y (t) and Z(t) of
(1.3) and (1.4) satisfies the condition∫ t

0

|(Z(t)⊗Ψ(t)Y (t))P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|ds

+

∫ ∞
t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|ds ≤ L (3.2)

for all t ≥ 0, then, the linear equation (1.2) is Ψ-conditionally asymptotically stable on R+.

Proof . From Theorem 3.2, Theorem 3.1 and Lemma 2.2 of [12], we have that the conditions in
Theorem 3.3 are satisfied. Therefore, the Kronecker product system (2.2) is In ⊗ Ψ-conditionally
asymptotically stable on R+. From Lemmas 2.12 and 2.16 with F = On, the linear system (1.2) is
Ψ-conditionally asymptotically stable on R+. �

Example 3.6. Consider the linear matrix Lyapunov system (1.2) with A = I2 and B = −I2, then
the fundamental matrices of (1.3) and (1.4) are Y (t) = etI2 and Z(t) = e−tI2. Let

Ψ(t) =

(
et

t+1
0

0 e−t

)
, P1 =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

 and P2 =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 .

Now

|(Z(t)⊗Ψ(t)Y (t))P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))| = es−t

and

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s)Ψ−1(s))| =

(
s+ 1

t+ 1

)
et−s.

Therefore, the condition (3.2) satisfied with L = 2. Thus, from Theorem 3.5, the linear system (1.2)
is Ψ-conditionally asymptotically stable on R+.

4. Non-Linear Matrix Lyapunov Systems

In this section, we prove sufficient conditions for the Ψ-conditional asymptotic stability of the
non-linear matrix Lyapunov system (1.1).

Theorem 4.1. Suppose that:

1. There exist supplementary projections P1, P2 (Pi 6= On2, i=1, 2) and a constant L > 0 such
that the fundamental matrices Y (t), Z(t) of (1.3), (1.4) satisfies the condition (3.2).

2. The function F (t,X) satisfies the inequality

|Ψ(t) (F (t,X(t))− F (t, Y (t))) | ≤ ξ(t)|Ψ(t) (X(t)− Y (t)) |,
for t ≥ 0 and for all continuous and Ψ-bounded matrix functions X, Y : R+ → Rn×n, where
ξ(t) is a continuous nonnegative bounded function on R+ such that

|ξ(t)| ≤M, for all t ≥ 0,

where M is a positive constant.
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3. p = nML < 1.

Then, all Ψ-bounded solutions of (1.1) are Ψ-conditionally asymptotically stable on R+.

Proof . Let X(t) be the solution of (1.1) with X(t0) = X0, then by Lemma 2.12, X̂(t) is the unique

solution of Kronecker product system (2.1) with X̂(t0) = X̂0.
We put

S =
{
X̂ : R+ → Rn2

: X̂ is continuus and In ⊗Ψ− bounded on R+

}
.

Define a norm on the set S by

‖X̂‖S = sup
t≥0
‖(In ⊗Ψ(t))X̂(t)‖.

It is well-known that (S, ‖.‖S) is a Banach space. For X̂ ∈ S, we define

(TX̂)(t) =

∫ t

0

(Z(t)⊗ Y (t))P1(Z
−1(s)⊗ Y −1(s))G(s, X̂(s))ds

−
∫ ∞
t

(Z(t)⊗ Y (t))P2(Z
−1(s)⊗ Y −1(s))G(s, X̂(s))ds, ∀t ≥ 0.

From Lemma 2.11 and hypothesis (2), it follows that

‖(In ⊗Ψ(t))G(t, X̂)‖ = ‖(In ⊗Ψ(t))F̂ (t,X)‖

≤ |Ψ(t)F (t,X)| ≤ ξ(t)|Ψ(t)X(t)|

≤ nM‖(In ⊗Ψ(t))X̂(t)‖, ∀t ∈ R+ and X̂ ∈ Rn2

.

For 0 ≤ t ≤ v, we have

‖
v∫

t

(Z(t)⊗ Y (t))P2(Z
−1(s)⊗ Y −1(s))G(s, X̂(s))ds‖

≤ |In ⊗Ψ−1(t)|
v∫

t

‖(In ⊗Ψ(t))(Z(t)⊗ Y (t))P2(Z
−1(s)⊗ Y −1(s))

(In ⊗Ψ−1(s))(In ⊗Ψ(s))G(s, X̂(s))‖ds

≤ |Ψ−1(t)|
∫ v

t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|

‖(In ⊗Ψ(s))G(s, X̂(s))‖ds

≤ nM |Ψ−1(t)|
∫ v

t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|

‖(In ⊗Ψ(s))X̂(s)‖ds
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≤ pL−1|Ψ−1(t)| sup
t≥0
‖(In ⊗Ψ(t))X̂(t)‖

∫ v

t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|ds.

From the hypothesis (1), the integral∫ ∞
t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|ds

is convergent. Thus, the operator (TX̂)(t) exists and is continuous for t ≥ 0. For X̂ ∈ S and t ≥ 0,
we have

‖(In ⊗Ψ(t))(TX̂)(t)‖

≤ ‖
∫ t

0

(In ⊗Ψ(t))(Z(t)⊗ Y (t))P1(Z
−1(s)⊗ Y −1(s))

(In ⊗Ψ−1(s))(In ⊗Ψ(s))G(s, X̂(s))ds‖

+‖
∫ ∞
t

(In ⊗Ψ(t))(Z(t)⊗ Y (t))P2(Z
−1(s)⊗ Y −1(s))

(In ⊗Ψ−1(s))(In ⊗Ψ(s))G(s, X̂(s))ds‖

≤
∫ t

0

|(Z(t)⊗Ψ(t)Y (t))P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|

‖(In ⊗Ψ(s))G(s, X̂(s))‖ds

+

∫ ∞
t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s))Ψ−1(s))|

‖(In ⊗Ψ(s))G(s, X̂(s))‖ds

≤ nM

∫ t

0

|(Z(t)⊗Ψ(t)Y (t))P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|

‖(In ⊗Ψ(s))X̂(s)‖ds

+nM

∫ ∞
t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s))Ψ−1(s))|

‖(In ⊗Ψ(s))X̂(s)‖ds

≤ p sup
t≥0
‖(In ⊗Ψ(t))X̂(t)‖.

Therefore,

‖TX̂‖S ≤ p‖X̂‖S.
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Thus, TS ⊆ S. On the other hand, for Û , V̂ ∈ S and t ≥ 0, we have

‖(In ⊗Ψ(t))[(T Û)(t)− (T V̂ )(t)]‖

≤
∫ t

0

|(Z(t)⊗Ψ(t)Y (t))P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|

‖(In ⊗Ψ(s))[G(s, Û(s))−G(s, V̂ (s))]‖ds

+

∫ ∞
t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s))Ψ−1(s))|

‖(In ⊗Ψ(s))[G(s, Û(s))−G(s, V̂ (s))]‖ds

≤ nM

∫ t

0

|(Z(t)⊗Ψ(t)Y (t))P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|

‖(In ⊗Ψ(s))[Û(s)− V̂ (s)]‖ds

+nM

∫ ∞
t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s))Ψ−1(s))|

‖(In ⊗Ψ(s))[Û(s)− V̂ (s)]‖ds

≤ nM

(
sup
t≥0
‖(In ⊗Ψ(t))[Û(t)− V̂ (t)]‖

){∫ t

0

|(Z(t)⊗Ψ(t)Y (t))P1

(Z−1(s)⊗ Y −1(s)Ψ−1(s))|ds

+

∫ ∞
t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s))Ψ−1(s))|ds

}
≤ p sup

t≥0
‖(In ⊗Ψ(t))[Û(t)− V̂ (t)]‖.

It follows that

sup
t≥0
‖(In ⊗Ψ(t))[(T Û)(t)− (T V̂ )(t)]‖ ≤ p sup

t≥0
‖(In ⊗Ψ(t))[Û(t)− V̂ (t)]‖.

Thus, we have

‖T Û − T V̂ ‖S ≤ p‖Û − V̂ ‖S.

Therefore, T is a contraction mapping on (S, ‖.‖S). Now , for any function Ŵ ∈ S, we define an

operator SŴ : S→ S, by the relation SŴ X̂(t) = Ŵ (t) + (TX̂)(t), ∀ t ∈ R+. By Banach contraction

principle SŴ has fixed point in S. Therefore, for any Ŵ ∈ S, the integral equation

X̂ = Ŵ + TX̂ (4.1)

has a unique solution X̂ ∈ S. Furthermore, by the definition of T , X̂(t)− Ŵ (t) is differentiable and(
X̂(t)− Ŵ (t)

)′
= (BT (t)⊗ In + In ⊗ A(t))

(
X̂(t)− Ŵ (t)

)
+G(t, X̂(t)).
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From (4.1), if Ŵ (t) is a In ⊗ Ψ-bounded solution of (2.2) if and only if X̂(t) is a In ⊗ Ψ-bounded
solution of (2.1). Thus, (4.1) establishes a one-to-one correspondence between the In ⊗ Ψ-bounded
solutions of (2.1) and (2.2). Now, we consider analogous equation

X̂0 = Ŵ0 + TX̂0.

We get

(1− p)‖X̂ − X̂0‖S ≤ ‖Ŵ − Ŵ0‖S. (4.2)

Now, we prove that, if X̂, Ŵ ∈ S are In ⊗ Ψ-bounded solutions of (2.1) and (2.2) respectively such
that they satisfy (4.1), then

lim
t→∞
‖(In ⊗Ψ(t))

(
X̂(t)− Ŵ (t)

)
‖ = 0. (4.3)

For a given ε > 0, we can choose t1 ≥ 0 such that

p‖X̂‖S <
ε

2
, for t ≥ t1.

Moreover, since limt→∞ |(In ⊗Ψ(t))(Z(t)⊗ Y (t))P1| = 0, there exists a number t2 ≥ t1 such that

pL−1|(Z(t)⊗Ψ(t)Y (t))P1|‖X̂‖S
∫ t1

0

|P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|ds < ε

2
, t ≥ t2.

For t ≥ t2, we have

‖(In ⊗Ψ(t))
(
X̂(t)− Ŵ (t)

)
‖ = ‖(In ⊗Ψ(t))(TX̂)(t)‖

≤
∫ t

0

|(Z(t)⊗Ψ(t)Y (t))P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|

‖(In ⊗Ψ(s))G(s, X̂(s))‖ds

+

∫ ∞
t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s))Ψ−1(s))|

‖(In ⊗Ψ(s))G(s, X̂(s))‖ds

≤ nM

∫ t

0

|(Z(t)⊗Ψ(t)Y (t))P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|

‖(In ⊗Ψ(s))X̂(s)‖ds

+nM

∫ ∞
t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s))Ψ−1(s))|

‖(In ⊗Ψ(s))X̂(s)‖ds

≤ pL−1|(Z(t)⊗Ψ(t)Y (t))P1|‖X̂‖S
∫ t1

0

|P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|ds
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+nM‖X̂‖S
∫ t

t1

|(Z(t)⊗Ψ(t)Y (t))P1(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|ds

+nM‖X̂‖S
∫ ∞
t

|(Z(t)⊗Ψ(t)Y (t))P2(Z
−1(s)⊗ Y −1(s)Ψ−1(s))|ds

≤ ε

2
+ nML‖X̂‖S <

ε

2
+
ε

2
= ε.

Now, we prove that, if X̂(t) is a In ⊗Ψ-bounded solution of (2.1), then it is In ⊗Ψ-unstable on R+.

Suppose that X̂(t) is In⊗Ψ-stable on R+. From Definition 2.6, for every ε > 0 and any t0 ∈ R+,
there exists a δ = δ(ε, t0) > 0 such that any solution X̃(t) of (2.1), which satisfies the inequality

‖(In⊗Ψ(t0))(X̃(t0)−X̂(t0))‖ < δ(ε, t0) exists and satisfies the inequality ‖(In⊗Ψ(t))(X̃(t)−X̂(t))‖ <
ε, for all t ≥ t0.

Let u0 ∈ Rn2
be such that P1u0 = 0n2 and |(In ⊗ Ψ(0))u0| < δ(ε, 0) and let X̃(t) be the solution

of (2.1) with the initial condition X̃(0) = X̂(0) +u0. Then ‖(In⊗Ψ(t))u(t)‖ < ε, for all t ≥ 0, where

u(t) = X̃(t)− X̂(t).
Now consider the function w(t) = u(t)− Tu(t), t ≥ 0. Clearly, w(t) is a In⊗Ψ-bounded solution

of (2.2) on R+. Without loss of generality, we can suppose that Z(0)⊗ Y (0) = In2 . It is easy to see
that P1w(0) = 0n2 . If P2w(0) 6= 0n2 , then from Lemma 2.3 of [12], we have

lim sup
t→∞

‖(In ⊗Ψ(t))(Z(t)⊗ Y (t))P2w(0)‖ = lim sup
t→∞

‖(In ⊗Ψ(t))w(t)‖ =∞,

which is contradiction to w(t) is In ⊗Ψ-bounded on R+. Thus, P2w(0) = 0n2 and hence w(t) = 0n2 ,
for t ≥ 0. It follows that u = Tu and u = 0n2 (T is linear), which is a contradiction. Thus the

solution X̂(t) is In ⊗Ψ-unstable on R+.

Let Ŵ = X̂ − TX̂. From Theorem 3.5 and Definition 2.8, there exists a sequence {Ŵm} of
solutions of (2.2) on R+ such that

lim
m→∞

(In ⊗Ψ(t))Ŵm(t) = (In ⊗Ψ(t))Ŵ (t), uniformly onR+

and

lim
t→∞

(In ⊗Ψ(t))
(
Ŵm(t)− Ŵ (t)

)
= 0n2 , for m = 1, 2, 3, · · · .

Let X̂m = Ŵm + TX̂m. From (4.2), it follows that the sequence {X̂m} of solutions of (2.1) on R+

such that

lim
m→∞

(In ⊗Ψ(t))X̂m(t) = (In ⊗Ψ(t))X̂(t), uniformly onR+.

Therefore, the solution X̂(t) of (2.1) is In ⊗Ψ-conditionally stable on R+. From (4.3) and(
X̂m(t)− X̂(t)

)
=
(
X̂m(t)− Ŵm(t)

)
+
(
Ŵm(t)− Ŵ (t)

)
+
(
Ŵ (t)− X̂(t)

)
.

It follows that

lim
t→∞

(In ⊗Ψ(t))
(
X̂m(t)− X̂(t)

)
= 0n2 , for m = 1, 2, 3, · · · .

Thus, the solution X̂(t) of (2.1) is In⊗Ψ-conditionally asymptotically stable on R+. From Lemma 2.16,

the solution X(t) = V ec−1X̂(t) of (1.1) is Ψ-conditionally asymptotically stable on R+. Hence the
system (1.1) is Ψ-conditionally asymptotically stable on R+. �



20 Suresh Kumar, Appa Rao and Murthy

Example 4.2. Consider the non-linear matrix Lyapunov system (1.1) with

A(t) =

(
1 0
0 −1

t+1

)
, B(t) =

(
et(t−1)
t(et+1)

0
0 −1

)
and

F (t,X) =
1

t+ 5

(
sinx1(t) x2(t)
x3(t) sin x4(t)

)
.

The fundamental matrices of (1.3) and (1.4) are

Y (t) =

(
et 0
0 1

t+1

)
and Z(t) =

(
et

t+1
0

0 e−t

)
.

Let

Ψ(t) =

(
e−t 0
0 t+ 1

)
.

Then there exit two projections

P1 =

(
O2 O2

O2 I2

)
and P2 =

(
I2 O2

O2 O2

)
such that the fundamental matrices Y (t) and Z(t) of (1.3) and (1.4) satifies (3.2) with L = 2.

On the otherhand, condition (ii) of Theorem 4.1 is satisfied with ξ(t) = 1
t+5

, for t ≥ 0 and

M = 1
5
. Also, p = nML = 2

(
1
5

)
2 = 4

5
< 1. Therefore, the non-linear system (1.1) is Ψ-conditionally

asymptotically stable on R+.
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