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Abstract

In this paper, we establish and prove the existence of best proximity points for multivalued cyclic F -
contraction mappings in complete metric spaces. Our results improve and extend various results in
literature.
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1. Introduction

Throughout this paper, for metric space (X, d), We denote Cb(X) by the family of all non-empty
closed bounded subsets of a metric space (X, d). The Pompeiu-Hausdorff metric induced by d on
Cb(X) is given by

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

for every A,B ∈ Cb(X), where d(a,B) = inf{d(a, b) : b ∈ B} is the distance from a to B ⊆ X.
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Remark 1.1. The following properties of the Pompeiu-Hausdorff metric induced by d are well-
known:

1. H is a metric on Cb(X).

2. If A,B ∈ Cb(X) and h > 1 be given, then for every a ∈ A there exists b ∈ B such that
d(a, b) ≤ hH(A,B).

In 1992, Banach contraction principle was defined by Banach (see [1]). Let T : X → X be a
self mapping of a complete metric (X, d), such that d(Tx, Ty) ≤ Ld(x, y) for each x, y ∈ X, where
0 ≤ L < 1. Then, T has a unique fixed point. Further, since Banach’s fixed point theorem, because
of its simplicity, usefulness and applications, it has become a very popular tools solving the existence
problems in many branches of mathematics analysis. Several authors have improved, extended and
generalized Banach’s fixed point theorem in many directions (see in [2, 3, 4, 5, 6] and references
therein).

In a different way, if T is a non-self mapping then there is no fixed point from equation Tx = x.
The investigation of this case that there is an element x such that d(x, Tx) is minimum. This point
becomes a concept of best proximity point theorem, so this theorem guarantees the existence of
an element x such that d(x, Tx) = d(A,B) = inf{d(x, y) : x ∈ A and y ∈ B} then x is called a
best proximity point of non-self mapping T . Since a non-self mapping T has no fixed point, but
this mapping gives a best proximity point so it is optimal approximate solution of the fixed point
equation Tx = x. If d(A,B) = 0, then a fixed point and a best proximity point are same point. A
best proximity point is reduced to a fixed point if T is a self mapping.

In 1969, Fan [7] be the first who study in area of the best proximity point theorem. He established
a classical best approximation theorem. After ward several researchers have been extended the best
proximity theorem in many directions (see in [8, 9, 10, 11, 13, 12, 14, 15] and references therein).

In the same year, Nadler [16] given new idea of the Banach contraction principle. Researcher
extended the theorem from single valued mapping to multivalued mapping.

Lemma 1.2. ([16]) Let (X, d) be a metric space. If A,B ∈ Cb(X) and a ∈ A, then for each ε > 0,
there exists b ∈ B such that d(a, b) ≤ H(A,B) + ε.

Nadler [16] also combine the idea of Lipschitz mappings with multivalued mappings and fixed
point theorems as follows:

Theorem 1.3. ([16]) Let (X, d) be a complete metric space and T : X → Cb(X). If there exists
k ∈ [0, 1), such that

H(Tx, Ty) ≤ kd(x, y), (1.1)

for all x, y ∈ X, then T has at least one fixed point, that is, there exists z ∈ X such that z ∈ Tz.

In 2003, Kirk, Srinavasan and Veeramani [17] introduced a concept of cyclic contraction which
generalized Banach’s contraction. They also proved fixed point theorems in complete metric spaces,
as follows:

Definition 1.4. ([17]) Let A and B be non-empty closed subsets of a complete metric space X and
T : A ∪ B → A ∪ B be a mapping. Then T is called a cyclic mapping if and only if T (A) ⊆ B and
T (B) ⊆ A .

Theorem 1.5. ([17]) Let A and B be non-empty closed subsets of a complete metric space X and
T : A∪B → A∪B be a mapping.Then T is called a cyclic contraction if and only if T satisfies this
condition.
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1. T is cyclic mapping.

2. For some k ∈ (0, 1) such that d(Tx, Ty) ≤ kd(x, y), for all x ∈ A, y ∈ B.

Then, T has a fixed point in A ∩B.

After that in 2006, Eldred and Veeramani [18] gave sufficient condition for guarantee the existence
of a best proximity point for a cyclic contraction mapping T .

Definition 1.6. ([18]) Let A and B be non-empty closed subsets of a complete metric space (X, d).
Let T : A ∪B → A ∪B be a cyclic contraction mapping and there exists k ∈ (0, 1) such that

d(Tx, Ty) ≤ kd(x, y) + (1− k)d(A,B) for all x ∈ A and y ∈ B,

where d(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}. A point x ∈ A ∪ B is said to be best proximity point
for T if d(x, Tx) = d(A,B).

Recently Wardowski [19] proved one of interesting in fixed point theorem which is F− contraction
mapping on complete metric spaces.

The aim of this paper, we introduce the notation and concept of multivalued cyclic F -contraction
pair and prove a best proximity point such a mappings in a complete metric space via property UC*
due to Sintunavarat and Kumam [20].

2. Preliminaries

Now, recall elementary results and some basic definitions in the literature. In this paper, we denote
N, R and R+ by the set of positive integers, the set of real numbers and the set of non-negative real
numbers, respectively.

Definition 2.1. Let A and B be non-empty subsets of a metric space X and T : A → 2B be a
multivalued mapping. A point x ∈ A is said to be a best proximity point of a multivalued mapping
T if it satisfies the following condition

d(x, Tx) = d(A,B).

We have that a best proximity point reduces to a fixed point for a multivalued mapping if the
underlying mapping is a self-mapping.

Definition 2.2. A Banach space (X, ‖ · ‖) is said to be

1. strictly convex if the following condition holds for all x, y ∈ X:

‖x‖ = ‖y‖ = 1 and x 6= y =⇒
∥∥∥∥x+ y

2

∥∥∥∥ < 1;

2. uniformly convex if for each ε with 0 < ε ≤ 2, there exists δ > 0 such that the following
condition holds for all x, y ∈ X:

‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ ≥ ε =⇒
∥∥∥∥x+ y

2

∥∥∥∥ < 1− δ.

Remark 2.3. It is easy to see that a uniformly convexity implies strictly convexity but the converse
is not true.
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Definition 2.4. ([21]) Let A and B be nonempty subsets of a metric space X. The ordered pair
(A,B) is said to satisfy the property UC if the following holds:

If {xn} and {zn} are sequences in A and {yn} be a sequence in B such that d(xn, yn)→ d(A,B)
and d(zn, yn)→ d(A,B), then d(xn, zn)→ 0.

Example 2.5. ([21]) The following are some examples of a pair of nonempty subsets (A,B) satisfying
the property UC.

1. Every pair of nonempty subsets A,B of a metric space (X, d) such that d(A,B) = 0.

2. Every pair of nonempty subsets A,B of a uniformly convex Banach space X such that A is
convex.

3. Every pair of nonempty subsets A,B of a strictly convex Banach space where A is convex and
relatively compact and the closure of B is weakly compact.

Definition 2.6. ([20]) Let A and B be nonempty subsets of a metric space (X, d). The ordered
pair (A,B) satisfies the property UC∗ if (A,B) has property UC and the following condition holds:
If {xn} and {zn} are sequences in A and {yn} is a sequence in B satisfying:

1. d(zn, yn)→ d(A,B) as n→∞.

2. For each ε > 0, there exists N ∈ N such that

d(xm, yn) ≤ d(A,B) + ε

for all m > n ≥ N ,

then d(xn, zn)→ 0 as n→∞.

Example 2.7. The following are some examples of a pair of nonempty subsets (A,B) satisfying the
property UC∗.

1. Every pair of nonempty subsets A and B of a metric space (X, d) such that d(A,B) = 0.

2. Every pair of nonempty closed subsets A and B of a uniformly convex Banach space X such
that A is convex (see Lemma 3.7 in [18]).

Wardowski [19] defined the following contraction which was called F -contraction as follows:

Definition 2.8. Let F : R+ → R be a mapping which is satisfying the following conditions:

(F1) F is strictly increasing, i.e. for all α, β ∈ R+, F (α) < F (β) whenever α < β.

(F2) For each sequence {αn}n∈N of positive real numbers lim
n→∞

αn = 0 iff lim
n→∞

F (αn) = −∞.

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0.

We denote by F the family of all functions F that satisfy the conditions (F1)− (F3). For examples
of the function F the reader is referred to [19] and [22].

Definition 2.9. Let (X, d) be a metric space. A self-mapping T on X is called an F -contraction
mapping if there exist F ∈ F and τ ∈ R+ such that

∀x, y ∈ X, [d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))]. (2.1)

Remark 2.10. Form (F1) and (2.1) it easy to see that every F -contraction is necessarily continuous.
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3. The main results

Definition 3.1. Let A and B be non-empty subsets of a metric space X. Let T : A → 2B and
S : B → 2A be multivalued mappings. The ordered pair (T, S) is said to be a multivalued cyclic
F−contraction if there exists F ∈ F and τ > 0 such that

H(Tx, Sy) > 0⇒ 2τ + F (H(Tx, Sy)) ≤ F (kd(x, y) + (1− k)d(A,B)), (3.1)

for all x, y ∈ X, where k ∈ (0, 1).

Theorem 3.2. Let A and B be non-empty closed subsets of a complete metric space X such that
(A,B) and (B,A) satisfy the property UC∗. Let T : A → Cb(B) and S : B → Cb(A). If (T, S)
is a multivalued cyclic F−contraction pair, then T has a best proximity point in A or S has a best
proximity point in B.

Proof . We divide the case into two.
Case 1: Assume that d(A,B) = 0.
Now, we will construct the sequence {xn} in X as follows. Let x0 ∈ A be arbitrary point. Since
Tx0 ∈ Cb(B), we can choose x1 ∈ Tx0. If Tx0 6= Sx1, since F is continuous from the right then there
exists a real number h > 1 and τ > 0 such that

F (hH(Tx0, Sx1)) < F (H(Tx0, Sx1)) + τ.

From d(x1, Sx1) < hH(Tx0, Sx1), we deduce that there exists x2 ∈ Sx1 such that

d(x1, x2) ≤ hH(Tx0, Sx1).

It follows from definition of F , we have

F (d(x1, x2)) ≤ F (hH(Tx0, Sx1)) < F (H(Tx0, Sx1)) + τ

which implies

F (d(x1, x2)) ≤ F (H(Tx0, Sx1)) + τ

≤ F (kd(x0, x1)) + τ − 2τ

≤ F (kd(x0, x1))− τ
≤ F (d(x0, x1))− τ.

Otherwise, if Tx2 6= Sx1, since F is continuous from the right then there exists a real number h > 1
and τ > 0 such that

F (hH(Sx1, Tx2)) < F (H(Sx1, Tx2)) + τ.

Now from d(x2, Tx2) < hH(Sx1, Tx2), we obtain that there exists x3 ∈ Tx2 such that

d(x2, x3) ≤ hH(Sx1, Tx2).

Consequently, we get

F (d(x2, x3)) ≤ F (hH(Sx1, Tx2)) < F (H(Sx1, Tx2)) + τ
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which implies

F (d(x2, x3)) ≤ F (H(Sx1, Tx2)) + τ

≤ F (kd(x1, x2)) + τ − 2τ

≤ F (kd(x1, x2))− τ
≤ F (d(x1, x2))− τ.

By induction, we can find {xn} such that

F (d(xn, xn+1)) ≤ F (kd(xn−1, xn))− τ
≤ F (d(xn−1, xn))− τ
...

≤ F (kd(x0, x1))− nτ
≤ F (d(x0, x1))− nτ.

Let βn := d(xn, xn+1). From above, we receive lim
n→∞

F (βn) = −∞ that together with (F2) gives

lim
n→∞

βn = 0.

Also from (F3), we have
∃l ∈ (0, 1) such that lim

n→∞
βlnF (βn) = 0.

Now, it follows that

βlnF (βn)− βlnF (β0) ≤ βln(F (β0)− nτ)− βlnF (β0)

≤ βlnF (β0)− βlnnτ − βlnF (β0)

≤ −βlnnτ
≤ 0, for all n ∈ N.

Letting n as n→∞, so, we obtain

nβln = 0 for all n ∈ N.

From above, lim
n→∞

nβln = 0 there exist n1 ∈ N such that nβln ≤ 1 for all n ≥ n1.

Therefore, βn ≤ 1

n
1
l
, for all n ≥ n1.

Let m,n ∈ N such that m > n ≥ n1. We compute that

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + . . .+ d(xm−1, xm)

= βn + βn+1 + . . .+ βm−1

=
m−1∑
i=n

βi

≤
∞∑
i=n

βi

≤
∞∑
i=n

1

i
1
l

.
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By the convergence of the P series
∞∑
i=n

1

i
1
l

, so as n→∞, we obtain d(xn, xm)→ 0 as n→∞. Hence

{xn} is a Cauchy sequence. Since completeness of X, then {xn} converges to some point z ∈ X.
Clearly, the subsequence {x2n} and {x2n−1} converge to same point z. Since A and B are closed, we
obtain that z ∈ A ∩B.
From (3.1), for all x, y ∈ X and k ∈ (0, 1) with H(Tx, Sy) > 0 and d(A,B) = 0, we get

2τ + F (H(Tx, Sy)) ≤ F (kd(x, y))

≤ F (d(x, y)).

Since F is strictly increasing, we get H(Tx, Sy) < d(x, y) and so H(Tx, Sy) ≤ d(x, y) for all x, y ∈ X.
Then

d(x2n+1, T z) ≤ H(Sx2n, T z) ≤ d(x2n, z).

Passing to limit n→∞, we obtain d(z, Tz) = d(A,B). Similarity, we also derive d(Sz, z) = d(A,B).
Case 2: We will show that T or S have best proximity points in A and B, respectively. Under the
assumption of d(A,B) > 0, suppose to the contrary, that is for all a ∈ A, d(a, Ta) > d(A,B) and
for all b

′ ∈ B, d(Sb
′
, b

′
) > d(A,B).

For each a ∈ A and b ∈ Ta, we have

d(A,B) < d(a, Ta) ≤ d(a, b). (3.2)

Since (T, S) is a multivalued cyclic F -contraction pair, such that

F (H(Ta, Sb)) ≤ F (kd(a, b) + (1− k)d(A,B))− 2τ (3.3)

< F (kd(a, b) + (1− k)d(A,B)) (3.4)

for all a ∈ A and b ∈ Ta. Since F is strictly increasing, we get

H(Ta, Sb) < kd(a, b) + (1− k)d(A,B) (3.5)

for all a ∈ A and b ∈ Ta.
Similarly, we have that for each b

′ ∈ B and a
′ ∈ Sb′ , we get

F (H(Ta
′
, Sb

′
)) < F (kd(a

′
, b

′
) + (1− k)d(A,B)) (3.6)

and
H(Ta

′
, Sb

′
) < kd(a

′
, b

′
) + (1− k)d(A,B). (3.7)

Next we will construct the sequence {xn} in A∪B. Let x0 be arbitrary point in A and x1 ∈ Tx0 ⊆ B.
From (3.3), there exists x2 ∈ Sx1 such that

F (d(x1, x2)) ≤ F (H(Tx0, Sx1)) + τ

≤ F (kd(x0, x1) + (1− k)d(A,B))− 2τ + τ

≤ F (kd(x0, x1) + (1− k)d(A,B))− τ
< F (kd(x0, x1) + (1− k)d(A,B))

and since F is strictly increasing, we get

d(x1, x2) < kd(x0, x1) + (1− k)d(A,B). (3.8)
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Since x1 ∈ B and x2 ∈ Sx1 from (3.6), we can find x3 ∈ Tx2 such that

d(x2, x3) < kd(x1, x2) + (1− k)d(A,B). (3.9)

Consequently, we can define the sequence {xn} in A ∪B such that

x2n−1 ∈ Tx2n−2, x2n ∈ Sx2n−1

and
d(xn, xn+1)) < kd(xn−1, xn) + (1− k)d(A,B) (3.10)

for all n ∈ N. Since d(A,B) ≤ d(xn−1, xn) for all n ∈ N, we get

d(xn, xn+1) < kd(xn−1, xn) + (1− k)d(A,B)

≤ kd(xn−1, xn) + (1− k)d(xn−1, xn)

≤ d(xn−1, xn) (3.11)

and

d(xn, xn+1) < kd(xn−1, xn) + (1− k)d(A,B)

< k(kd(xn−2, xn−1) + (1− k)d(A,B)) + (1− k)d(A,B)

< k2d(xn−2, xn−1) + (k − k2)d(A,B) + (1− k)d(A,B)

< k2d(xn−2, xn−1) + (1− k2)d(A,B)
...

< knd(x0, x1) + (1− kn)d(A,B). (3.12)

Hence d(A,B) ≤ d(xn, xn+1) < knd(x0, x1) + (1− kn)d(A,B) for all n ∈ N.
Since k ∈ (0, 1), we obtain

lim
n→∞

d(xn, xn+1) = d(A,B). (3.13)

From equation (3.13), we get
lim
n→∞

d(x2n, x2n+1) = d(A,B). (3.14)

and
lim
n→∞

d(x2n+2, x2n+1) = d(A,B). (3.15)

Since {x2n} and {x2n+2} are two sequences in A and {x2n+1} is sequence B with (A,B) which satisfies
the property UC*, we derive that

lim
n→∞

d(x2n, x2n+2) = 0. (3.16)

Since (B,A) satisfies the property UC* and by (3.13), we have

lim
n→∞

d(x2n−1, x2n+1) = 0. (3.17)

Next, we will show that for each ε > 0, there exists N ∈ N such that for all m > n ≥ N , we have

lim
n→∞

d(x2m, x2n+1) ≤ d(A,B) + ε. (3.18)

Suppose the contrary, that is there exists ε0 > 0 such that for each k ≥ 1 there is mk > nk ≥ k such
that

d(x2mk
, x2nk+1) > d(A,B) + ε0. (3.19)
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Moreover, corresponding to nk, we can choose mk in such a way that it is the smallest integer with
mk > nk ≥ k satisfying (3.19). Then we obtain

d(x2mk
, x2nk+1) > d(A,B) + ε0 (3.20)

and
d(x2(mk−1), x2nk+1) ≤ d(A,B) + ε0. (3.21)

From (3.20), (3.21) and the triangle inequality, we obtain

d(A,B) + ε0 < d(x2mk
, x2nk+1)

≤ d(x2mk
, x2(mk−1)) + d(x2(mk−1), x2nk+1)

≤ d(x2mk
, x2(mk−1)) + d(A,B) + ε0. (3.22)

Using the fact that lim
k→∞

d(x2mk
, x2(mk−1)) = 0. Letting k →∞ in (3.22), we get

lim
k→∞

d(x2mk
, x2nk+1) = d(A,B) + ε0. (3.23)

From (3.10), (3.11) and (T, S) is a multivalued cyclic F - contraction pair, we obtain

d(x2mk
, x2nk+1) ≤ d(x2mk

, x2mk+2) + d(x2mk+2, x2nk+3) + d(x2nk+3, x2nk+1)

≤ d(x2mk
, x2mk+2) + d(x2mk+1, x2nk+2) + d(x2nk+3, x2nk+1)

< d(x2mk
, x2mk+2) + d(x2nk+3, x2nk+1) + (kd(x2mk

, x2nk+1)

+(1− k)d(A,B)). (3.24)

Letting k →∞ in (3.24) and using (3.16), (3.17) and (3.23), we have

d(A,B) + ε0 < k(d(A,B) + ε0) + (1− k)d(A,B) = d(A,B) + kε0

which is a contradiction. Therefore, (3.18) holds. Since (3.14) and (3.18) hold, by using property
UC* of (A,B), we obtain d(x2n, x2m)→ 0 as n→∞. Therefore {x2n} is a Cauchy sequence. Since
X is complete and A is closed, we have

lim
n→∞

x2n = p (3.25)

for some p ∈ A = A. But

d(A,B) ≤ d(p, x2n−1)

≤ d(p, x2n) + d(x2n, x2n−1)

for all n ∈ N. From (3.13) and (3.25),

lim
n→∞

d(p, x2n−1) = d(A,B). (3.26)

Since

d(A,B) < d(x2n, Tp)

≤ H(S2n−1, Tp)

= H(Tp, Sx2n−1)

< kd(p, x2n−1) + (1− k)d(A,B)

≤ d(p, x2n−1) (3.27)
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for all n ∈ N. By (3.25) and (3.26), we get

d(p, Tp) = d(A,B). (3.28)

In a similar mode, we can conclude that the sequence {x2n−1} is a Cauchy sequence in B. Since X
is complete and B is closed, we obtain

lim
n→∞

x2n−1 = q (3.29)

for some q ∈ B = B. Since

d(A,B) ≤ d(x2n, q)

≤ d(x2n, x2n−1) + d(x2n−1, q)

for all n ∈ N. It follows from (3.13) and (3.29) that

lim
n→∞

d(x2n, q) = d(A,B). (3.30)

Since

d(A,B) < d(Sq, x2n+1)

≤ H(Sq, Tx2n)

= H(Tx2n, Sq)

< kd(x2n, q) + (1− k)d(A,B)

≤ d(x2n, q) (3.31)

for all n ∈ N, then by (3.29) and (3.30), we have

d(q, Sq) = d(A,B). (3.32)

From (3.28) and (3.32), we get a contradiction. Therefore, T has a best proximity point in A or S
has a best proximity point in B. This completes the proof. �

Remark 3.3. If d(A,B) = 0, then Theorem 3.2 yields existence of a fixed point in A ∩ B of two
multivalued non-self mapping S and T . Furthermore, if A = B = X and T = S, then Theorem 3.2
reduces to multivalued F - contractions on metric spaces [23].

Corollary 3.4. Let A and B be non-empty closed convex subsets of a uniformly convex Banach
space X, T : A → Cb(B) and S : B → Cb(A). If (T, S) is a multivalued cyclic F -contraction pair,
then T has a best proximity in A or S has a best proximity point in B.

Now, we give some example for support our results.

Example 3.5. Consider the uniformly convex Banach space X = R with Euclidean norm. Let A =
[3,4] and B = [-4,-3]. Then A and B are non-empty closed and convex subsets of X and d(A,B) = 6.
Since (A,B) and (B,A) satisfy the property UC*. Let T : A→ Cb(B) and S : B → Cb(A) be defined
as

Tx =

[
−x− 3

2
,−3

]
, x ∈ [3, 4];
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and

Sy =

[
3,
−y + 3

2

]
, y ∈ [−4,−3].

Let k ∈ (0, 1) and F : R+ → R is satisfy Definition 2.8 be defined by F (t) = ln(t) for all t ∈ R+ and
τ > 0. Next, we show that (T, S) is a multivalued cyclic F− contraction pair. For each x ∈ A and
y ∈ B, we have

H(Tx, Sy) = H

([
−x− 3

2
,−3

]
,

[
3,
−y + 3

2

])
≤

∣∣∣∣(−x− 3

2

)
−
(
−y + 3

2

)∣∣∣∣
=

∣∣∣∣−x+ y − 6

2

∣∣∣∣
≤ 1

2
|x− y|+ 3

=
1

2
d(x, y) +

1

2
d(A,B)

= kd(x, y) + (1− k)d(A,B).

Since τ > 0, we get 0 < e−2τ < 1. Hence H(Tx, Sy) ≤ e−2τkd(x, y) + e−2τ (1− k)d(A,B)).
Since F strictly increasing, we get

F (H(Tx, Sy)) ≤ F (e−2τ (kd(x, y) + (1− k)d(A,B)))

= ln(e−2τ (kd(x, y) + (1− k)d(A,B)))

= ln(e−2τ ) + ln(kd(x, y) + (1− k)d(A,B))

= −2τ + ln(kd(x, y) + (1− k)d(A,B)).

It follows that F (H(Tx, Sy)) + 2τ ≤ F (kd(x, y) + (1 − k)d(A,B)). Therefore, all assumptions of
Corollary 3.4 are satisfied and then T has a best proximity point in A, that is a point x = 3.
Moreover, S also has a best proximity point in B, that is a point y = −3.
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