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Abstract

In this paper, sufficient conditions for the existence of common fixed points for a compatible pair
of self maps of Gregus type in the framework of convex metric spaces have been obtained. Also,
established the existence of common fixed points for a pair of compatible mappings of type (B) and
consequently for compatible mappings of type (A). The proved results generalize and extend some
of the well known results of the literature.
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1. Introduction and preliminaries

Fixed point theory has gained impetus, due to its wide range of applicability, to resolve diverse
problems emanating from the theory of nonlinear differential equations, theory of nonlinear integral
equations, game theory, mathematical economics, control theory, and so forth. For example, in
theoretical economics, such as general equilibrium theory, a situation arises where one needs to know
whether the solution to a system of equations necessarily exists; or, more specifically, under what
conditions will a solution necessarily exist. The mathematical analysis of this question usually relies
on fixed point theorems. Hence finding necessary and sufficient conditions for the existence of fixed
points is an interesting aspect.

In 1986, Fisher and Sessa [6], obtained the following common fixed point theorem by generalising
a theorem of Gregus [8].
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Theorem 1.1. Let T, I : K → K be two weakly commuting mappings on a closed convex subset K
of a Banach space X satisfying

‖Tx− Ty‖ ≤ a ‖Ix− Iy‖+ (1− a) max{‖Ix− Tx‖, ‖Iy − Ty‖} (1.1)

for all x, y ∈ K, where 0 < a < 1. If I is linear, nonexpansive in K such that T (K) ⊆ I(K), then T
and I have a unique common fixed point in K.

If I is an identity map, we have an immediate generalization of the Gregus fixed point theorem.
Mukherjee and Verma [14] generalized Theorem 1.1 by replacing the linearity of I with a more
general condition that I is affine, while Jungck [10] generalised it further by replacing commutativity
and nonexpansiveness assumptions with compatibility and continuity respectively. Thereafter, many
results which are closely related to Gregus’s Theorem have appeared in literature (see e.g. [1], [2], [3],
[4], [5], [17]). The purpose of this paper is to find sufficient conditions for the existence of common
fixed points for a compatible pair of self maps of Gregus type when the underlying spaces are convex
metric spaces. Also, established the existence of common fixed points for a pair of compatible
mappings of type (B) and consequently for compatible mappings of type (A). Our technique, which
is originally due to Gregus [8], has been used by many authors. Our results extend and generalize
some of the results of Ćirić [2], [3], [4], Diviccaro, Fisher and Sessa [5], Fisher and Sessa [6], Gregus
[8], Jungck [10], Jungck and Sessa [12], Mukherjee and Verma [14], Olaleru [17], Sahab, Khan and
Sessa [20], Singh [21], Smoluk [22], Subrahmanyam [23] and of few others.

For a metric space (X, d), a continuous mapping W : X ×X × [0, 1]→ X is said to be (s.t.b.) a
convex structure on X if for all x, y ∈ X and λ ∈ [0, 1],

d(u,W (x, y, λ)) ≤ λd(u, x) + (1− λ)d(u, y)

holds for all u ∈ X. The metric space (X, d) together with a convex structure is called a convex
metric space [24].

A subset K of a convex metric space (X, d) is s.t.b. a convex set [24] if W (x, y, λ) ∈ K for all
x, y ∈ K and λ ∈ [0, 1].

A normed linear space and each of its convex subsets are simple examples of convex metric spaces
with W given by W (x, y, λ) = λx+ (1− λ)y for x, y ∈ X and 0 ≤ λ ≤ 1.

Example 1.2. Let X = {(x1, x2) ∈ R2 : x1, x2 > 0}. For x = (x1, x2), y = (y1, y2) in X, and

α ∈ [0, 1], define a mapping W : X×X×[0, 1]→ X by W (x, y, α) = (αx1+(1−α)y1,
αx1x2+(1−α)y1y2
αx1+(1−α)y1 ),

and a metric d : X × X → [0,∞) by d(x, y) = |x1 − y1| + |x1x2 − y1y2|. Then (X, d) is a convex
metric space but not a normed linear space.

For more examples of convex metric spaces which are not normed linear spaces, we refer to [7],
[24].

For a non-empty subset M of a metric space (X, d) and x ∈ X, an element y ∈M is s.t.b. a best
approximant to x or a best M-approximant to x if d(x, y) = d(x,M) ≡ inf{d(x, y) : y ∈ M}.
The set of all such y ∈M is denoted by PM(x).

For a convex subset M of a convex metric space (X, d), a mapping g : M → X is s.t.b. affine if
for all x, y ∈ M , g(W (x, y, λ)) = W (gx, gy, λ) for all λ ∈ [0, 1]. g is s.t.b. affine with respect to
p ∈M if g(W (x, p, λ)) = W (gx, gp, λ) for all x ∈M and λ ∈ [0, 1].

Let M a nonempty subset of a metric space (X, d), a point x ∈M is a common fixed (coinci-
dence) point of S and T if x = Sx = Tx(Sx = Tx). The set of fixed points (respectively, coincidence
points) of S and T is denoted by F (S, T ) (respectively, C(S, T )). The mappings T, S : M →M are
s.t.b.
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i) commuting on M if STx = TSx for all x ∈M ;

ii) weakly commuting on M if d(TSx, STx) ≤ d(Tx, Sx) for all x ∈M .

iii) compatible[9] if lim d(TSxn, STxn) = 0 whenever {xn} is a sequence such that limTxn =
limSxn = t for some t in M .

v) reciprocal continuous [18] if limn→∞ TSxn = Tt and limn→∞ STxn = St whenever {xn} is
a sequence in M such that
limn→∞ Txn = limn→∞ Sxn = t for some t ∈M .

vi) compatible mappings of type (A) [11], if

lim
n→∞

d(TSxn, SSxn) = 0

and
lim
n→∞

d(STxn, TTxn) = 0,

whenever {xn} is a sequence in M such that limn→∞ Txn = limn→∞ Sxn = t for some t ∈M .

vii) compatible mappings of type (B) [19], if

lim
n→∞

d(STxn, TTxn) ≤ 1

2
[ lim
n→∞

d(STxn, St) + lim
n→∞

d(St, SSxn)]

and

lim
n→∞

d(TSxn, SSxn) ≤ 1

2
[ lim
n→∞

d(TSxn, T t) + lim
n→∞

d(Tt, TTxn)],

whenever {xn} is a sequence in M such that limn→∞ Txn = limn→∞ Sxn = t for some t ∈M .

Every weakly commuting pair of maps is compatible but the converse is not true (see [9]). Weakly
commuting maps are of compatible of type (A) but the converse is not true (see [11]). However,
compatible maps and compatible maps of type (A) are independent (see [11], [13]). Every compatible
mappings of type (A) are compatible mappings of type (B) but the converse need not be true (see
[19]). Clearly, every continuous pair of self maps is reciprocal continuous, but its converse need not
to be true (see [18]).

2. Main Results

We begin the section with a following result which generalizes and extends the corresponding results
of [5], [6] and [17].

Proposition 2.1. Let M be a closed convex subset of a complete convex metric space (X, d), and f ,
T : M →M self mappings. Suppose that f, T satisfies

d(Tx, Ty) ≤ a d(fx, fy) + (1− a) max{d(fx, Tx), d(fy, Ty), b d(fx, Ty),

c d(fy, Tx)} (2.1)

for all x, y ∈M , where 0 < a < 1, 0 ≤ b < 1, and 0 ≤ c ≤ 1
2
. Further, if f and T are compatible on

M , f is continuous then Tw = fw for some w ∈ M if and only if A = ∩{TKn : n ∈ N} 6= ∅, where
Kn = {x ∈M : d(fx, Tx) ≤ 1

n
}.
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Proof . Suppose that Tw = fw for some w ∈M . Then w ∈ Kn for all n and thus Tw ∈ TKn ⊆ TKn

for all n. Hence Tw ∈ A so that A is nonempty.
Assume that A is nonempty. If w ∈ A for each n, then there is a yn ∈ TKn such that d(w, yn) < 1

n
.

Hence for each n, there is an xn ∈ Kn such that yn = Txn and d(w, Txn) < 1
n

for all n and so
Txn → w. Since xn ∈ Kn, we have d(fxn, Txn) ≤ 1

n
. Thus lim fxn = limTxn = w. Since T and f

are compatible mappings, we have
d(fTxn, T fxn)→ 0.

Since f is continuous, we have
ffxn, T fxn, fTxn → fw.

Now, consider

d(Tw, Tfxn) ≤ a d(fw, ffxn) + (1− a) max{d(fw, Tw), d(ffxn, T fxn),

b d(fw, Tfxn), c d(ffxn, Tw)}

Taking n→∞, we have

d(Tw, fw) ≤ (1− a) max{d(fw, Tw), 0, 0, 0}
= (1− a)d(fw, Tw)

a contradiction. Thus Tw = fw. �

The following result, extends and generalizes the corresponding results of [2], [3], [4], [5], [6], [10],
[14] and [17].

Theorem 2.2. Let C be a closed convex subset of a complete convex metric space (X, d), and f ,
T : C → C self mappings and satisfies condition (2.1). If f and T are compatible on C, T (C) ⊆ f(C)
and f is affine and continuous, then T and f have a unique common fixed point in C.

Proof . Let x = x◦ be an arbitrary point of C. Let x1, x2, x3 be points in C such that fx1 = Tx0,
fx2 = Tx1, fx3 = Tx2, so that Txr−1 = fxr, for r = 1, 2, 3, as T (C) ⊆ f(C). Consider

d(Txr, fxr) = d(Txr, Txr−1)

≤ a d(fxr, fxr−1) + (1− a) max{d(fxr, Txr), d(fxr−1, Txr−1),

b d(fxr, Txr−1), c d(fxr−1, Txr)}
≤ a d(Txr−1, fxr−1) + (1− a) max{d(fxr, Txr), d(fxr−1, Txr−1),

b d(fxr, fxr), c [d(fxr−1, Txr−1) + d(Txr−1, Txr)]}
= a d(Txr−1, fxr−1) + (1− a) max{d(fxr, Txr), d(fxr−1, Txr−1),

c [d(fxr−1, Txr−1) + d(fxr, Txr)]}.

If d(Txr−1, fxr−1) < d(Txr, fxr), then we have

d(Txr, fxr) < a d(Txr, fxr) + (1− a) max{d(fxr, Txr), 2c {d(fxr, Txr)}}
= d(Txr, fxr),

a contradiction. Thus, we have

d(Txr, fxr) ≤ d(Txr−1, fxr−1) ≤ d(Tx0, fx0).
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So, it follows that

d(Tx2, fx1) = d(Tx2, Tx0)

≤ a d(fx2, fx0) + (1− a) max{d(fx2, Tx2), d(fx0, Tx0),

b d(fx2, Tx0), c d(fx0, Tx2)}
≤ a [d(fx2, fx1) + d(fx1, fx0)] + (1− a) max{d(fx2, Tx2), d(fx0, Tx0),

b d(fx2, Tx0), c [d(Tx0, fx0) + d(Tx2, Tx0)]}
≤ a [d(Tx0, fx0) + d(Tx0, fx0)] + (1− a) max{d(fx0, Tx0), d(fx0, Tx0),

b d(Tx0, fx0), c [d(Tx0, fx0) + d(Tx2, Tx0)]}.

Hence, we have

d(Tx2, fx1) = d(Tx2, Tx0) ≤
1 + 3a

1 + a
d(Tx0, fx0).

Let z = W (x2, x3,
1
2
). Since C is convex and f is affine, fz = fW (x2, x3,

1
2
) = W (fx2, fx3,

1
2
) =

W (Tx1, Tx2,
1
2
). Therefore,

d(fz, fx1) = d(W (Tx1, Tx2,
1

2
), Tx0)

≤ 1

2
d(Tx1, Tx0) +

1

2
d(Tx2, Tx0)

≤ 1

2
[d(Tx1, fx1) +

1 + 3a

1 + a
d(Tx0, fx0)]

≤ 1

2
[d(Tx0, fx0) +

1 + 3a

1 + a
d(Tx0, fx0)]

=
1 + 2a

1 + a
d(Tx0, fx0),

d(fz, fx2) = d(W (Tx1, Tx2,
1

2
), Tx1) ≤

1

2
d(Tx1, Tx1) +

1

2
d(Tx2, Tx1) ≤

1

2
d(Tx0, fx0)

and

d(fz, fx3) = d(W (Tx1, Tx2,
1

2
), Tx2) ≤

1

2
d(Tx1, Tx2) +

1

2
d(Tx2, Tx2) ≤

1

2
d(Tx0, fx0).

Consider

d(Tz, fz)

= d

(
Tz,W

(
Tx1, Tx2,

1

2

))
≤ 1

2
d(Tz, Tx1) +

1

2
d(Tz, Tx2)

≤ 1

2
[a d(fz, fx1) + (1− a) max{d(fz, Tz), d(fx1, Tx1), b d(fz, Tx1),

c d(fx1, T z)}] +
1

2
[a d(fz, fx2) + (1− a) max{d(fz, Tz), d(fx2, Tx2),

b d(fz, Tx2), c d(fx2, T z)}]



222 Chandok

and then

d(Tz, fz)

≤ 1

2
[a d(fz, fx1) + (1− a) max{d(fz, Tz), d(fx2, Tx2), b d(fz, Tx1),

c [d(fx1, fz) + d(fz, Tz)]}] +
1

2
[a d(fz, fx2) + (1− a) max{d(fz, Tz),

d(fx2, Tx2), b d(fz, Tx2), c [d(fx2, fz) + d(fz, Tz)]}]

=
1

2
[a d(fz, fx1) + (1− a) max{d(fz, Tz), d(fx2, Tx2), b d(fz, fx2),

c [d(fx1, fz) + d(fz, Tz)]}] +
1

2
[a d(fz, fx2) + (1− a) max{d(fz, Tz),

d(fx2, Tx2), b d(fz, fx3), c [d(fx2, fz) + d(fz, Tz)]}]

≤ 1

2

[a(2a+ 1)

a+ 1
d(Tx0, fx0) + (1− a) max

{
d(fz, Tz), d(Tx0, fx0),

b

2
d(Tx0, fx0),

c

[
2a+ 1

a+ 1
d(Tx0, fx0) + d(fz, Tz)

]}]
+

1

2
[
a

2
d(Tx0, fx0) + (1− a) max{d(fz, Tz),

d(Tx0, fx0),
b

2
d(Tx0, fx0), c [

1

2
d(Tx0, fx0) + d(fz, Tz)]}]

≤ 5a2 + 3a

4(a+ 1)
d(Tx0, fx0) + (1− a) max

{
d(fz, Tz), d(Tx0, fx0),

c

[
2a+ 1

a+ 1
d(Tx0, fx0) + d(fz, Tz)

]}
Now the following three possible cases may arise.
Case 1. If d(fz, Tz) is maximum, then we have

d(Tz, fz) ≤ 5a2 + 3a

4(a+ 1)
d(Tx0, fx0) + (1− a) d(fz, Tz)

≤ 5a+ 3

4(a+ 1)
d(Tx0, fx0)

Case 2. If d(Tx0, fx0) is maximum, then we have

d(Tz, fz) ≤ 5a2 + 3a

4(a+ 1)
d(Tx0, fx0) + (1− a) d(Tx0, fx0)

≤ a2 + 3a+ 4

4(a+ 1)
d(Tx0, fx0)

Case 3. If c [2a+1
a+1

d(Tx0, fx0) + d(fz, Tz)] is maximum, then we have

d(Tz, fz) ≤ 5a2 + 3a

4(a+ 1)
d(Tx0, fx0) + (1− a) c [

2a+ 1

a+ 1
d(Tx0, fx0) + d(fz, Tz)]

≤ 5a2 + 3a+ 4c− 8a2c+ 4ac

4(a+ 1)(1− c+ ac)
d(Tx0, fx0)
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and so from the above cases we have

d(Tz, fz) ≤ λ d(Tx0, fx0)

where

λ = max{ 5a+ 3

4(a+ 1)
,
a2 + 3a+ 4

4(a+ 1)
,
5a2 + 3a+ 4c− 8a2c+ 4ac

4(a+ 1)(1− c+ ac)
} < 1.

We therefore have

inf{d(Tz, fz) : z = W (x2, x3,
1

2
} ≤ λ inf{d(Tx, fx) : x ∈ C}

and since

inf{d(Tz, fz) : z = W (x2, x3,
1

2
} ≥ inf{d(Tx, fx) : x ∈ C},

it follows that inf{d(Tx, fx) : x ∈ C} = 0. Then the sets defined by Kn = {x ∈ C : d(Tx, fx) ≤ 1
n
},

for n = 1, 2, . . . must be nonempty and K1 ⊇ K2 ⊇ . . . ⊇ Kn ⊇ . . .. Thus cl(TKn) is nonempty for
n = 1, 2 . . . and cl(TK1) ⊇ cl(TK2) ⊇ . . . ⊇ cl(TKn) ⊇ . . .. Further, for all x, y ∈ Kn,

d(Tx, Ty) ≤ a d(fx, fy) + (1− a) max{d(fx, Tx), d(fy, Ty), b d(fx, Ty),

c d(fy, Tx)}

Case 1. If d(fx, Tx) or d(fy, Ty) is maximum, then we have

d(Tx, Ty) ≤ a d(fx, fy) + (1− a)
1

n

≤ a{d(fx, Tx) + d(Tx, Ty) + d(Ty, fy)}+
1− a
n

=
a+ 1

n
+ ad(Tx, Ty),

which implies that d(Tx, Ty) ≤ a+1
(1−a)n .

Case 2. If b d(fx, Ty) is maximum, then we have

d(Tx, Ty) ≤ a d(fx, fy) + (1− a) b d(fx, Ty)

≤ a d(fx, fy) + (1− a)b {d(fx, fy) + d(fy, Ty)}

≤ (a+ (1− a)b) d(fx, fy) + (1− a)b
1

n

≤ (a+ (1− a)b){d(fx, Tx) + d(Tx, Ty) + d(Ty, fy)}+
(1− a)b

n

≤ 2a+ 3(1− a)b

n
+ (a+ (1− a)b) d(Tx, Ty),

which implies that d(Tx, Ty) < 2a+3(1−a)b
n(1−(a+(1−a)b)) .

Case 3. If c d(fy, Tx) is maximum, then we have

d(Tx, Ty) ≤ a d(fx, fy) + (1− a) c d(fy, Tx)

≤ a d(fx, fy) + (1− a)c {d(fx, fy) + d(fx, Tx)}

≤ (a+ (1− a)c) d(fx, fy) + (1− a)c
1

n

≤ (a+ (1− a)c){d(fx, Tx) + d(Tx, Ty) + d(Ty, fy)}+
(1− a)c

n

≤ 2a+ 3(1− a)c

n
+ (a+ (1− a)c) d(Tx, Ty),
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which implies that d(Tx, Ty) < 2a+3(1−a)c
n(1−(a+(1−a)c)) .

From the above three cases, we have

d(Tx, Ty) ≤ max{ a+ 1

(1− a)n
,

2a+ 3(1− a)b

n(1− (a+ (1− a)b))
,

2a+ 3(1− a)c

n(1− (a+ (1− a)c))
}.

Thus
lim diam(TKn) = lim diam(cl(TKn)) = 0,

i.e. cl(TKn) is a decreasing sequence of nonempty closed subsets of C whose sequence {diam(cl(TKn))}
of the diameters converges to zero and by Cantor’s Intersection Theorem, A = ∩∞n=1{cl(TKn) : n ∈ N}
contains exactly one point w(say). Thus from Proposition 2.1, fw = Tw.

Now, consider

d(Tw, Txn) ≤ a d(fw, fxn) + (1− a) max{d(fw, Tw), d(fxn, Txn), b d(fw, Txn),

c d(fxn, Tw)}.

Taking n→∞, we have

d(Tw,w) ≤ a d(fw,w) + (1− a) max{d(fw, Tw), d(w,w), b d(fw,w), c d(w, Tw)}
= [a+ (1− a)b] d(Tw,w)

< d(Tw,w), (since [a+ (1− a)b] < 1)

a contradiction. Thus Tw = w, so that Tw = w = fw.
Now we prove the uniqueness. Suppose that v and w are common fixed points of T and f i.e.,

there exists v ∈ C such that Tv = v = fv. Then

d(v, w) = d(Tv, Tw)

≤ a d(fv, fw) + (1− a) max{d(fv, Tv), d(fw, Tw), b d(fv, Tw), c d(fw, Tv)}
= [a+ (1− a)b] d(w, v)

< d(v, w).

This gives that v = w. �

Corollary 2.3. Let C be a closed convex subset of a complete convex metric space (X, d), and f ,
T : C → C self mappings and satisfies

d(Tx, Ty) ≤ a d(fx, fy) + (1− a) max{d(fx, Tx), d(fy, Ty)}

for all x, y ∈ C, where 0 < a < 1. If T (C) ⊆ f(C) and f is affine and continuous, then T and f have
a unique common fixed point in C.

Corollary 2.4. Let C be a closed convex subset of a complete convex metric space (X, d), and
T : C → C self mappings and satisfies

d(Tx, Ty) ≤ a d(x, y) + (1− a) max{d(x, Tx), d(y, Ty)}

for all x, y ∈ C, where 0 < a < 1. Then T has a unique fixed point in C.

Example 2.5. Let X = R with the usual metric d(x, y) = |x − y|. Define self maps T, f : X → X
by Tx = 2+x

3
and fx = 3x−1

2
, x ∈ X. Clearly, f is continuous and affine, but neither nonexpansive

nor linear. Here T and f are compatible mappings on X. Now for any x, y ∈ X, d(Tx, Ty) = |x−y
3
| =

2
9
d(fx, fy) and {1} is a unique common fixed point of T and f .
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By using Proposition 2.1 and Theorem 2.2, we have a following result which extends and gener-
alizes the corresponding results of [6], [10], [14] and [17].

Theorem 2.6. Let C be a closed convex subset of a complete convex metric space (X, d), and f ,
T : C → C self mappings and satisfies condition (2.1). If f and T are compatible on C, T (C) ⊆ f(C)
and f is affine and continuous, then T and f have a unique common fixed point in C if and only if

A = ∩{TKn : n ∈ N} 6= ∅,

where

Kn = {x ∈ C : d(fx, Tx) ≤ 1

n
}.

In the following result, we prove a common fixed point theorem for a compatible pair of self maps
which are reciprocal continuous.

Theorem 2.7. Let C be a closed convex subset of a complete convex metric space (X, d), and f ,
T : C → C self mappings and satisfies condition (2.1). If f and T are compatible and reciprocal
continuous on C, T (C) ⊆ f(C) and f is affine, then T and f have a unique fixed point in C if and
only if

A = ∩{TKn : n ∈ N} 6= ∅,

where

Kn = {x ∈ C : d(fx, Tx) ≤ 1

n
}.

Proof . If w is a common fixed point of T and f , then A 6= ∅ follows from Proposition 2.1.
Conversely, assume that A is nonempty. If w ∈ A for each n, then there is a yn ∈ TKn such that
d(w, yn) < 1

n
. Hence for each n, there is an xn ∈ Kn such that yn = Txn and d(w, Txn) < 1

n
for all n

and so Txn → w. Since xn ∈ Kn, we have d(fxn, Txn) ≤ 1
n
. Thus lim fxn = limTxn = w. Since T

and f are reciprocally continuous mappings, limTfxn = Tw and lim fTxn = Tw. Now since T and
f are compatible mappings, Tw = limTfxn = lim fTxn = fw. Now proceeding as in Theorem 2.2,
we can prove that w is a common fixed point of T and f . �

Example 2.8. Let X = R with usual metric d(x, y) = |x− y|. Define self maps T, f : X → X by

Tx =

{
1
2

1+x
2

,
,
if x ≤ 0 and x = 5

2

if x > 0 and x 6= 5
2

and fx = 3x−1
2

, x ∈ X. Clearly, f is affine, but neither nonexpansive nor linear. Here T and f are
reciprocal continuous and compatible mappings on X. Further, for any x, y ∈ X,

d(Tx, Ty) = |x− y
2
| = 1

3
d(fx, fy)

and {1} is a unique common fixed point of T and f .

The following result will be needed in the proof of our next theorem.

Proposition 2.9. If M is a subset of a convex metric space (X, d), u ∈ X and y ∈ PM(u), then the
line segment {W (y, u, λ) : 0 < λ < 1} and the set M are disjoint.
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Proof . Since y ∈ PM(u), consider

d(u,W (y, u, λ)) ≤ λ d(u, y)

< d(u,M), for every 0 < λ < 1.

This implies that W (y, u, λ) /∈M for any λ, 0 < λ < 1. Therefore the line segment {W (y, u, λ) : 0 <
λ < 1} and the set M are disjoint. �

Theorem 2.10. Let M be a subset of a complete convex metric space (X, d) and T, S are self map-
pings of M such that u ∈ F (S) ∩ F (T ) for some u ∈ X and T (∂M ∩M) ⊆M . Suppose that PM(u)
is nonempty, closed and convex, S is affine, and continuous on PM(u) and T (PM(u)) ⊆ S(PM(u)).
If (T, S) is compatible and satisfies

d(Tx, Ty) ≤


d(Sx, Sy), if y = u

a d(Sx, Sy) + (1− a) max{d(Sx, Tx), d(Sy, Ty),

b d(Sx, Ty), c d(Sy, Tx)} if y ∈ PM(u),

(2.2)

then PM(u) ∩ F (S) ∩ F (T ) 6= ∅.

Proof . Let x ∈ PM(u). For any λ ∈ (0, 1), we have

d(W (u, x, λ), u) ≤ λd(u, u) + (1− λ)d(x, u) = (1− λ)d(x, u) < dist(u,M).

It follows from Proposition 2.9 that the open line segment {W (u, x, λ) : 0 < λ < 1} and the set M
are disjoint. Thus x is not in the interior of M and so x ∈ ∂M ∩M . Since T (∂M ∩M) ⊂ M , Tx
must be in M . Also Sx ∈ PM(u), u ∈ F (T ) ∩ F (S), and (T, S) satisfy (2.2), we have

d(Tx, u) = d(Tx, Tu) ≤ d(Sx, Su) = d(Sx, u) ≤ dist(u,M).

This implies that Tx ∈ PM(u). Moreover, T (PM(u)) ⊆ S(PM(u)). Hence the result follows from
Theorem 2.2. �

Remark 2.11. Theorem 2.10 extends and generalizes the corresponding results of [12], [15], [16],
[20], [21], [22] and [23].

We now prove the existence of common fixed points for a pair of compatible mappings of type (B),
and obtain a result on the existence of common fixed point for a pair of compatible mappings of type
(A). The following result will be used in the sequel which generalizes and extends the corresponding
result of Pathak and Khan [19].

Proposition 2.12. Let T and f be self-maps of a metric space (X, d) and are compatible mappings
of type (B). Suppose that lim fxn = limTxn = t, for some t ∈ X. If f is continuous at t, then
limTTxn = ft.

Proof . Suppose that f is continuous at t. Since lim fxn = limTxn = t for some t ∈ X, we have
ffxn, fTxn → ft. Since f and T are compatible of type (B), we have

lim d(ft, TTxn) = lim d(fTxn, TTxn)

≤ 1

2
[lim d(fTxn, ft) + lim d(ft, ffxn)]

= d(ft, ft)

= 0.
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Therefore, limTTxn = ft. �

Proposition 2.1 remains true, if we replace compatible mappings by compatible mappings of type
(B). The following result extends the corresponding result of [17].

Proposition 2.13. Let M be a closed convex subset of a complete convex metric space (X, d), T
and f are self-maps of M satisfying condition (2.1) and compatible mappings of type (B). If f is
continuous then Tw = fw for some w ∈ X if and only if A = ∩{TKn : n ∈ N} 6= ∅, where
Kn = {x ∈ X : d(fx, Tx) ≤ 1

n
}.

Proof . Proceeding as in Proposition 2.1 and using Proposition 2.12, we get the result. �

Proceeding as Theorem 2.2 and using Proposition 2.13, we have the following result.

Theorem 2.14. Let M be a closed convex subset of a complete convex metric space (X, d) and T and
f are self-maps of M , satisfying (2.1) and are compatible mappings of type (B). If f is continuous
and affine on M and T (M) ⊆ f(M), then T and f have a unique common fixed point in M .

Theorem 2.15. Let M be a closed convex subset of a complete convex metric space (X, d) and T
and f are self-maps of M , satisfying (2.1) and are compatible mappings of type (B). If f is continuous
and affine on M and T (M) ⊆ f(M), then T and f have a unique common fixed point in M if and
only if A = ∩{TKn : n ∈ N} 6= ∅, where Kn = {x ∈ X : d(fx, Tx) ≤ 1

n
}.

Since compatible mappings of type (A) implies compatible mappings of type (B), we have the
following result.

Corollary 2.16. Let M be a closed convex subset of a complete convex metric space (X, d) and T
and f are self-maps of M , satisfying (2.1) and are compatible mappings of type (A). If f is continuous
and affine on M and T (M) ⊆ f(M), then T and f have a unique common fixed point in M if and
only if A = ∩{TKn : n ∈ N} 6= ∅, where Kn = {x ∈ X : d(fx, Tx) ≤ 1

n
}.

Remark 2.17. Theorems 2.14 and 2.15 generalize and extend the corresponding results of [8], [17]
and [19].
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