On some generalisations of Brown's conjecture

Bashir Ahmad Zargar*, Manzoor Ahmad
Department of Mathematics, University of Kashmir, Hazratbal, Srinagar

(Communicated by A. Ebadian)

Abstract

Let P be a complex polynomial of the form $P(z)=z \prod_{k=1}^{n-1}\left(z-z_{k}\right)$, where $\left|z_{k}\right| \geq 1,1 \leq k \leq n-1$ then

 $P^{\prime}(z) \neq 0$. If $|z|<\frac{1}{n}$. In this paper, we present some interesting generalisations of this result.Keywords: Critical points; Sendove's Conjecture; Coincidence theorem of walsh. 2000 MSC: Primary 30C15; Secondary 12D10.

1. Introduction and statement of the results

Let $B(z, r)$ denote the open ball in C with centre z and radius r and $\bar{B}(z, r)$ denote its closure. The Gauss Lucas Theorem states that every critical point of a complex polynomial P of degree atmost n lies in the convex hull of its zeros.B. Sendove conjectured that if all the zeros of P lies in $\bar{B}(0,1)$ then for any zero w of P the disk $\bar{B}(w, 1)$ contains at least one zero of P^{\prime} see [4], problem 4.1]. In connection with this conjecture Brown [3] posed the following problem.

Let Q_{n} denote the set of all complex polynomials of the form $P(z)=z \prod_{k=1}^{n-1}\left(z-z_{k}\right)$, where $\left|z_{k}\right| \geq 1,1 \leq k \leq n-1$. Find the best constant C_{n} such that $P^{\prime}(z) \neq 0$. in $B\left(0, C_{n}\right)$ for all P in Q_{n}. Brown conjectured that $C_{n}=\frac{1}{n}$.

Recently, the conjecture was settled by Aziz and Zargar [2]. In fact by proving the following:
Theorem 1.1. For all P in $Q_{n}, P^{\prime}(z)$ does not vanish if z in $\left(0, \frac{1}{n}\right)$.

[^0]Here, in this paper we shall present the following generalisation of Theorem 1.1.
Theorem 1.2. Let

$$
P(z)=z^{m} \prod_{j=1}^{n-m}\left(z-z_{j}\right)
$$

be a polynomial of degree n , with $\left|z_{j}\right| \geq 1, j=1,2, \ldots n-m$. Then for $1 \leq r \leq m$, the polynomial $P^{\prime}(z)$, the r th derivative of $P(z)$ does not vanish in

$$
0<|z|<\frac{m(m-1)(m-2) \ldots(m-r+1)}{n(n-1)(n-2) \ldots(n-r+1)} .
$$

Remark 1.3. Taking $r=1, m=1$, we get Theorem A (Browns Conjecture).
The following result immediately follows from the proof of Theorem 1.2 .
Corollary 1.4. Let

$$
P(z)=z^{m} \prod_{j=1}^{n-m}\left(z-z_{j}\right)
$$

be a polynomial of degree n, with $\left|z_{j}\right| \geq 1, j=1,2, \ldots n-m$. Then the polynomial $P^{\prime \prime}(z)$ does not vanish in

$$
0<|z|<\frac{m(m-1)}{n(n-1)}
$$

Taking $m=2$ in Corollary 1.4, we get the following result.
Corollary 1.5. Let

$$
P(z)=z^{2} \prod_{j=1}^{n-2}\left(z-z_{j}\right)
$$

be a polynomial of degree n, with $\left|z_{j}\right| \geq 1, j=1,2, \ldots, n-2$. Then the polynomial $P^{\prime \prime}(z)$ does not vanish in

$$
0<|z|<\frac{2}{n(n-1)}
$$

2. Lemmas

For the proof of Theorem 1.2, we need the following lemmas.the first lemma is walsh's Coincidance Theorem [4], p 47] (see also [1]).
Lemma 2.1. If $G\left(z_{1}, z_{2}, \ldots, z_{n}\right)$ is a symmetric n-linear form of total degree n in $\left(z_{1}, z_{2}, \ldots, z_{n}\right.$ and let C be a circular region containing the n points $\alpha_{1}, \alpha_{2}, \alpha_{n}$ then there exists at least one point α in C such that

$$
G\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)=G\left(w_{1}, w_{2}, \ldots, w_{n}\right) .
$$

Lemma 2.2. If

$$
P(z)=z^{m} \prod_{k=1}^{n-m}\left(z-z_{k}\right)
$$

be a polynomial of degree n, with $\left|z_{k}\right| \geq 1,1 \leq k \leq n-m$. Then for the polynomial $P^{\prime}(z)$ does not vanish in

$$
0<|z|<\frac{m}{n}
$$

Lemma 2.2 is due to Aziz and Zargar [2].
Lemma 2.3. If $P(z)$ is a Polynomial of degree n such that $P(z)$ does not vanish in $\| z \mid<1$, then the polynomial $z P^{\prime}(z)+2 P(z)$ does not vanish in $|z|<\frac{2}{n+2}$.
Proof. By hypothesis

$$
P(z)=\prod_{k=1}^{n}\left(z-z_{k}\right)
$$

is a polynomial of degree n having all its zeros in $|z| \geq 1$, so that $\left|z_{k}\right| \geq 1, k=1,2, \ldots, n$. We prove all the zeros of

$$
H(z)=z P^{\prime}(z)+2 P(z)
$$

lie in

$$
|z| \geq \frac{2}{n+2}
$$

To prove this let w be any zero of $P(z)$ then

$$
H(w)=z P^{\prime}(w)+2 P(w)=0 .
$$

Clearly $H(z)$ is linear symmetric in the zeros $z_{1}, z_{2}, \ldots, z_{n}$ of $P(z)$. Therefore by Lemma 2.1, we can find atleast one point β with $|\beta| \geq 1$, such that

$$
P(z)=(z-\beta)^{n} .
$$

which gives

$$
H(w)=w n P^{\prime}(w-\beta)^{n-1}+2 P(w-\beta)^{n}=0
$$

which implies

$$
(w-\beta)^{n-1}[n w+2(w-\beta)]=0
$$

which gives,

$$
(w-\beta)=0, o r n w+(w-\beta)=0 .
$$

If $w-\beta=0$, then clearly $|w|=|\beta| \geq 1$. Now if,

$$
n w+(w-\beta)=0
$$

then

$$
w=\frac{2 \beta}{n+2}
$$

which gives,

$$
|w|=\frac{2}{n+2}|\beta| \geq \frac{2}{n+2} .
$$

Since w is any zero of

$$
H(z)=z P^{\prime}(z)+2 P(z)
$$

therefore, it follows that

$$
z P^{\prime}(z)+2 P(z)
$$

does not vanish in

$$
|z|<\frac{2}{n+2}
$$

which completes the proof of Lemma (2.3).

3. Proof of Theorem

Proof . We have

$$
P(z)=z^{m} Q(z)
$$

where

$$
Q(z)=\prod_{j=1}^{n-m}\left(z-z_{j}\right),\left|z_{j}\right| \geq 1, j=1,2, \ldots, n-m
$$

So, it follows by Lemma 2.2 that $P^{\prime}(z)$ does not vanish in the disk

$$
0<|z|<\frac{m}{n} .
$$

That is

$$
\begin{gathered}
P^{\prime}(z)=z^{m} Q^{\prime}(z)+m z^{m-1} Q(z) \\
=z^{m-1}\left(z Q^{\prime}(z)+m z Q(z)\right) \\
z^{m-1} T(z)
\end{gathered}
$$

where

$$
T(z)=\left(z Q^{\prime}(z)+m z Q(z)\right)
$$

does not vanish in

$$
0<|z|<\frac{m}{n} .
$$

Replacing z by $\frac{m z}{n}$, it follows that

$$
H(z)=P^{\prime}\left\{\frac{m z}{n}\right\}
$$

does not vanish in

$$
0<|z|<1
$$

Now

$$
H(z)=P^{\prime}\left(\frac{m z}{n}\right)=\left(\frac{m}{n}\right)^{m-1} z^{m-1} T\left(\frac{m z}{n}\right) .
$$

Applying Lemma 2.2 to the polynomial $H(z)$, it follows that $H^{\prime}(z)$ does not vanish in the disk

$$
0<|z|<\frac{m-1}{n-1}
$$

Replacing z by $\frac{n z}{m}$, we get $P^{\prime} \prime(z)$ does not vanish in $0<|z|<\frac{m(m-1)}{n(n-1)}$.. $n \geq 2$ which yields that,

$$
\begin{gathered}
P^{\prime \prime}(z)=z^{m-1} T^{\prime}(z)+(m-1) z^{m-2} T(z) \\
=z^{m-1}\left(z T^{\prime}(z)+(m-1) T(z)\right) \\
=z^{m-1} R(z)
\end{gathered}
$$

does not vanish in $0<|z|<\frac{m(m-1)}{n(n-1)}$. Thus, it follows by Lemma 2.3 that

$$
R(z)=\left(z T^{\prime}(z)+(m-1) T(z)\right)
$$

does not vanish in $0<|z|<\frac{m(m-1)}{n(n-1)}$. Replacing z by $\frac{m(m-1) z}{n(n-1)}$, we have

$$
R\left(\frac{m(m-1)}{n(n-1)} z\right)=(m-1) T\left(\frac{m(m-1)}{n(n-1)} z\right)+\left(\frac{m(m-1)}{n(n-1)} z\right) T\left(\frac{m(m-1)}{n(n-1)} z\right)
$$

does not vanish in $0<|z|<1$. Therefore, it follows that

$$
\begin{gathered}
S(z)=P^{\prime \prime}\left(\frac{m(m-1)}{n(n-1)} z\right) \\
=\left(\frac{m(m-1)}{n(n-1)} z\right)^{m-1} z^{m-1} R\left(\frac{m(m-1)}{n(n-1)} z\right)
\end{gathered}
$$

does not vanish in $0<|z|<1$. Applying Lemma 2.2, we get

$$
S^{\prime}(z)=P^{\prime \prime}\left(\frac{m(m-1)}{n(n-1)} z\right)
$$

does not vanish in $0<|z|<\frac{(m-2)}{(n-2)}$ and this completes the proof of Theorem 1.2 .

References

[1] A. Aziz, On the Location of Certain Composite Polynomials, Pacific J. Math. 118 (1985) 17-26.
[2] A. Aziz and B.A. Zargar, On the Critical points of a Polynomial, Austral. Math. Soc. 57 (1998) 173-174.
[3] J.E. Brown, On Ilief-Sendov Conjecture, Pacific J. Math. 135 (1988) 223-232.
[4] W.K. Hayman, Research problems in Function Theory, Athlone Press London, 1967.
[5] M. Marden, Geometry of Polynomials, IInd Ed Math.Surveys 1 AMS. Providance., 1966.

[^0]: *Corresponding author
 Email addresses: bazargar@gmail.com (Bashir Ahmad Zargar), mwali@gmail.com (Manzoor Ahmad)

