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Abstract

In this paper, we study the boundedness and persistence of the solutions, the global stability of the
unique positive equilibrium point and the rate of convergence of a solution that converges to the
equilibrium E = (x̄, ȳ) of the system of two difference equations of exponential form:

xn+1 =
a+ e−(bxn+cyn)

d+ bxn + cyn
, yn+1 =

a+ e−(byn+cxn)

d+ byn + cxn

where a, b, c, d are positive constants and the initial values x0, y0 are positive real values.

Keywords: Difference equations; boundedness; persistence; asymptotic behavior; rate of
convergence.
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1. Introduction and preliminaries

Difference equations have many applications in applied sciences, there are many papers and books
that can be found concerning the theory and applications of difference equations, see [1, 4, 6, 7] and
the references cited therein. Recently, there has been a great interest in studying the qualitative
properties of difference equations and systems of difference equations of exponential form [3, 10,
11, 12, 15, 17, 18]. In [3], the authors studied the boundedness, the asymptotic behavior, the
periodic character of the solutions and the stability character of the positive equilibrium of the
difference equation:

xn+1 = a+ bxn−1e
−xn ,
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where a, b are positive constants and the initial values x−1, x0 are positive numbers.
In [10], the authors studied the boundedness, the asymptotic behavior, the periodicity and the

stability of the positive solutions of the difference equation:

yn+1 =
α + βe−yn

γ + yn−1

where α, β, γ are positive constants and the initial values y−1, y0 are positive numbers. In [5],
the authors studied the boundedness, the asymptotic behavior and the rate of convergence of the
positive solutions of the system of two difference equations:

xn+1 =
a+ be−xn

c+ yn
, yn+1 =

a+ be−yn

c+ xn

where a, b, c are positive constants and the initial values x0, y0 are positive numbers.
In [13], the author investigate the boundedness, the persistence and the asymptotic behavior of

the positive solutions of the system of two difference equations of exponential form:

xn+1 = a+ bxn−1 + cxn−1e
−yn

yn+1 = α + βyn−1 + γyn−1e
−xn

where a, b, c, α, β, γ are positive constants and the initial values x−1, x0, y−1, y0 are positive
numbers.

Motivated by these above papers, we will investigate the boundedness, the persistence and the
asymptotic behavior of the positive solutions of the following system of exponential form:

xn+1 =
a+ e−(bxn+cyn)

d+ bxn + cyn
, yn+1 =

a+ e−(byn+cxn)

d+ byn + cxn
(1.1)

where a, b, c, d are positive constants and the initial values x0, y0 are positive real values. Moreover,
we establish the rate of convergence of a solution that converges to the equilibrium E = (x̄, ȳ) of
(1.1).

2. Global behavior of solutions of system (1.1)

In the following lemma we will show that every positive solution {(xn, yn)}∞n=0 of Eq. (1.1) is bounded
and persists.

Lemma 2.1. Every positive solution of Eq. (1.1) is bounded and persists.

Proof . Let (xn, yn) be an arbitrary solution of (1.1). From (1.1) we can see that

xn ≤
a+ 1

d
, yn ≤

a+ 1

d
, n = 1, 2, . . . (2.1)

In addition, from Eq. (1.1) and Eq. (2.1) we get

xn ≥
a+ e−

(b+c)(a+1)
d

d+ (b+c)(a+1)
d

, yn ≥
a+ e−

(b+c)(a+1)
d

d+ (b+c)(a+1)
d

, n = 2, 3, . . . (2.2)

Therefore, from Eq. (2.1) and Eq. (2.2) the proof of lemma is complete. �

The next lemma establishes an invariant set for the system (1.1).
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Lemma 2.2. Let {(xn, yn)}∞n=0 be a positive solution of the system (1.1). Then
[
a+e−

(b+c)(a+1)
d

d+
(b+c)(a+1)

d

, a+1
d

]
×[

a+e−
(b+c)(a+1)

d

d+
(b+c)(a+1)

d

, a+1
d

]
is an invariant set for the system (1.1).

Proof . It follows from induction. �

The following result will be useful in establishing the global attractivity character of the equilib-
rium of Eq. (1.1).

Theorem 2.3. [2, 7] Let R = [a1, b1]× [c1, d1] and

f : R −→ [a1, b1], g : R −→ [c1, d1]

be a continuous functions such that:
(a) f(x, y) is decreasing in both variables and g(x, y) is decreasing in both variables for each

(x, y) ∈ R;
(b) If (m1, M1, m2, M2) ∈ R2 is a solution of{

M1 = f(m1, m2), m1 = f(M1, M2)

M2 = g(m1, m2), m2 = g(M1, M2)
(2.3)

then m1 = M1 and m2 = M2. Then the following system of difference equations:

xn+1 = f(xn, yn), yn+1 = g(xn, yn) (2.4)

has a unique equilibrium (x̄, ȳ) and every solution (xn, yn) of the system Eq. (2.4) with (x0, y0) ∈ R
converges to the unique equilibrium (x̄, ȳ). In addition, the equilibrium (x̄, ȳ) is globally asymptot-
ically stable.

Now we state the main theorem of this section.

Theorem 2.4. Consider system Eq. (1.1). Suppose that the following relation holds true:

d > b+ c. (2.5)

Then system Eq. (1.1) has a unique positive equilibrium (x̄, ȳ) and every positive solution of Eq.
(1.1) tends to the unique positive equilibrium (x̄, ȳ) as n → ∞. In addition, the equilibrium (x̄, ȳ)
is globally asymptotically stable.

Proof . We consider the functions

f(u, v) =
a+ e−(bu+cv)

d+ bu+ cv
, g(u, v) =

a+ e−(bv+cu)

d+ bv + cu
(2.6)

where

u, v ∈ I =

[
a+ e−

(b+c)(a+1)
d

d+ (b+c)(a+1)
d

,
a+ 1

d

]
. (2.7)

It is easy to see that f(u, v), g(u, v) are decreasing in both variables for each (u, v) ∈ I × I.
In addition, from (2.6) and (2.7) we have f(u, v) ∈ I, g(u, v) ∈ I as (u, v) ∈ I × I and so
f : I × I −→ I, g : I × I −→ I.
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Now let m1, M1, m2, M2 be positive real numbers such that

M1 =
a+ e−(bm1+cm2)

d+ bm1 + cm2

, m1 =
a+ e−(bM1+cM2)

d+ bM1 + cM2

,

M2 =
a+ e−(bm2+cm1)

d+ bm2 + cm1

, m2 =
a+ e−(bM2+cM1)

d+ bM2 + cM1

.

(2.8)

Moreover arguing as in the proof of Theorem 2.3, it suffices to assume that

m1 ≤M1, m2 ≤M2. (2.9)

From (2.8) we get
M1d+ bm1M1 + cm2M1 = a+ e−(bm1+cm2),

m1d+ bm1M1 + cm1M2 = a+ e−(bM1+cM2),

M2d+ bm2M2 + cm1M2 = a+ e−(bm2+cm1),

m2d+ bm2M2 + cm2M1 = a+ e−(bM2+cM1).

(2.10)

From (2.10) we obtain

d(M1 −m1) + cM1(m2 −M2) + cM2(M1 −m1)

= e−(bm1+cm2) − e−(bM1+cM2),

d(M2 −m2) + cM2(m1 −M1) + cM1(M2 −m2)

= e−(bm2+cm1) − e−(bM2+cM1).

(2.11)

Then by adding the two relations Eq. (2.11) we obtain

d(M1 −m1) + d(M2 −m2)

= e−(bm1+cm2+bM1+cM2)+θ1 [b(M1 −m1) + c(M2 −m2)]

+ e−(bm2+cm1+bM2+cM1)+θ2 [b(M2 −m2) + c(M1 −m1)],

(2.12)

where bm1 + cm2 ≤ θ1 ≤ bM1 + cM2, bm2 + cm1 ≤ θ2 ≤ bM2 + cM1.
Therefore from Eq. (2.12) we have

(M1 −m1)(d− be−(bm1+cm2+bM1+cM2)+θ1 − ce−(bm2+cm1+bM2+cM1)+θ2)

+ (M2 −m2)(d− ce−(bm1+cm2+bM1+cM2)+θ1 − be−(bm2+cm1+bM2+cM1)+θ2) = 0.
(2.13)

Then using (2.5), (2.9) and (2.13), gives us m1 = M1 and m2 = M2. Hence from Theorem.2.3 system
Eq. (1.1) has a unique positive equilibrium (x̄, ȳ) and every positive solution of Eq. (1.1) tends to
the unique positive equilibrium (x̄, ȳ) as n → ∞. In addition, the equilibrium (x̄, ȳ) is globally
asymptotically stable. This completes the proof of the theorem. �

3. Rate of convergence

In this section we give the rate of convergence of a solution that converges to the equilibrium E =
(x̄, ȳ) of the systems (1.1) for all values of parameters. The rate of convergence of solutions that
converge to an equilibrium has been obtained for some two-dimensional systems in [8] and [9].
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The following results give the rate of convergence of solutions of a system of difference equations

xn+1 = [A+B(n)]xn (3.1)

where xn is a k-dimensional vector, A ∈ Ck×k is a constant matrix, and B : Z+ −→ Ck×k is a matrix
function satisfying

‖B(n)‖ → 0 when n→ ∞, (3.2)

where ‖‖̇ denotes any matrix norm which is associated with the vector norm; ‖‖̇ also denotes the
Euclidean norm in R2 given by

‖x‖ = ‖(x, y)‖ =
√
x2 + y2. (3.3)

Theorem 3.1. ([14]) Assume that condition (3.2) holds. If xn is a solution of system (3.1), then
either xn = 0 for all large n or

ρ = lim
n→∞

n
√
‖xn‖ (3.4)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 3.2. ([14]) Assume that condition (3.2) holds. If xn is a solution of system (3.1), then
either xn = 0 for all large n or

ρ = lim
n→∞

‖xn+1‖
‖xn‖

(3.5)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

The equilibrium point of the system (1.1) satisfies the following system of equations
x̄ =

a+ e−(bx̄+cȳ)

d+ bx̄+ cȳ

ȳ =
a+ e−(bȳ+cx̄)

d+ bȳ + cx̄

. (3.6)

The map T associated to the system (1.1) is

T (x, y) =

(
f(x, y)
g(x, y)

)
=


a+ e−(bx+cy)

d+ bx+ cy
a+ e−(by+cx)

d+ by + cx

 . (3.7)

The Jacobian matrix of T is

JT (x, y) =
−b[a+ (d+ bx+ cy + 1)e−(bx+cy)]

(d+ bx+ cy)2

−c[a+ (d+ bx+ cy + 1)e−(bx+cy)]

(d+ bx+ cy)2

−c[a+ (d+ by + cx+ 1)e−(by+cx)]

(d+ by + cx)2

−b[a+ (d+ by + cx+ 1)e−(by+cx)]

(d+ by + cx)2

 .
(3.8)

By using the system (3.6), value of the Jacobian matrix of T at the equilibrium point E = (x̄, ȳ) is

JT (x̄, ȳ) =
−b[a+ (d+ bx̄+ cȳ + 1)e−(bx̄+cȳ)]

(d+ bx̄+ cȳ)2

−c[a+ (d+ bx̄+ cȳ + 1)e−(bx̄+cȳ)]

(d+ bx̄+ cȳ)2

−c[a+ (d+ bȳ + cx̄+ 1)e−(bȳ+cx̄)]

(d+ bȳ + cx̄)2

−b[a+ (d+ bȳ + cx̄+ 1)e−(bȳ+cx̄)]

(d+ bȳ + cx̄)2

 .
(3.9)
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Our goal in this section is to determine the rate of convergence of every solution of the system
(1.1) in the regions where the parameters a, b, c, d ∈ (0, ∞), (d > b+ c) and initial conditions x0

and y0 are arbitrary, nonnegative numbers.

Theorem 3.3. The error vector en =

(
e1
n

e2
n

)
=

(
xn − x̄
yn − ȳ

)
of every solution (xn, yn) 6= (x̄, ȳ) of (1.1)

satisfies both of the following asymptotic relations:

lim
n→∞

n
√
‖en‖ = |λi(JT (E))| for some i = 1, 2, (3.10)

and

lim
n→∞

‖en+1‖
‖en‖

= |λi(JT (E))| for some i = 1, 2, (3.11)

where |λi(JT (E))| is equal to the modulus of one of the eigenvalues of the Jacobian matrix evaluated
at the equilibrium JT (E).

Proof . First, we will find a system satisfied by the error terms. The error terms are given as

xn+1 − x̄ =
a+ e−(bxn+cyn)

d+ bxn + cyn
− a+ e−(bx̄+cȳ)

d+ bx̄+ cȳ

=
a(d+ bx̄+ cȳ)− a(d+ bxn + cyn)

(d+ bxn + cyn)(d+ bx̄+ cȳ)

+
(d+ bx̄+ cȳ)e−(bxn+cyn) − (d+ bxn + cyn)e−(bx̄+cȳ)

(d+ bxn + cyn)(d+ bx̄+ cȳ)

=
b(x̄− xn) + c(ȳ − yn) + [b(x̄− xn) + c(ȳ − yn)]e−(bxn+cyn)

(d+ bxn + cyn)(d+ bx̄+ cȳ)

+
(d+ bxn + cyn)[e−(bxn+cyn) − e−(bx̄+cȳ)]

(d+ bxn + cyn)(d+ bx̄+ cȳ)

=
−b(xn − x̄)− c(yn − ȳ) + [b(x̄− xn) + c(ȳ − yn)]e−(bxn+cyn)

(d+ bxn + cyn)(d+ bx̄+ cȳ)

+
(d+ bxn + cyn)e−(bx̄+cȳ)[e−(bxn−bx̄+cyn−cȳ) − 1]

(d+ bxn + cyn)(d+ bx̄+ cȳ)

=
−b(xn − x̄)− c(yn − ȳ) + [b(x̄− xn) + c(ȳ − yn)]e−(bxn+cyn)

(d+ bxn + cyn)(d+ bx̄+ cȳ)

+
(d+ bxn + cyn)e−(bx̄+cȳ)[−b(xn − x̄)− c(yn − ȳ)]

(d+ bxn + cyn)(d+ bx̄+ cȳ)

+
O1 ((xn − x̄)) +O2 ((yn − ȳ))

(d+ bxn + cyn)(d+ bx̄+ cȳ)

=
−b
[
a+ e−(bxn+cyn) + (d+ bxn + cyn)e−(bx̄+cȳ)

]
(d+ bxn + cyn)(d+ bx̄+ cȳ)

(xn − x̄)

+
−c
[
a+ e−(bxn+cyn) + (d+ bxn + cyn)e−(bx̄+cȳ)

]
(d+ bxn + cyn)(d+ bx̄+ cȳ)

(yn − ȳ)

+
1

(d+ bxn + cyn)(d+ bx̄+ cȳ)
O1 ((xn − x̄))

+
1

(d+ bxn + cyn)(d+ bx̄+ cȳ)
O2 ((yn − ȳ))

(3.12)
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By calculating similarly, we get

yn+1 − ȳ =
−b
[
a+ e−(byn+cxn) + (d+ byn + cxn)e−(bȳ+cx̄)

]
(d+ byn + cxn)(d+ bȳ + cx̄)

(xn − x̄)

+
−c
[
a+ e−(byn+cxn) + (d+ byn + cxn)e−(bȳ+cx̄)

]
(d+ byn + cxn)(d+ bȳ + cx̄)

(yn − ȳ)

+
1

(d+ byn + cxn)(d+ bȳ + cx̄)
O3 ((xn − x̄))

+
1

(d+ byn + cxn)(d+ bȳ + cx̄)
O4 ((yn − ȳ))

(3.13)

From (3.12) and (3.13) we have

xn+1 − x̄ ≈
−b
[
a+ e−(bxn+cyn) + (d+ bxn + cyn)e−(bx̄+cȳ)

]
(d+ bxn + cyn)(d+ bx̄+ cȳ)

(xn − x̄)

+
−c
[
a+ e−(bxn+cyn) + (d+ bxn + cyn)e−(bx̄+cȳ)

]
(d+ bxn + cyn)(d+ bx̄+ cȳ)

(yn − ȳ)

yn+1 − ȳ ≈
−b
[
a+ e−(byn+cxn) + (d+ byn + cxn)e−(bȳ+cx̄)

]
(d+ byn + cxn)(d+ bȳ + cx̄)

(xn − x̄)

+
−c
[
a+ e−(byn+cxn) + (d+ byn + cxn)e−(bȳ+cx̄)

]
(d+ byn + cxn)(d+ bȳ + cx̄)

(yn − ȳ).

(3.14)

Set
e1
n = xn − x̄ and e2

n = yn − ȳ.

Then system (3.14) can be represented as:

e1
n+1 ≈ ane

1
n + bne

2
n

e2
n+1 ≈ cne

1
n + dne

2
n

where

an =
−b
[
a+ e−(bxn+cyn) + (d+ bxn + cyn)e−(bx̄+cȳ)

]
(d+ bxn + cyn)(d+ bx̄+ cȳ)

,

bn =
−c
[
a+ e−(bxn+cyn) + (d+ bxn + cyn)e−(bx̄+cȳ)

]
(d+ bxn + cyn)(d+ bx̄+ cȳ)

,

cn =
−b
[
a+ e−(byn+cxn) + (d+ byn + cxn)e−(bȳ+cx̄)

]
(d+ byn + cxn)(d+ bȳ + cx̄)

,

dn =
−c
[
a+ e−(byn+cxn) + (d+ byn + cxn)e−(bȳ+cx̄)

]
(d+ byn + cxn)(d+ bȳ + cx̄)

.
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Taking the limits of an, bn, cn and dn as n→∞, we obtain

lim
n→∞

an =
−b
[
a+ (d+ bx̄+ cȳ + 1)e−(bx̄+cȳ)

]
(d+ bx̄+ cȳ)2

:= A1,

lim
n→∞

bn =
−c
[
a+ (d+ bx̄+ cȳ + 1)e−(bx̄+cȳ)

]
(d+ bx̄+ cȳ)2

:= B1,

lim
n→∞

cn =
−b
[
a+ (d+ bȳ + cx̄+ 1)e−(bȳ+cx̄)

]
(d+ bȳ + cx̄)2

:= C1,

lim
n→∞

dn =
−b
[
a+ (d+ bȳ + cx̄+ 1)e−(bȳ+cx̄)

]
(d+ bȳ + cx̄)2

:= D1,

that is
an = A1 + αn, bn = B1 + βn,

cn = C1 + γn, dn = D1 + δn,

where αn → 0, βn → 0, γn → 0 and δn → 0 as n→∞.
Now, we have system of the form (3.1):

en+1 = (A+B(n))en,

where A =

(
A1 B1

C1 D1

)
, B(n) =

(
αn βn
δn γn

)
and

‖B(n)‖ → 0 as n→ ∞.

Thus, the limiting system of error terms can be written as:(
e1
n+1

e2
n+1

)
= A

(
e1
n

e2
n

)
.

The system is exactly linearized system of (1.1) evaluated at the equilibrium E = (x̄, ȳ). Then
Theorem 3.1 and Theorem 3.2 imply the result. �

4. Examples

In order to verify our theoretical results and to support our theoretical discussion, we consider several
interesting numerical examples. These examples represent different types of qualitative behavior of
solutions of the systems (1.1). All plots in this section are drawn with Matlab.

Example 4.1. Let a = 20, b = 0.001, c = 0.5, d = 0.8, (d > b+ c). Then system (1.1) can be written
as

xn+1 =
20 + e−(0.001xn+0.5yn)

0.8 + 0.001xn + 0.5yn
, yn+1 =

20 + e−(0.001yn+0.5xn)

0.8 + 0.001yn + 0.5xn
(4.1)

with initial conditions x0 = 3 and y0 = 6.

In this case, the unique positive equilibrium point of the system (4.1) is given by

(x̄, ȳ) = (5.579648535, 5.579648535).

Moreover, in Figure 1, the plot of xn is shown in Figure 1 (a), the plot of yn is shown in Figure 1
(b), and an attractor of the system (4.1) is shown in Figure 1 (c).
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(a) Plot of xn for the system (4.1) (b) Plot of yn for the system (4.1)

(c) An attractor of the system (4.1)

Figure 1: Plots for the system (4.1)

Example 4.2. Let a = 30, b = 0.0007, c = 0.8, d = 0.95, (d > b + c). Then system (1.1) can be
written as

xn+1 =
30 + e−(0.0007xn+0.8yn)

0.95 + 0.0007xn + 0.8yn
, yn+1 =

30 + e−(0.0007yn+0.8xn)

0.95 + 0.0007yn + 0.8xn
(4.2)

with initial conditions x0 = 8 and y0 = 5.

(a) Plot of xn for the system (4.2) (b) Plot of yn for the system (4.2)

(c) An attractor of the system (4.2)

Figure 2: Plots for the system (4.2)
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In this case, the unique positive equilibrium point of the system (4.2) is given by

(x̄, ȳ) = (5.557681533, 5.557681533).

Moreover, in Figure 2, the plot of xn is shown in Figure 2 (a), the plot of yn is shown in Figure 2
(b), and an attractor of the system (4.2) is shown in Figure 2 (c).

Example 4.3. Let a = 20, b = 0.01, c = 0.5, d = 0.002, (d < b + c). Then system (1.1) can be
written as

xn+1 =
20 + e−(0.01xn+0.5yn)

0.002 + 0.01xn + 0.5yn
, yn+1 =

20 + e−(0.01yn+0.5xn)

0.002 + 0.01yn + 0.5xn
(4.3)

with initial conditions x0 = 3 and y0 = 6.

(a) Plot of xn for the system (4.3) (b) Plot of yn for the system (4.3)

(c) Phase portrait of the system (4.3)

Figure 3: Plots for the system (4.3)

In this case, the unique positive equilibrium point of the system (4.3) is unstable. Moreover, in
Figure 3, the plot of xn is shown in Figure 3 (a), the plot of yn is shown in Figure 3 (b), and a phase
portrait of the system (4.3) is shown in Figure 3 (c).
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