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Abstract

In [12], Park introduced the quadratic ρ-functional inequalities

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (0.1)

≤
∥∥∥∥ρ(2f

(
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)
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(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥ ,
where ρ is a fixed complex number with |ρ| < 1, and∥∥∥∥2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

∥∥∥∥ (0.2)

≤ ‖ρ(f(x+ y) + f(x− y)− 2f(x)− 2f(y))‖,

where ρ is a fixed complex number with |ρ| < 1
2
.

In this paper, we prove the Hyers-Ulam stability of the quadratic ρ-functional inequalities (0.1)
and (0.2) in β-homogeneous complex Banach spaces and prove the Hyers-Ulam stability of quadratic
ρ-functional equations associated with the quadratic ρ-functional inequalities (0.1) and (0.2) in β-
homogeneous complex Banach spaces.
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1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [18] concerning the
stability of group homomorphisms.

The functional equation f(x+y) = f(x)+f(y) is called the Cauchy equation. In particular, every
solution of the Cauchy equation is said to be an additive mapping. Hyers [8] gave a first affirmative
partial answer to the question of Ulam for Banach spaces. Hyers’ Theorem was generalized by Aoki
[1] for additive mappings and by Rassias [14] for linear mappings by considering an unbounded
Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing
the unbounded Cauchy difference by a general control function in the spirit of Rassias’ approach.

The functional equation f
(
x+y
2

)
= 1

2
f(x) + 1

2
f(y) is called the Jensen equation.

The functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y)

is called the quadratic functional equation. In particular, every solution of the quadratic functional
equation is said to be a quadratic mapping. The stability of quadratic functional equation was
proved by Skof [17] for mappings f : E1 → E2, where E1 is a normed space and E2 is a Banach
space. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domain E1 is replaced
by an Abelian group.

The functional equation

2f

(
x+ y

2

)
+ 2

(
x− y

2

)
= f(x) + f(y)

is called a Jensen type quadratic equation. See [9, 10, 11] for the stability problems.
In [6], Gilányi showed that if f satisfies the functional inequality

‖2f(x) + 2f(y)− f(xy−1)‖ ≤ ‖f(xy)‖ (1.1)

then f satisfies the Jordan-von Neumann functional equation

2f(x) + 2f(y) = f(xy) + f(xy−1).

See also [15]. Gilányi [7] and Fechner [4] proved the Hyers-Ulam stability of the functional inequality
(1.1). Park, Cho and Han [13] proved the Hyers-Ulam stability of additive functional inequalities.

Definition 1.1. Let X be a linear space. A nonnegative valued function ‖ · ‖ is an F -norm if it
satisfies the following conditions:

(FN1) ‖x‖ = 0 if and only if x = 0;
(FN2) ‖λx‖ = ‖x‖ for all x ∈ X and all λ with |λ| = 1;
(FN3) ‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y ∈ X;
(FN4) ‖λnx‖ → 0 provided λn → 0;
(FN5) ‖λxn‖ → 0 provided xn → 0.
Then (X, ‖ · ‖) is called an F ∗-space. An F -space is a complete F ∗-space.

An F -norm is called β-homogeneous (β > 0) if ‖tx‖ = |t|β‖x‖ for all x ∈ X and all t ∈ C (see
[16]).

In Section 2, we investigate the quadratic ρ-functional inequality (0.1) and prove the Hyers-Ulam
stability of the quadratic ρ-functional inequality (0.1) in β-homogeneous complex Banach spaces.
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We moreover prove the Hyers-Ulam stability of a quadratic ρ-functional equation associated with
the quadratic ρ-functional inequality (0.1) in β-homogeneous complex Banach spaces.

In Section 3, we investigate the quadratic ρ-functional inequality (0.2) and prove the Hyers-Ulam
stability of the quadratic ρ-functional inequality (0.2) in β-homogeneous complex Banach spaces.
We moreover prove the Hyers-Ulam stability of a quadratic ρ-functional equation associated with
the quadratic ρ-functional inequality (0.2) in β-homogeneous complex Banach spaces.

Throughout this paper, let β1, β2 be positive real numbers with β1 ≤ 1 and β2 ≤ 1. Assume that
X is a β1-homogeneous real or complex normed space with norm ‖·‖ and that Y is a β2-homogeneous
complex Banach space with norm ‖ · ‖.

2. Quadratic ρ-functional inequality (0.1)

Throughout this section, assume that ρ is a fixed complex number with |ρ| < 1.
In this section, we investigate the quadratic ρ-functional inequality (0.1) in β-homogeneous com-

plex Banach spaces.

Lemma 2.1. A mapping f : X → Y satisfies

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.1)

≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
for all x, y ∈ X if anf only if f : X → Y is quadratic.

Proof . Assume that f : X → Y satisfies (2.1).
Letting x = y = 0 in (2.1), we get ‖2f(0)‖ ≤ |ρ|β2‖2f(0)‖. So f(0) = 0.
Letting y = x in (2.1), we get ‖f(2x)− 4f(x)‖ ≤ 0 and so f(2x) = 4f(x) for all x ∈ X. Thus

f
(x

2

)
=

1

4
f(x) (2.2)

for all x ∈ X.
It follows from (2.1) and (2.2) that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
=
|ρ|β2
2β2
‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

and so
f(x+ y) + f(x− y) = 2f(x) + 2f(y)

for all x, y ∈ X.
The converse is obviously true. �

Corollary 2.2. A mapping f : X → Y satisfies

f(x+ y) + f(x− y)− 2f(x)− 2f(y) (2.3)

= ρ

(
2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)
for all x, y ∈ X if and only if f : X → Y is quadratic.
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The functional equation (2.3) is called a quadratic ρ-functional equation.
We prove the Hyers-Ulam stability of the quadratic ρ-functional inequality (2.1) in β-homogeneous

complex Banach spaces.

Theorem 2.3. Let r > 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y be a mapping
such that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖ (2.4)

≤
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥+ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

2β1r − 4β2
‖x‖r (2.5)

for all x ∈ X.

Proof . Letting x = y = 0 in (2.4), we get ‖2f(0)‖ ≤ |ρ|β2‖2f(0)‖. So f(0) = 0.
Letting y = x in (2.4), we get

‖f(2x)− 4f(x)‖ ≤ 2θ‖x‖r (2.6)

for all x ∈ X. So
∥∥f(x)− 4f

(
x
2

)∥∥ ≤ 2
2β1r

θ‖x‖r for all x ∈ X. Hence

∥∥∥4lf
( x

2l

)
− 4mf

( x

2m

)∥∥∥ ≤ m−1∑
j=l

∥∥∥4jf
( x

2j

)
− 4j+1f

( x

2j+1

)∥∥∥
≤ 2

2β1r

m−1∑
j=l

4β2j

2β1rj
θ‖x‖r (2.7)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.7) that the
sequence {4nf( x

2n
)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence {4nf( x

2n
)}

converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

4nf(
x

2n
)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.7), we get (2.5).
It follows from (2.4) that

‖h(x+ y) + h(x− y)− 2h(x)− 2h(y)‖
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n→∞
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for all x, y ∈ X. So

‖h(x+ y) + h(x− y)− 2h(x)− 2h(y)‖ ≤
∥∥∥∥ρ(2h

(
x+ y

2

)
+ 2h

(
x− y

2

)
− h(x)− h(y)

)∥∥∥∥
for all x, y ∈ X. By Lemma 2.1, the mapping h : X → Y is quadratic.

Now, let T : X → Y be another quadratic mapping satisfying (2.5). Then we have

‖h(x)− T (x)‖ = 4β2n
∥∥∥h( x

2n

)
− T

( x
2n

)∥∥∥
≤ 4β2n

(∥∥∥h( x
2n

)
− f

( x
2n

)∥∥∥+
∥∥∥T ( x

2n

)
− f

( x
2n

)∥∥∥)
≤ 4 · 4β2n

(2β1r − 4β2)2β1nr
θ‖x‖r,

which tends to zero as n → ∞ for all x ∈ X. So we can conclude that h(x) = T (x) for all x ∈ X.
This proves the uniqueness of h. Thus the mapping h : X → Y is a unique quadratic mapping
satisfying (2.5). �

Theorem 2.4. Let r < 2β2
β1

and θ be positive real numbers, and let f : X → Y be a mapping

satisfying (2.4). Then there exists a unique quadratic mapping h : X → Y such that

‖f(x)− h(x)‖ ≤ 2θ

4β2 − 2β1r
‖x‖r (2.8)

for all x ∈ X.

Proof . It follows from (2.6) that
∥∥f(x)− 1

4
f(2x)

∥∥ ≤ 2θ
4β2
‖x‖r for all x ∈ X. Hence∥∥∥∥ 1

4l
f(2lx)− 1

4m
f(2mx)

∥∥∥∥ ≤ m−1∑
j=l

∥∥∥∥ 1

4j
f(2jx)− 1

4j+1
f(2j+1x)

∥∥∥∥
≤

m−1∑
j=l

2β1rj

4β2j
2θ

4β2
‖x‖r (2.9)

for all nonnegative integers m and l with m > l and all x ∈ X. It follows from (2.9) that the sequence
{ 1
4n
f(2nx)} is a Cauchy sequence for all x ∈ X. Since Y is complete, the sequence { 1

4n
f(2nx)}

converges. So one can define the mapping h : X → Y by

h(x) := lim
n→∞

1

4n
f(2nx)

for all x ∈ X. Moreover, letting l = 0 and passing the limit m→∞ in (2.9), we get (2.8).
The rest of the proof is similar to the proof of Theorem 2.3. �

By the triangle inequality, we have

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)‖

−
∥∥∥∥ρ(2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥
≤ ‖f(x+ y) + f(x− y)− 2f(x)− 2f(y)

−ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥ .
As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for the quadratic
ρ-functional equation (2.3) in β-homogeneous complex Banach spaces.
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Corollary 2.5. Let r > 2β2
β1

and θ be nonnegative real numbers, and let f : X → Y be a mapping
such that

‖f(x+ y) + f(x− y)− 2f(x)− 2f(y) (2.10)

−ρ
(

2f

(
x+ y

2

)
+ 2f

(
x− y

2

)
− f(x)− f(y)

)∥∥∥∥ ≤ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X. Then there exists a unique quadratic mapping h : X → Y satisfying (2.5).

Corollary 2.6. Let r < 2β2
β1

and θ be positive real numbers, and let f : X → Y be a mapping

satisfying (2.10). Then there exists a unique quadratic mapping h : X → Y satisfying (2.8).

Remark 2.7. If ρ is a real number such that −1 < ρ < 1 and Y is a β2-homogeneous real Banach
space, then all the assertions in this section remain valid.
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