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Abstract

In this paper, we obtain Bayesian prediction intervals as well as Bayes predictive estimators under
square error loss for generalized order statistics when the distribution of the underlying population
belongs to a family which includes several important distributions.

Keywords: Bayes predictive estimators; Bayesian prediction intervals; order statistics; record
values; k-record values; generalized order statistics.
2010 MSC: Primary 39A23; Secondary 39A22.

1. Introduction preliminaries

Kamps [20] introduced the concept of generalized order statistics (GOS) as a unification of several
models of ascendingly ordered random variables. The use of this concept, which includes well-known
concepts that have been treated separately in statistical literature as special cases, has been growing
steadily over the years.

In the fields of reliability analysis and lifetime studies we often consider several models of ascend-
ingly ordered random variables. Many of these models, such as ordinary order statistics, sequential
order statistics, record values, Pfeifer’s record model and progressive type II censored order statistics
are contained in the GOS model. For instance, the rth extreme order statistic represents the lifetime
of an r out of n system, whereas the sequential order statistics model is an extension of the ordinary
order statistics model and serves as a model describing certain dependencies or interactions among
the system components. The progressive type II censored order statistics model is used to analyse
data in lifetime tests.
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Using the concept of GOS, known results in submodels can be subsumed, generalized and inte-
grated within a general framework. Well-known distributional and inferential properties of ordinary
order statistics and record values turn out to remain valid for GOS. Thus, GOS provide a large class
of models with many interesting and useful properties for both the description and the analysis of
practical problems.

Ahsanullah ([4], [5]) and Habibullah and Ahsanullah [17] studied the distributional properties
of GOS and obtained minimum variance linear unbiased estimators of the parameters of a two-
parameter uniform, exponential and Pareto type II distributions in terms of GOS. For the uniform
model, Ahsanullah [4] also obtained the best linear invariant estimators of the parameters and in [5]
he characterized the exponential distribution in terms of GOS. Kamps and Gather [21] developed
a characteristic property of GOS for exponential distributions and Keseling [22] used conditional
distributions of GOS to characterize certain continuous distributions.

Prediction is one of the most important topics in statistical inference. Several authors (Geisser
([15], [16]), Al-Hussaini and Jaheen ([8], [9]), Dunsmore and Amin [14] and Al-Hussaini [6]) have
predicted future order statistics and records from homogeneous as well as heterogeneous populations.

In this paper, we obtain Bayesian prediction intervals as well as the Bayes predictive estimators
for GOS when the distribution of the underlying population belongs to a family which includes several
important distributions such as the Weibull, compound Weibull (or three-parameter Burr type XII),
Pareto, Beta, Gompertz and compound Gompertz distributions.

The organization of this paper is as follows. In Section 2, we present some preliminaries. In
Section 3, we obtain Bayesian prediction intervals and the Bayesian predictive estimators under
square error loss for GOS when the underlying population is assumed to belong to a certain family
of distributions. As an example we obtain Bayesian prediction intervals and the Bayesian predictive
estimators for GOS when the underlying population is Pareto.

2. Preliminaries

Kamps [20] defined GOS as follows: Let F be an absolutely continuous function with density f . Let
n ∈ N, k > 0, m̃ = (m1, . . . ,mn−1) ∈ Rn−1, and Mr =

∑n−1
j=r mj for γr = k+n−r+Mr > 0 for all r =

1, . . . , n− 1. The components of the random vector X(n, m̃, k) =
(
X(1, n, m̃, k), . . . , X(n, n, m̃, k)

)
are said to be GOS if their joint density function is of the form

fX(n,m̃,k)(x) = k(
n−1∏
j=1

γj)
( n−1∏
i=1

(1− F (xi))
mif(xi)

)
(1− F (xn))k−1f(xn),

for F−1(0) < x1 ≤ . . . ≤ xn < F−1(1).
Generalized order statistics contain many models of order statistics as special cases.

(i) The order statistics X1:n, . . . Xn:n of a sample (X1, . . . , Xn) of size n from cdf F are GOS with
parameters m1 = . . . = mn−1 = 0 and k = 1.

(ii) The first n record values in a sequence {Xν , ν ≥ 1} of i.i.d. random variables are GOS with
parameters m1 = . . . = mn−1 = −1 and k = 1.

(iii) The first n, k-record values R
(k)
n = (R

(k)
1 , . . . R

(k)
n ) in an i.i.d. sequence {Xν , ν ≥ 1} are GOS

with parameters m1 = . . . = mn−1 = −1 and k ≥ 1 a positive integer.
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(iv) Pfeifer’s record values X
(1)
∆1
, . . . X

(n)
∆n

) in an array {X(j)
i , i ≥ 1, j ≥ 1} of independent random

variables such that X
(j)
i , i ≥ 1, are identically distributed with distribution function Fj(x) =

1− (1−F (x))βj , j ≥ 1, where βj > 0, are GOS with parameters mi = βi−βi+1− 1 and k = βn
(cf. Pfeifer (1982)).

(v) The progressive type II censored order statistics XR̃
1:n:N , . . . X

R̃
n:n:N) where R̃ = (R1, . . . , Rn)

and Ri ∈ N0; 1 ≤ i ≤ n, are GOS with parameters mi = Ri, k = Rn + 1(cf. Balakrishnan et al.
[11]).

(vi) The sequential order statistics X
(1)
∗ , . . . X

(n)
∗ of an array of independent random variables

{Y (i)
j , 1 ≤ i ≤ n, 1 ≤ j ≤ n − i + 1} such that Y

(i)
j , 1 ≤ j ≤ n − i + 1 are identically dis-

tributed with distribution function Fi(x) = 1 −
(

1 − F (x)
)αi

for 1 ≤ i ≤ n, are GOS with

parameters mi = (n− i+ 1)αi − (n− i)αi+1 − 1 and k = αn.

Cramer and Kamps [13] obtained the joint density function of the first r GOS as well as their marginal
univariate and bivariate density functions of GOS. They show that when

γn = k, γi 6= γj, i 6= j, 1 ≤ i, j ≤ n,

the joint density function of the first r GOS is

fX(r,m̃,k)(x) = cr−1

r−1∏
i=1

(
1− F (xi)

)mi

f(xi)
(

1− F (xr)
)γr−1

f(xr). (2.1)

Moreover, the marginal density function of the rth GOS is given by

fX(r,n,m̃,k)(x) = cr−1

r∑
i=1

ai

(
1− F (x)

)γi−1

f(x),

where cr−1 =
r∏
i=1

γi and ai(r) = ai

r∏
j=1j 6=i

1

γj − γi
, 1 ≤ i ≤ r ≤ n. Also, for r < s, the joint density

function of the rth and sth GOS is

fX(r,n,m̃,k),X(s,n,m̃,k)(x, y) = cs−1
f(y)

1− F (y)

f(x)

1− F (x)

s∑
i=r+1

a
(r)
i (s)

(1− F (y)

1− F (x)

)γi
×

r∑
i=1

ai

(
1− F (x)

)γi
,

where a
(r)
i (s) =

s∏
j=r+1j 6=i

1

γj − γi
.

Hence for r < s, the conditional density function of the sth GOS given the rth GOS is

fX(s,n,m̃,k)|X(r,n,m̃,k)(x|y) =
cs−1

cr−1

s∑
i=r+1

a
(r)
i (s)

(1− F (y)

1− F (x)

)γi f(y)

1− F (y)
. (2.2)

The predictive density function is

H(xr+s|x) =

∫
Θ

gr(xr+s|x)q(θ|x)dθ, (2.3)
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where q(θ|x) denotes the posterior density function of θ and for s = 1, . . . .n− r, gr(xr+s|x) denotes
the conditional density function of the (r + s)th GOS given x = (x1, . . . , xr). Suppose

Fθ(x) = 1− exp
(
− λθ(x)

)
, x > 0, (2.4)

where λθ(x) is a continuous differentiable function of x such that λθ(x) → 0 as x → 0+ and
λθ(x)→∞ as x→∞. Then the corresponding density, for x > 0 is

fθ(x) = λ′θ(x) exp(−λθ(x)). (2.5)

We assume that θ is a random vector with conjugate prior density of the form suggested by Al-
Hussaini[6].

π(θ; δ) = C(θ; δ) exp
(
−D(θ; δ)

)
,θ ∈ Θ, δ ∈ Ω, (2.6)

where Ω is the hyperparameter space and δ is a vector of prior parameters.
Substituting (2.4) and (2.5) into (2.1), the likelihood function becomes

L(θ,x) = cr−1 exp

(
−
( r−1∑
j=1

λθ(xj)(mj + 1) + γrλθ(xr)
)) r∏

j=1

λ′θ(xj). (2.7)

From (2.6) and (2.7), the posterior density function takes the form

q(θ|x) = B exp
(
−
( r−1∑

j=1

λθ(xj)(mj + 1) + γrλθ(xr) +D(θ; δ

))
(2.8)

×C(θ; δ)
r∏
j=1

λ′θ(xj),

where B is a normalizing constant.

B−1 =

∫
Θ

exp
(
−
( r−1∑

j=1

λθ(xj)(mj + 1) + γrλθ(xr) +D(θ; δ)

))
×C(θ; δ)

r∏
j=1

λ′θ(xj)dθ. (2.9)

For the general lifetime model (2.4) with a vector of parameters θ, the density function of the (r+s)th

GOS given the first r GOS, is obtained from (2.2).

gr(xr+s|θ;x) =
cr+s−1

cr−1

λ′θ(xr+s)
r+s∑
i=r+1

a
(r)
i (r + s)

× exp
(
− γi

(
λθ(xr+s)− λθ(xr)

))
, (2.10)

where

a
(r)
i (r + s) =

r+s∏
j=r+1j 6=i

1

γj − γi
. (2.11)
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Hence, for s = 1, . . . , (n− r), the Bayes predictive density function for the (r + s)th GOS is

H(xr+s|x) =
Bcr+s−1

cr−1

r+s∑
i=r+1

a
(r)
i (r + s)

∫
θ
C(θ; δ)λ′θ(xr+s)

× exp

(
−
(
γrλθ(xr) + γi[λθ(xr+s)− λθ(xr)] +D(θ; δ)

+
r−1∑
j=1

λθ(xi)(mj + 1)
)) r∏

j=1

λ′θ(xj)dθ, (2.12)

where B and a
(r)
i (r + s) are given by (2.9) and (2.11) respectively.

3. Baysian prediction of future GOS’S

In this section, we suppose that the first r GOS X(1, n, m̃, k) < . . . < X(r, n, m̃, k) are observed and
that X(r + 1, n, m̃, k) < . . . < X(n, n, m̃, k) are to be predicted. Al-Hussaini et al. [10] predicted
the future GOS when γi = γj, i 6= j. We shall obtain Bayesian prediction intervals and the Bayes
predictive estimators for GOS X(r + 1, n, m̃, k), . . . , X(n, n, m̃, k) when γi 6= γj, i 6= j.

For s = 1, . . . , (n− r), the survival function for the future (r + s)th GOS is obtained from (2.12)
we have

P (X(r + s, n, m̃, k) > ν|x) =

∫ ∞
ν

H(xr+s|x)dxr+s

=
Bcr+s−1

cr−1

r+s∑
i=r+1

a
(r)
i (r + s)

γi

∫
Θ

C(θ; δ)
r∏
j=1

λ′θ(xj)

× exp
(
−
(
γi[λθ(ν)− λθ(xr)] + γrλθ(xr) +D(θ; δ)

+
r−1∑
j=1

λθ(xj)(mj + 1)

))
dθ. (3.1)

For s = 1, . . . , (n − r), the τ × 100% Bayesian prediction bounds for the future (r + s)th GOS are
obtained by solving the equations

P (Xr+s > Ls(x)|x) =
1 + τ

2
= τ1 and P (Xr+s > Us(x)|x) =

1− τ
2

= τ2.

Where Ls(x) and Us(x) are respectively the lower and upper Bayesian predictive bounds.
Now, the Bayes predictive estimator for the (r + s)th GOS under square error loss (SEL) can be

obtained by (2.12) as

x̃r+s = E(X(r + s, n, m̃, k)|x)

=

∫ ∞
xr

xr+sH(xr+s|x)dxr+s, (3.2)
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3.1. Examples

The family of Pareto distributions is used regularly in reliability and survival analysis. The pdf, cdf
of a Pareto distribution are respectively

f(x|α, β) = αβα(x+ β)−(α+1), x, α, β > 0,

F (x|α, β) = 1− (
x+ β

β
)−α, x, α, β > 0.

Now

θ = (α, β), λθ(x) = α ln
x+ β

β
, λ′θ(x) =

α

x+ β
, (3.3)

Substituting (3.3) into (2.7), the likelihood function of the first r GOS is

L(α, β,x) = cr−1α
r exp

(
− α

(
γr ln

xr + β

β
+

r−1∑
j=1

(mj + 1) ln
xj + β

β

))

× exp

(
−

r∑
j=1

ln(xj + β)

)
, (3.4)

where x = (x1, . . . , xr) .
For s = 1, . . . , (n− r), the conditional density function in (2.10) for the (r + s)th GOS given the

first r GOS is obtained as

gr(xr+s|x) =
αcr+s−1

cr−1(xr+s + β)

r+s∑
i=r+1

a
(r)
i (r + s) exp

(
− αγi ln

xr+s + β

xr + β

)
. (3.5)

3.1.1. Pareto (α, β) model when α is the unknown parameter

We assume that the parameter α is a random variable with a gamma conjugate prior density.

π(α) =
ba

Γ(a)
αa−1 exp(−bα), α > 0, (3.6)

It follows from (3.4) and (3.6) that the posterior density function of the parameter α can be expressed
as

q(α|x) = Bαr+a−1 exp

(
− α

(
b+ γr ln

xr + β

β
+

r−1∑
j=1

(mj + 1) ln
xj + β

β

))
, (3.7)

where

b+ γr ln
xr + β

β
+

r−1∑
j=1

(mj + 1) ln
xj + β

β
> 0

and B is a normalizing constant given by

B−1 =
Γ(r + a)(

b+
r−1∑
j=1

(mj + 1) ln
xj + β

β
+ γr ln

xr + β

β

)r+a .
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Hence, the Bayes predictive density function for the (r + s)th GOS from (3.5) and (3.7) is obtained
as

H(xr+s|x) =
B1

xr+s + β

r+s∑
i=r+1

a
(r)
i (r + s)

×
(

1 +
γi ln

xr+s+β
xr+β

b+
∑r−1

j=1(mj + 1) ln
xj+β

β
+ γr ln xr+β

β

)−(r+a+1)

, (3.8)

where

B1 =
cr+s−1(r + a)

cr−1

(
b+

r−1∑
j=1

(mj + 1) ln
xj + β

β
+ γr ln

xr + β

β

) .
It follows that the survival function for the (r + s)th GOS is

P (X(r + s, n, m̃, k) ≥ ν|x) =

∫ ∞
ν

H(xr+s|x)dxr+s

=
cr+s−1

cr−1

r+s∑
i=r+1

a
(r)
i (r + s)

γi

×
(

1 +
γi ln

ν+β
xr+β

b+
r−1∑
j=1

(mj + 1) ln
xj + β

β
+ γr ln

xr + β

β

)−(r+a)

. (3.9)

From (3.2), putting u = xr+s +β, the Bayes predictive estimators for the future (r+ s)th GOS under
SEL are obtained as

x̃r+s = −βcr+s−1

cr−1

r+s∑
i=r+1

a
(r)
i (r + s)

γi
+B1

r+s∑
i=r+1

a
(r)
i (r + s)

×
∫ ∞
xr+β

(
1 +

γi ln
u

xr+β

b+
r−1∑
j=1

(mj + 1) ln
xj + β

β
+ γr ln

xr + β

β

)−(r+a+1)

du.

From (2.3) in [12] we have

x̃r+s = −βcr+s−1

cr−1

r+s∏
i=r+1

1

γi
+B1

r+s∑
i=r+1

a
(r)
i (r + s)

×
∫ ∞
xr+β

(
1 +

γi ln
u

xr+β

b+
r−1∑
j=1

(mj + 1) ln
xj + β

β
+ γr ln

xr + β

β

)−(r+a+1)

du. (3.10)
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3.1.2. Pareto (α, β) model when α, β are both unknown

Here, we assume that the joint prior density for the parameters is of the form π(α, β) = π2(β | α)π1(α)
where π1(α) = ba

Γ(a)
αa−1 exp(−bα), α > 0 and π2(β | α) = lα(c)lα(β + c)−(lα+1), β, α > 0. Thus

π(α, β) =
bal

Γ(a)
αa exp

(
− ln(β + c)

)
exp

(
− α(b+ l ln(β + c)− l ln c)

)
(3.11)

In other words, α ∼ Γ(a, b) and β|α ∼ Pareto(lα, c). From (3.4) and (3.11), the joint posterior
density of the parameters α and β is obtained as

q(α, β|x) = Bαr+a exp
(
− α

(
b+ γr ln

xr + β

β
+

r−1∑
j=1

(mj + 1) ln
xj + β

β

+l ln(β + c)− l ln c
))

exp
(
−
( r∑

j=1

ln(xj + β) + ln(β + c)

))
, (3.12)

where

b+ γr ln
xr + β

β
+

r−1∑
j=1

(mj + 1) ln
xj + β

β
+ l ln(β + c)− l ln c > 0

and B is a normalizing constant. We have

B−1 =

∫ ∞
0

Γ(r + a+ 1)
(
b+ γr ln

xr + β

β
+

r−1∑
j=1

(mj + 1) ln
xj + β

β

+l ln(β + c)− l ln c
)−(r+a+1)

× exp
(
−
( r∑

j=1

ln(xj + β) + ln(β + c)

))
dβ. (3.13)

From (3.5) and (3.12), the Bayes predictive density function of the (r + s)th GOS is

H(xr+s|x) =
cr+s−1(r + a+ 1)

cr−1I0

r+s∑
i=r+1

a
(r)
i (r + s)

×
∫ ∞

0

(xr+s + β)−1
(
b+ γr ln

xr + β

β
+ γi ln

xr+s + β

xr + β

+
r−1∑
j=1

(mj + 1) ln
xj + β

β
+ l ln(β + c)− l ln c

)−(r+a+2)

× exp
(
−
( r∑

j=1

ln(xj + β) + ln(β + c)

))
dβ, (3.14)

where

I0 =

∫ ∞
0

(
b+ γr ln

xr + β

β
+

r−1∑
j=1

(mj + 1) ln
xj + β

β
+ l ln(β + c)

−l ln c
)−(r+a+1)

exp
(
−
( r∑

j=1

ln(xj + β) + ln(β + c)

))
dβ. (3.15)
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By (3.14),

P (X(r + s, n, m̃, k) ≥ ν|x) =

∫ ∞
ν

H(xr+s|x)dxr+s

=
cr+s−1

cr−1I0

r+s∑
i=r+1

a
(r)
i (r + s)

γi

∫ ∞
0

(
b+ γr ln

xr + β

β
+ l ln(β + c)

+
r−1∑
j=1

(mj + 1) ln
xj + β

β
− l ln c+ γi ln

ν + β

xr + β

)−(r+a+1)

× exp
(
−
( r∑

j=1

ln(xj + β) + ln(β + c)

))
dβ, (3.16)

where I0 is given by (3.15).
As mentioned above, for s = 1, ..., n − r the lower and upper τ × 100% Bayesian prediction

bounds for the future (r + s)th, GOS in the both cases, can be obtained numerically by equating
Pr(X(r + s, n, m̃, k) ≥ ν | x) in (3.10) and (3.16), to (1+τ

2
) and (1−τ

2
) respectively.

By (3.2) and (3.14), the Bayes predictive estimator for the future (r + s)th, GOS under SEL is

x̃r+s =
cr+s−1(r + a+ 1)

cr−1I0

r+s∑
i=r+1

a
(r)
i (r + s)

×
∫ ∞
xr

∫ ∞
0

xr+s
xr+s + β

(
b+ γr ln

xr + β

β
+ γi ln

xr+s + β

xr + β

+
r−1∑
j=1

(mj + 1) ln
xj + β

β
+ l ln(β + c)− l ln c

)−(r+a+2)

× exp
(
−
( r∑

j=1

ln(xj + β) + ln(β + c)

))
dβdxr+s.
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