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Abstract

In this article, we apply two new fixed point theorems to investigate the existence of mild solutions
for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.
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1. Introduction

The study of abstract nonlocal semi linear initial value problems was originated by Byszewsk [4, 5, 6]
and subsequently, many authors have tracked his work. Although, fractional calculus is a topic
being more than 300 years old, yet it can be considered as a novel topic, for example see [1, 7, 8].
In particular, the theory of fractional evolution equations is one of the developing branches of this
study. Moreover, fractional evolution equations, in some cases, have better effects in applications than
traditional ones [14]. Therefore, there have been many published papers in this topic. For example,
Jardat et al. [15] investigated the existence and uniqueness of mild solution for the semilinear initial
value problem of non-integer order{

Dαu(t) = Au(t) + f(t, u(t), Gu(t), Su(t)), t ∈ (0, T ],
u(0) = u0,
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where A is the generator of a strongly continuous semigroup and Dαu(t) denotes the Caputo’s
fractional derivative of u(t). Muslim [21] studied the existence and approximation of solutions to
following fractional evolution equations in a Banach space.{

dβu(t)
dtβ

+ Au(t) = f(t, u(t)), t > t0, α ∈ (0, 1],
u(t0) = u0,

where A is a closed linear operator defined on a dense set and dβu(t)
dtβ

denotes the derivative of u, in the
Caputo sense and 0 < β ≤ 1. Chen et al. [7] investigated the existence of saturated mild solutions
and global mild solutions for the initial value problem{

Dα
∗ u(t) + Au(t) = f(t, u(t)), t ≥ 0, α ∈ [0, 1],

u(0) = u0,

where A is a closed linear operator and Dα
∗ u(t) is the Caputo’s fractional derivative of order α. Z.W.

Lv et al. [18] studied the existence of solutions to the nonlocal Cauchy problem for the following
fractional differential equation {

Dα
∗ x(t) = f(t, x(t)), t ∈ [0, 1],

x(0) =
∫ 1

0
g(s)x(s)ds,

where Dα
∗ is the standard Caputo’s derivative of order 0 < α ≤ 1. For more study on existence and

uniqueness of different types of mild solutions to the fractional evolution equations, we may refer to
[8, 12, 20, 22, 25] and the references therein.

Moreover, nonlocal initial conditions are more realistic than usual ones in treating physical prob-
lems [4] and nonlocal Cauchy problem with integral initial condition is rarely considered in the
literature. In addition, in most of the existed articles, Schauder’s, Krasnoselskii’s or Darbo’s fixed
point theorems have been employed to obtain the solution of Cauchy problems under some restrictive
conditions. While in this article, we apply two new fixed point theorems to investigate the existence
of mild solutions to the following nonlocal fractional Cauchy problem with integral initial condition
in Banach spaces. {

Dα
∗ u(t) = Au(t) + f(t, u(t)), t ∈ J = [0, 1],

u(0) =
∫ 1

0
g(s, u(s))ds,

(1.1)

where A is generator of a strongly continuous semigroup {T (t); t ≥ 0} in Banach space E and
f, g : J × E → E are given functions satisfying some assumptions that will be specified later.

This paper is organized as follows. In section 2, we present some necessary definitions and
preliminary results that will be used to prove our main results. Then we study the existence of mild
solutions for evolution equation (1.1), in section 3.

2. Preliminaries

In this section, we present some definitions and auxiliary results which will be needed in the sequel.
Here, we assume that E is a Banach space with the norm | . | and J = [0, 1]. Denote C(J,E)

the Banach space of continuous functions from J into E with the norm ‖u‖ = supt∈J |u(t)|, where
u ∈ C(J,E).
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Definition 2.1. By a mild solution of the nonlocal initial value problem (1.1), we mean the function
u ∈ C(J,E) which satisfies

u(t) = T (t)

∫ 1

0

g(s, u(s))ds+
1

Γ(α)

∫ t

0

(t− s)α−1T (t− s)f(s, u(s))ds, ∀t ∈ J. (2.1)

As we mentioned above, operator A generates a C0 semigroup T (t) on E. A C0 semigroup T (t)
is said to be compact if T (t) is compact for any t > 0. If the C0 semigroup is compact, then
t −→ T (t)u are equicontinuous at all t > 0 with respect to u in all bounded subsets of E. This
means that semigroup T (t) is equicontinuous.

To prove the existence, we need the following concepts and hence, we introduce the Banach space
with a norm, recall some basic definitions and properties from the fractional calculus.

Definition 2.2. ([16]) Riemann-Liouville fractional integral operator of order α > 0, of function
f ∈ L1(R+) is defined as

Iα0+f(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ(.) is the Euler gamma function.

Definition 2.3. ([16]) Riemann-Liouville fractional derivative of order α > 0 denoted by Dα and
defined by

Dαf(x) =
dm

dtm
(Im−αf(x)),

where m− 1 < α ≤ m,m ∈ N. That is m is the smallest integer greater than α.

Definition 2.4. ([16]) Let f ∈ Cn([0, T ], then Caputo’s definition of the fractional-order derivative
is defined as

Dα
∗ f(x) =

1

Γ(n− α)

∫ x

0

f (n)(t)

(x− t)α+1−ndt,

where x ≤ T and α > 0 is the order of the derivative and n = dαe.

Next, we recall some definitions and properties of measure of non-compactness.

Definition 2.5. ([11]) If E is a sufficiently smooth bounded open set in the plane, the convex hull
co(E) of E is the bounded connected open set of minimal perimeter containing E.

Definition 2.6. ([2]) Let Y be a metric space and B a bounded subsets of Y . Then Hausdorff
measure of non-compactness of B is defined by

γ(B) = inf
{
ε > 0 : B has a finite cover by closed balls of radius ε

}
. (2.2)

Remark 2.7. Let B1, B2 ⊆ X be bounded sets. Then Hausdorff measure of non-compactness has
the following properties. For more details and the proof of these properties see [2].

(i) If B1 ⊆ B2, then γ(B1) ≤ γ(B2).

(ii) γ(B) = γ(B̄).

(iii) γ(B) = 0 iff B is totally bounded.

(iv) For λ ∈ R, γ(λB) = |λ|γ(B).
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(v) γ(B1 +B2) ≤ γ(B1) + γ(B2), where B1 +B2 = {b1 + b2 : b1 ∈ B1, b2 ∈ B2}.
(vi) γ(B) = γ(co(B)).

Definition 2.8. ([3]) A map f : J × E → E is said to be Carathéodory if

(i) t 7−→ f(t, u) is measurable for each u ∈ E,

(ii) u 7−→ f(t, u) is continuous for almost each t ∈ J .

Lemma 2.9. ([13, 19]) Let E be a Banach space, and let D = {un} ⊂ C(J,E) be a bounded and
countable set. Then γ(D(t)) is the Lebesgue integral on J , and

γ
({∫

J

un(t)dt | n ∈ N
})
≤ 2

∫
J

γ(D(t))dt.

Lemma 2.10. ([24]) If W is bounded, then for each ε > 0, there is a sequence {un}∞n=1 ⊆ W , such
that

γ(W ) ≤ 2γ({un}∞n=1) + ε.

Lemma 2.11. ([2]) Let W ⊆ C(J,E) and that W is bounded and equicontinuous. Then the set
co(W ) is also bounded and equicontinuous.

Theorem 2.12. ([17]) Let F be a closed and convex subset of a real Banach space X, and A : F −→
F be a continuous operator and A(F ) be bounded. Furthermore, for each bounded subset B ⊂ F ,
set

A1(B) = A(B), An(B) = A(coAn−1(B))), n = 2, 3, · · · .

Now, if there exist a constant 0 ≤ k < 1 and a positive integer n0 such that for each bounded subset
B ⊂ F ,

γ(An0(B)) ≤ kγ(B),

then A has a fixed point in F .

Theorem 2.13. ([9]) Let E be a Banach space. Assume that D ⊂ E is a bounded closed and convex
set on E and F : D −→ D is condensing. Then F has at least one fixed point in D.

3. Main results

For the forthcoming analysis, we introduce the following hypotheses.

(H1) The C0 semigroup T (t) generated by A is equicontinuous. We denote M = sup{‖T (t)‖; t ∈ J}.
(H2) f : J × E −→ E satisfies the Carathéodory type conditions.

(H3) g : C(J,E) −→ E is continuous and compact, there exists p(t) ∈ L1(J,R+) such that∫ 1

0
‖g(s, u(s))‖ds ≤

∫ 1

0
p(s)‖u‖ds,∀u ∈ C(J,E).

(H4) There exists a function φ ∈ L1(J,R+) and a nondecreasing continuous function ψ : R+ −→ R+

such that ‖f(t, u)‖ ≤ φ(t)ψ(‖u‖).
(H5) f satisfies the Lipschitz condition in u(t) i.e. there exist constant L such that |f(t, u)−f(t, v)| ≤

L|u− v|.

Now, under above hypotheses, we can provide the following results.
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Theorem 3.1. If (H1)-(H5) are satisfied, then there is at least one mild solution for (1.1) provided
that there exist a constant R with

R

∫ 1

0

p(s)ds+ ψ(R)Iαφ(t) ≤ R

M
.

Proof . Consider the operator F : C(J,E) −→ C(J,E) defined by

(Fu)(t) = T (t)

∫ 1

0

g(s, u(s))ds+
1

Γ(α)

∫ t

0

(t− s)α−1T (t− s)f(s, u(s))ds, (3.1)

for all u ∈ C(J,E) and t ∈ J . First, we show that F is continuous by some ordinary techniques. Let
un −→ u in C(J,E). Then

|Fun − Fu| ≤ M

∫ 1

0

|g(s, un(s))− g(s, u(s))|ds

+
M

Γ(α)

∫ t

0

∣∣∣(t− s)α−1
(
f(s, un(s))− f(s, u(s))

)∣∣∣ds.
So, Fun −→ Fu in C(J,E) by the Lebesgue’s convergence theorem.
Next, we denote W = {u ∈ C(J,E), ‖u(t)‖ ≤ R, for all t ∈ J}, then W ⊆ C(J,E) is bounded and
convex. For any u ∈ W , we have

‖(Fu)(t)‖ ≤ ‖T (t)

∫ 1

0

g(s, u(s))ds‖+ ‖ 1

Γ(α)

∫ t

0

(t− s)α−1T (t− s)f(s, u(s))ds‖

≤ MR

∫ 1

0

p(s)ds+
Mψ(R)

Γ(α)
‖
∫ t

0

(t− s)α−1φ(s)ds‖

≤ MR

∫ 1

0

p(s)ds+Mψ(R)Iαφ(t) ≤ R,

which implies F : W −→ W is a bounded operator.
Let B0 = co(FW ). Then, for any B ⊂ B0, we use Lemma 2.9 and 2.10. That is for any ε > 0, there
is a sequence {un}∞n=1 ⊆ B, such that

γ(F 1B(t)) = γ(FB(t))

≤ 2γ
( 1

Γ(α)

∫ t

0

(t− s)α−1T (t− s)f(s, {un(s)}∞n=1)ds
)

+ ε

≤ 4M

Γ(α)

∫ t

0

γ
(

(t− s)α−1f(s, {un(s)}∞n=1)
)
ds+ ε

≤ 4M

Γ(α)

∫ t

0

γ
(

(t− s)α−1
∣∣f(s, {un(s)}∞n=1)− f(s, 0) + f(s, 0)

∣∣)ds+ ε

≤ 4ML

Γ(α)

∫ t

0

(t− s)α−1γ
(
{un(s)}∞n=1)

)
ds+ ε

≤ 4ML

Γ(α + 1)
γ(B)tα + ε.

Since ε > 0 is arbitrary, it follows from the above inequality that

γ(F 1B(t)) ≤ 4ML

Γ(α + 1)
γ(B)tα. (3.2)
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Using Lemma 2.10 one more time, we see that for any ε > 0, there is a sequence {un}∞n=1 ⊆
co(F 1B(t)), such that

γ(F 2B(t)) = γ
(
F
(
co(FB(t))

))
≤ 2γ

( 1

Γ(α)

∫ t

0

(t− s)α−1T (t− s)f(s, {un(s)}∞n=1)ds
)

+ ε

≤ 4M

Γ(α)

∫ t

0

γ
(

(t− s)α−1f(s, {un(s)}∞n=1)
)
ds+ ε

≤ 4M

Γ(α)

∫ t

0

γ
(

(t− s)α−1
∣∣f(s, {un(s)}∞n=1)− f(s, 0) + f(s, 0)

∣∣)ds+ ε

≤ 4ML

Γ(α)

∫ t

0

(t− s)α−1γ
(
{un(s)}∞n=1)

)
ds+ ε

≤ 4ML2

Γ(α)

∫ t

0

(t− s)α−1γ(F 1B(s))ds+ ε

≤ (4ML)2

Γ(α + 1)
γ(B)

1

Γ(α)

∫ t

0

(t− s)α−1sαds+ ε

≤ (4ML)2

Γ(2α + 1)
γ(B)t2α + ε.

Hence, by mathematical induction, for any positive integer n and t ∈ J , we obtain

γ(F nB(t)) ≤ (4ML)n

Γ(nα + 1)
γ(B)tnα.

Since (4ML)n

Γ(nα+1)
γ(B)tnα → 0 as n→∞, there exists n0 ∈ N such that

(4ML)n0

Γ(n0α + 1)
γ(B)tn0α = k < 1.

Finally, applying Theorem 2.12 it follows that F has a fixed point in W . This fixed point is a mild
solution of problem (1.1). �

Similar to idea in [23], we present following theorem.

Theorem 3.2. If (H1)-(H5) are satisfied, then there is at least one mild solution for (1.1) provided
that

Iαφ(t) ≤ lim inf
R→∞

R−MR
∫ 1

0
p(s)ds

Mψ(R)
.

Proof . From Theorem 3.1, we know that there exists a constant R > 0 such that

Iαφ(t) ≤
R−MR

∫ 1

0
p(s)ds

Mψ(R)
.

The detail proof of this Theorem is similar to the proof of Theorem 3.1 and therefore, we omit it
here. �

Our second existence result is based on a generalization of Schauder’s fixed point theorem (i.e.
Theorem 2.13), presented by Deimling [9].
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Theorem 3.3. If (H1)-(H5) are satisfied, then there is at least one mild solution for (1.1) provided
that

4LM

Γ(α + 1)
≤ 1.

Proof . Consider operator F defined by (3.1). In the proof of Theorem 3.1 we proved F : W −→ W
is continuous and bounded operator on the bounded closed and convex set W which is defined by

W = {u ∈ C(J,E), ‖u(t)‖ ≤ R, for all t ∈ J}.

Now, we prove that the operator F : W −→ W is equicontinuous.
Let C = sup{‖f(t, u(t)‖ : ‖u(t)‖ ≤ R, t ∈ J}. Then for any u ∈ W and 0 ≤ t1 < t2 ≤ 1, we obtain
that

‖(Fu)(t2)− (Fu)(t1)‖ ≤
4∑
i=1

‖Ii‖,

where

I1 =
(
T (t2)− T (t1)

) ∫ 1

0

g(s, u(s))ds,

I2 =

∫ t2

t1

(t1 − s)α−1T (t2 − s)f(s, u(s))ds,

I3 =

∫ t1

0

(t1 − s)α−1
(
T (t2 − s)− T (t1 − s)

)
f(s, u(s))ds,

I4 =

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
T (t2 − s)f(s, u(s))ds,

Therefore, we only need to check ‖Ii‖, (i = 1, ..., 4) tend to 0 independently of u ∈ W when t2 −→ t1.
For I1, by assumptions (H1) and (H3), it is obvious that ‖I1‖ −→ 0 as t2 −→ t1.
For I2, by assumption (H1) we get that

‖I2‖ ≤ M

∫ t2

t1

(t2 − s)α−1‖f(s, u(s))‖ds

≤ MC

∫ t2

t1

(t2 − s)α−1ds

≤ MC

Γ(α + 1)
(t2 − t1)α

−→ 0 as t2 −→ t1.

For I3, by assumption (H1) and properties of C0 semigroup we get that

‖I3‖ ≤
∫ t1

0

(t1 − s)α−1
∥∥(T (t2 − s)− T (t1 − s)

)
f(s, u(s))

∥∥ds
≤ C

∥∥T (t2 − t1)− I
∥∥∫ t1

0

(t1 − s)α−1
∥∥T (t1 − s)

∥∥ds
≤ MC

∥∥T (t2 − t1)− I
∥∥∫ t1

0

(t1 − s)α−1ds

≤ MCtα

Γ(α + 1)

∥∥T (t2 − t1)− I
∥∥

−→ 0 as t2 −→ t1.
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For I4, by assumption (H1) we get that

‖I4‖ ≤ M

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
‖f(s, u(s))‖ds

≤ MC

∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
ds

≤ MC

Γ(α + 1)

(
tα2 − tα1 + (t2 − t1)α

)
≤ 2MC

Γ(α + 1)
(t2 − t1)α

−→ 0 as t2 −→ t1.

Hence, ‖(Fu)(t2) − (Fu)(t1)‖ tends to 0 independently of u ∈ W when t2 −→ t1. This means that
operator F : W −→ W is equicontinuous.
We defined B0 in the proof of Theorem 3.1 as B0 = co(FW ). It is easy to show that F maps B0 into
itself and by Lemma 2.11, we know B0 ⊂ C(J,E) is equicontinuous. Since t ∈ I, similar to proof of
equation (3.2) we have

γ(FB0) ≤ 4ML

Γ(α + 1)
γ(B)

≤ γ(B0).

Therefore, F : B0 −→ B0 is a condensing operator. It follows from Theorem 2.13 that F has one
fixed point, which means (1.1) has one mild solution on J . �
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