Int. J. Nonlinear Anal. Appl. 6 (2015) No. 2, 21-26 ISSN: 2008-6822 (electronic) http://dx.doi.org/10.22075/ijnaa.2015.229

Quadratic ρ -functional inequalities in β -homogeneous normed spaces

Choonkil Park^a, Sang Og Kim^b, Jung Rye Lee^{c,*}, Dong Yun Shin^d

^aDepartment of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, Korea

^bDepartment of Mathematics, Hallym University, Chuncheon 200-7021, Korea

^cDepartment of Mathematics, Daejin University, Kyeonggi 487-711, Korea

^dDepartment of Mathematics, University of Seoul, Seoul 130-743, Korea

(Communicated by M. Eshaghi Gordji)

Abstract

In [12], Park introduced the quadratic ρ -functional inequalities

$$\|f(x+y) + f(x-y) - 2f(x) - 2f(y)\|$$

$$\leq \left\| \rho \left(2f \left(\frac{x+y}{2} \right) + 2f \left(\frac{x-y}{2} \right) - f(x) - f(y) \right) \right\|,$$
(0.1)

where ρ is a fixed complex number with $|\rho| < 1$, and

$$\left\| 2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) - f(x) - f(y) \right\|$$

$$\leq \left\| \rho(f(x+y) + f(x-y) - 2f(x) - 2f(y)) \right\|,$$
 (0.2)

where ρ is a fixed complex number with $|\rho| < \frac{1}{2}$.

In this paper, we prove the Hyers-Ulam stability of the quadratic ρ -functional inequalities (0.1) and (0.2) in β -homogeneous complex Banach spaces and prove the Hyers-Ulam stability of quadratic ρ -functional equations associated with the quadratic ρ -functional inequalities (0.1) and (0.2) in β homogeneous complex Banach spaces.

Keywords: Hyers-Ulam stability; β -homogeneous space; quadratic ρ -functional equation; quadratic ρ -functional inequality.

2010 MSC: Primary 39B62, 39B72; Secondary 39B52, 39B8.

*Corresponding author

Email addresses: baak@hanyang.ac.kr (Choonkil Park), sokim@hallym.ac.kr (Sang Og Kim), jrlee@daejin.ac.kr (Jung Rye Lee), dyshin@uos.ac.kr (Dong Yun Shin)

1. Introduction and preliminaries

The stability problem of functional equations originated from a question of Ulam [18] concerning the stability of group homomorphisms.

The functional equation f(x+y) = f(x) + f(y) is called the *Cauchy equation*. In particular, every solution of the Cauchy equation is said to be an *additive mapping*. Hyers [8] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyers' Theorem was generalized by Aoki [1] for additive mappings and by Rassias [14] for linear mappings by considering an unbounded Cauchy difference. A generalization of the Rassias theorem was obtained by Găvruta [5] by replacing the unbounded Cauchy difference by a general control function in the spirit of Rassias' approach.

The functional equation $f\left(\frac{x+y}{2}\right) = \frac{1}{2}f(x) + \frac{1}{2}f(y)$ is called the *Jensen equation*.

The functional equation

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

is called the quadratic functional equation. In particular, every solution of the quadratic functional equation is said to be a *quadratic mapping*. The stability of quadratic functional equation was proved by Skof [17] for mappings $f : E_1 \to E_2$, where E_1 is a normed space and E_2 is a Banach space. Cholewa [3] noticed that the theorem of Skof is still true if the relevant domain E_1 is replaced by an Abelian group.

The functional equation

$$2f\left(\frac{x+y}{2}\right) + 2\left(\frac{x-y}{2}\right) = f(x) + f(y)$$

is called a Jensen type quadratic equation. See [9, 10, 11] for the stability problems.

In [6], Gilányi showed that if f satisfies the functional inequality

$$||2f(x) + 2f(y) - f(xy^{-1})|| \le ||f(xy)||$$
(1.1)

then f satisfies the Jordan-von Neumann functional equation

$$2f(x) + 2f(y) = f(xy) + f(xy^{-1}).$$

See also [15]. Gilányi [7] and Fechner [4] proved the Hyers-Ulam stability of the functional inequality (1.1). Park, Cho and Han [13] proved the Hyers-Ulam stability of additive functional inequalities.

Definition 1.1. Let X be a linear space. A nonnegative valued function $\|\cdot\|$ is an F-norm if it satisfies the following conditions:

 $(FN_1) ||x|| = 0$ if and only if x = 0;

(FN₂) $\|\lambda x\| = \|x\|$ for all $x \in X$ and all λ with $|\lambda| = 1$;

(FN₃) $||x + y|| \le ||x|| + ||y||$ for all $x, y \in X$;

(FN₄) $\|\lambda_n x\| \to 0$ provided $\lambda_n \to 0$;

(FN₅) $\|\lambda x_n\| \to 0$ provided $x_n \to 0$.

Then $(X, \|\cdot\|)$ is called an F^* -space. An F-space is a complete F^* -space.

An *F*-norm is called β -homogeneous ($\beta > 0$) if $||tx|| = |t|^{\beta} ||x||$ for all $x \in X$ and all $t \in \mathbb{C}$ (see [16]).

In Section 2, we investigate the quadratic ρ -functional inequality (0.1) and prove the Hyers-Ulam stability of the quadratic ρ -functional inequality (0.1) in β -homogeneous complex Banach spaces.

We moreover prove the Hyers-Ulam stability of a quadratic ρ -functional equation associated with the quadratic ρ -functional inequality (0.1) in β -homogeneous complex Banach spaces.

In Section 3, we investigate the quadratic ρ -functional inequality (0.2) and prove the Hyers-Ulam stability of the quadratic ρ -functional inequality (0.2) in β -homogeneous complex Banach spaces. We moreover prove the Hyers-Ulam stability of a quadratic ρ -functional equation associated with the quadratic ρ -functional inequality (0.2) in β -homogeneous complex Banach spaces.

Throughout this paper, let β_1, β_2 be positive real numbers with $\beta_1 \leq 1$ and $\beta_2 \leq 1$. Assume that X is a β_1 -homogeneous real or complex normed space with norm $\|\cdot\|$ and that Y is a β_2 -homogeneous complex Banach space with norm $\|\cdot\|$.

2. Quadratic ρ -functional inequality (0.1)

Throughout this section, assume that ρ is a fixed complex number with $|\rho| < 1$.

In this section, we investigate the quadratic ρ -functional inequality (0.1) in β -homogeneous complex Banach spaces.

Lemma 2.1. A mapping $f : X \to Y$ satisfies

$$\begin{aligned} |f(x+y) + f(x-y) - 2f(x) - 2f(y)|| \\ \leq \left\| \rho\left(2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) - f(x) - f(y)\right) \right\| \end{aligned}$$
(2.1)

for all $x, y \in X$ if and only if $f : X \to Y$ is quadratic.

Proof. Assume that $f: X \to Y$ satisfies (2.1).

Letting x = y = 0 in (2.1), we get $||2f(0)|| \le |\rho|^{\beta_2} ||2f(0)||$. So f(0) = 0. Letting y = x in (2.1), we get $||f(2x) - 4f(x)|| \le 0$ and so f(2x) = 4f(x) for all $x \in X$. Thus

$$f\left(\frac{x}{2}\right) = \frac{1}{4}f(x) \tag{2.2}$$

for all $x \in X$.

It follows from (2.1) and (2.2) that

$$\begin{split} \|f(x+y) + f(x-y) - 2f(x) - 2f(y)\| \\ &\leq \left\| \rho \left(2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) - f(x) - f(y) \right) \right\| \\ &= \frac{|\rho|^{\beta_2}}{2^{\beta_2}} \|f(x+y) + f(x-y) - 2f(x) - 2f(y)\| \end{split}$$

and so

$$f(x+y) + f(x-y) = 2f(x) + 2f(y)$$

for all $x, y \in X$.

The converse is obviously true. \Box

Corollary 2.2. A mapping $f: X \to Y$ satisfies

$$f(x+y) + f(x-y) - 2f(x) - 2f(y)$$

$$= \rho \left(2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) - f(x) - f(y) \right)$$
(2.3)

for all $x, y \in X$ if and only if $f : X \to Y$ is quadratic.

The functional equation (2.3) is called a quadratic ρ -functional equation.

We prove the Hyers-Ulam stability of the quadratic ρ -functional inequality (2.1) in β -homogeneous complex Banach spaces.

Theorem 2.3. Let $r > \frac{2\beta_2}{\beta_1}$ and θ be nonnegative real numbers, and let $f : X \to Y$ be a mapping such that

$$\|f(x+y) + f(x-y) - 2f(x) - 2f(y)\|$$

$$\leq \left\| \rho \left(2f \left(\frac{x+y}{2} \right) + 2f \left(\frac{x-y}{2} \right) - f(x) - f(y) \right) \right\| + \theta(\|x\|^r + \|y\|^r)$$
(2.4)

for all $x, y \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ such that

$$\|f(x) - h(x)\| \le \frac{2\theta}{2^{\beta_1 r} - 4^{\beta_2}} \|x\|^r$$
(2.5)

for all $x \in X$.

Proof. Letting x = y = 0 in (2.4), we get $||2f(0)|| \le |\rho|^{\beta_2} ||2f(0)||$. So f(0) = 0. Letting y = x in (2.4), we get

$$||f(2x) - 4f(x)|| \le 2\theta ||x||^r \tag{2.6}$$

for all $x \in X$. So $||f(x) - 4f(\frac{x}{2})|| \le \frac{2}{2^{\beta_1 r}} \theta ||x||^r$ for all $x \in X$. Hence

$$\left\| 4^{l} f\left(\frac{x}{2^{l}}\right) - 4^{m} f\left(\frac{x}{2^{m}}\right) \right\| \leq \sum_{j=l}^{m-1} \left\| 4^{j} f\left(\frac{x}{2^{j}}\right) - 4^{j+1} f\left(\frac{x}{2^{j+1}}\right) \right\|$$

$$\leq \frac{2}{2^{\beta_{1}r}} \sum_{j=l}^{m-1} \frac{4^{\beta_{2}j}}{2^{\beta_{1}rj}} \theta \|x\|^{r}$$
(2.7)

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (2.7) that the sequence $\{4^n f(\frac{x}{2^n})\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{4^n f(\frac{x}{2^n})\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} 4^n f(\frac{x}{2^n})$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.7), we get (2.5).

It follows from (2.4) that

$$\begin{split} \|h(x+y) + h(x-y) - 2h(x) - 2h(y)\| \\ &= \lim_{n \to \infty} 4^{\beta_2 n} \left\| f\left(\frac{x+y}{2^n}\right) + f\left(\frac{x-y}{2^n}\right) - 2f\left(\frac{x}{2^n}\right) - 2f\left(\frac{y}{2^n}\right) \right\| \\ &\leq \lim_{n \to \infty} 4^{\beta_2 n} |\rho|^{\beta_2} \left\| 2f\left(\frac{x+y}{2^{n+1}}\right) + 2f\left(\frac{x-y}{2^{n+1}}\right) - f\left(\frac{x}{2^n}\right) - f\left(\frac{y}{2^n}\right) \right\| \\ &+ \lim_{n \to \infty} \frac{4^{\beta_2 n} \theta}{2^{\beta_1 n r}} (\|x\|^r + \|y\|^r) \\ &= |\rho|^{\beta_2} \left\| 2h\left(\frac{x+y}{2}\right) + 2h\left(\frac{x-y}{2}\right) - h(x) - h(y) \right\| \end{split}$$

for all $x, y \in X$. So

$$\|h(x+y) + h(x-y) - 2h(x) - 2h(y)\| \le \left\|\rho\left(2h\left(\frac{x+y}{2}\right) + 2h\left(\frac{x-y}{2}\right) - h(x) - h(y)\right)\right\|$$

for all $x, y \in X$. By Lemma 2.1, the mapping $h: X \to Y$ is quadratic.

Now, let $T: X \to Y$ be another quadratic mapping satisfying (2.5). Then we have

$$\begin{aligned} \|h(x) - T(x)\| &= 4^{\beta_2 n} \left\| h\left(\frac{x}{2^n}\right) - T\left(\frac{x}{2^n}\right) \right\| \\ &\leq 4^{\beta_2 n} \left(\left\| h\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right) \right\| + \left\| T\left(\frac{x}{2^n}\right) - f\left(\frac{x}{2^n}\right) \right\| \right) \\ &\leq \frac{4 \cdot 4^{\beta_2 n}}{(2^{\beta_1 r} - 4^{\beta_2}) 2^{\beta_1 n r}} \theta \|x\|^r, \end{aligned}$$

which tends to zero as $n \to \infty$ for all $x \in X$. So we can conclude that h(x) = T(x) for all $x \in X$. This proves the uniqueness of h. Thus the mapping $h : X \to Y$ is a unique quadratic mapping satisfying (2.5). \Box

Theorem 2.4. Let $r < \frac{2\beta_2}{\beta_1}$ and θ be positive real numbers, and let $f : X \to Y$ be a mapping satisfying (2.4). Then there exists a unique quadratic mapping $h : X \to Y$ such that

$$\|f(x) - h(x)\| \le \frac{2\theta}{4^{\beta_2} - 2^{\beta_1 r}} \|x\|^r$$
(2.8)

for all $x \in X$.

Proof. It follows from (2.6) that $||f(x) - \frac{1}{4}f(2x)|| \le \frac{2\theta}{4^{\beta_2}} ||x||^r$ for all $x \in X$. Hence

$$\begin{aligned} \left| \frac{1}{4^{l}} f(2^{l}x) - \frac{1}{4^{m}} f(2^{m}x) \right| &\leq \sum_{j=l}^{m-1} \left\| \frac{1}{4^{j}} f(2^{j}x) - \frac{1}{4^{j+1}} f(2^{j+1}x) \right\| \\ &\leq \sum_{j=l}^{m-1} \frac{2^{\beta_{1}rj}}{4^{\beta_{2}j}} \frac{2\theta}{4^{\beta_{2}}} \|x\|^{r} \end{aligned}$$

$$(2.9)$$

for all nonnegative integers m and l with m > l and all $x \in X$. It follows from (2.9) that the sequence $\{\frac{1}{4^n}f(2^nx)\}$ is a Cauchy sequence for all $x \in X$. Since Y is complete, the sequence $\{\frac{1}{4^n}f(2^nx)\}$ converges. So one can define the mapping $h: X \to Y$ by

$$h(x) := \lim_{n \to \infty} \frac{1}{4^n} f(2^n x)$$

for all $x \in X$. Moreover, letting l = 0 and passing the limit $m \to \infty$ in (2.9), we get (2.8).

The rest of the proof is similar to the proof of Theorem 2.3. \Box

By the triangle inequality, we have

$$\begin{aligned} \|f(x+y) + f(x-y) - 2f(x) - 2f(y)\| \\ &- \left\| \rho \left(2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) - f(x) - f(y) \right) \right\| \\ &\leq \|f(x+y) + f(x-y) - 2f(x) - 2f(y) \\ &- \rho \left(2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) - f(x) - f(y) \right) \right\|. \end{aligned}$$

As corollaries of Theorems 2.3 and 2.4, we obtain the Hyers-Ulam stability results for the quadratic ρ -functional equation (2.3) in β -homogeneous complex Banach spaces.

Corollary 2.5. Let $r > \frac{2\beta_2}{\beta_1}$ and θ be nonnegative real numbers, and let $f: X \to Y$ be a mapping such that

$$\|f(x+y) + f(x-y) - 2f(x) - 2f(y)$$

$$-\rho \left(2f\left(\frac{x+y}{2}\right) + 2f\left(\frac{x-y}{2}\right) - f(x) - f(y)\right) \| \le \theta(\|x\|^r + \|y\|^r)$$
(2.10)

for all $x, y \in X$. Then there exists a unique quadratic mapping $h: X \to Y$ satisfying (2.5).

Corollary 2.6. Let $r < \frac{2\beta_2}{\beta_1}$ and θ be positive real numbers, and let $f : X \to Y$ be a mapping satisfying (2.10). Then there exists a unique quadratic mapping $h : X \to Y$ satisfying (2.8).

Remark 2.7. If ρ is a real number such that $-1 < \rho < 1$ and Y is a β_2 -homogeneous real Banach space, then all the assertions in this section remain valid.

Acknowledgments

C. Park and D.Y. Shin were supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299), and (NRF-2010-0021792), respectively.

References

- [1] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950) 64–66.
- J. Bae and W. Park, Approximate bi-homomorphisms and bi-derivations in C^{*}-ternary algebras, Bull. Korean Math. Soc. 47 (2010) 195–209.
- [3] P.W. Cholewa, Remarks on the stability of functional equations, Aeq. Math. 27 (1984) 76–86.
- W. Fechner, Stability of a functional inequalities associated with the Jordan-von Neumann functional equation, Aeq. Math. 71 (2006) 149–161.
- [5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994) 431–436.
- [6] A. Gilányi, Eine zur Parallelogrammgleichung äquivalente Ungleichung, Aeq. Math. 62 (2001) 303–309.
- [7] A. Gilányi, On a problem by K. Nikodem, Math. Inequal. Appl. 5 (2002) 707-710.
- [8] D.H. Hyers, On the stability of the linear functional equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941) 222–224.
- [9] S. Jung, On the quadratic functional equation modulo a subgroup, Indian J. Pure Appl. Math. 36 (2005) 441–450.
- [10] C. Park, Functional equations in Banach modules, Indian J. Pure Appl. Math. 33 (2002) 1077–1086.
- [11] C. Park, Multilinear mappings in Banach modules over a C*-algebra, Indian J. Pure Appl. Math. 35 (2004) 183–192.
- [12] C. Park, Quadratic ρ -functional inequalities and equations, J. Nonlinear Anal. Appl. 2014 (2014).
- [13] C. Park, Y. Cho and M. Han, Functional inequalities associated with Jordan-von Neumann-type additive functional equations, J. Inequal. Appl., (2007) Article ID 41820, 13 pages.
- [14] Th.M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978) 297–300.
- [15] J. Rätz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003) 191–200.
- [16] S. Rolewicz, Metric Linear Spaces, PWN-Polish Scientific Publishers, Warsaw, 1972.
- [17] F. Skof, Propriet locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano 53 (1983) 113-129.
- [18] S.M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.