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bLMC Laboratory, FST, University of Sultan Moulay Slimane, Beni-Mellal, Morocco
cMATSI Laboratory, ESTO, University Mohammed Premier, Oujda, Morocco
dDepartment of Mathematics and Computer Science, FS, University Mohammed Premier, Oujda, Morocco

(Communicated by S. Abbasbandy)

Abstract

In this paper, we develop a quadratic spline collocation method for integrating the nonlinear partial
differential equations PDEs of a plug flow reactor model. The method is proposed in order to be used
for the operation of control design and/or numerical simulations. We first present the Crank-Nicolson
method to temporally discretize the state variable. Then, we develop and analyze the proposed spline
collocation method for the spatial discretization. The design of the collocation method is interpreted
as one order error convergent. This scheme is applied on some test examples, the numerical results
illustrate the efficiency of the method and confirm the theoretical behavior of the rates of convergence.
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1. Introduction and preliminaries

The plug flow reactor models are nowadays a necessity in chemical engineering and different catalytic
processes with special needs have been lead to a wide variety of this class of tubular reactor models,
since it reveal more informations about the reactor performance, and they can also be used for
simulating steady-state and control operations (see eg., [12], [17]).
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Usually, a dynamic tubular reactor model consists of PDEs and the practical method to integrate
is to reduce them into a set of ordinary differential equations ODEs by spatial discretization, and
to use well-known algorithms to solve the time-dependent model. This kind of systems are called
distributed parameter systems DPSs and can be found in process control described by PDEs, e.g.,
robotics, bio-reactors, flexible structures, and vibrations (see e.g.,[1], [14]). These methods and
algorithms are well described in several chemical engineering textbooks, (for example in [18, 7, 15]).
Various numerical techniques have been developed and compared for solving the ODEs (see [3, 9]).
Besides of the lack of knowledge of the connection between the original distributed parameter (infinite
dimensional) model and its (finite dimensional) discretised version, the approximation methods may
require extensive computation studies in order to try to capture the dynamic behavior of the DPS. For
instance, the number of ODEs required in the finite differences method to obtain satisfactory model
approximation many becomes excessively high (see [3]). Even when the methods of characteristics
is able to provide an exact representation of the original model (see [9]) this attempt requires also a
high number of collocation points which is difficult to implement in practical control and monitoring
applications. The main objective of this study is to develop a user friendly, economical method
which can work for solving a perturbed first-order hyperbolic PDEs model by using a quadratic
splines collocation method.

Let us consider a chemical or a biological process taking place in a plug flow reactor whose
mathematical model is given by

∂V

∂t
(z, t) = −ϑ∂V

∂z
(z, t) +Kf(V (z, t)) + CV (z, t) + u(t), (z, t) ∈ Ω,

V (z, 0) = α(z), z ∈ Ωz,
V (0, t) = β(t), t ∈ Ωt,

(1.1)

In the above equations, V (z, t) ∈ RH is the state vector, f(V ) ∈ RS is the nonlinearities vector and
Lλ-Lipschitz (Lλ ≥ 0), K ∈ RH×S denotes a matrix of known coefficients (e.g. stoichiometric or
yield coefficients), C ∈ RH×H is the state matrix whose elements are known, u(t) ∈ RH is a vector
gathering the process inputs (e.g. mass and/or energy feeding rate vector) and/or other time-varying
functions (e.g. gaseous outflow rate). Besides, t represents the time variable whereas z (z ∈ [0, L]) is
the axial position, L is the reactor length, ϑ is considered as a positive and known constant describing
the velocity of the inlet stream, β(t) is a column vector which is a sufficiently smooth function of time
and α(z) ∈ H[(0, L),RH ] where HH [(0, L,RH) being the infinite dimensional Hilbert Space of H-
dimensional-like vector functions defined on the interval [0, L]. The problem (1.1) can be formulated
as the following problem

∂V

∂t
+ P

∂V

∂z
− CV = I(V (z, t)), (z, t) ∈ Ω,

V (z, 0) = α(z), z ∈ Ωz,
V (0, t) = β(t), t ∈ Ωt,

(1.2)

where
P = (diag(υ.Ij,j))j=1,...,H ,

I(V ) = Kf(V ) + u(t) ∈ RH ,

with Ci,j ≤ γ̃ < 0 on Ω and f , u, α, β are sufficiently smooth functions.
Here we assume that the problem satisfies sufficient regularity and compatibility conditions which

guarantee that the problem has a unique solution u ∈ C(Ω)
⋂
C2,1(Ω) satisfying (see, [10, 8, 11]):∣∣∣∣∂i+jV (x, t)

∂xi∂tj

∣∣∣∣ ≤ k on Ω; 0 ≤ j ≤ 3 and 0 ≤ i+ j ≤ 4, (1.3)
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where k is a constant in RH .
In the present work, we present a numerical method for solving the general dynamical model

for a class of plug flow reactors. The method is based on Crank-Nicolson scheme to discretize the
temporal variable and a quadratic spline collocation method for the spatial discretization. The
scheme is one-order convergent with respect to the spatial variable.

The organization of the paper is as follows. In Section 2, we discuss time semi-discretization.
Section 3 is devoted to the spline collocation method for solving the general dynamical model for a
class of plug flow reactors using a quadratic spline collocation method. Next, the error bound of the
spline solution is analyzed. In order to validate the theoretical results presented in this paper, we
present numerical tests on two known examples in Section 4. Finally, a conclusion is given in Section
5.

2. Time discretization and description of the Crank-Nicolson scheme

Discretize the time variable by setting tm = m∆t for m = 0, 1, ...,M, in which ∆t = T
M

and then
define

V m(z) = V (z, tm), m = 0, 1, ...,M.

Now by applying the Crank-Nicolson scheme on (1.2), we arrive at the following equation

V m+1 − V m

∆t
− 1

2
L(V m+1 + V m) =

1

2

(
I(V m+1) + I(V m)

)
.

One way is to replace V m+1 with V m in the nonlinear terms. This leads to the following modified
system:

V m+1 − ∆t

2
LV m+1 =

∆t

2
LV m + V m + ∆tI(V m). (2.1)

For m = 0, 1, ...,M . The value of V at time level m will be of the form:
P
∂V m+1

∂z
+RV m+1 = J (V m), ∀z ∈ [0, L],

V 0(z) = α(z), ∀z ∈ [0, L],
V m+1(0) = βm+1, 0 ≤ m < M.

(2.2)

where, for any m ≥ 0 and for any z ∈ [0, L], we have

R =

(
2

∆t
I − C

)
,

J (V m) = LV m +
2

∆t
V m + 2I(V m),

L = −P ∂

∂z
+ CI,

V m+1 is solution of (2.2), at the (m+ 1) th-time level.

The following theorem proves the order of convergence of the solution V m to V (z, t).

Theorem 2.1. problem (2.2) is second order convergent, i.e.

‖V (z, tm)− V m‖H ≤ Cte(∆t)2.
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Proof . We introduce the notation em = V (z, tm)− V m the error at step m and

‖em‖H = sup
z∈[0,L]

max
1≤i≤H

|eim(z)|.

By Taylor series expansion of V , we have

V (z, tm+1) = V (z, tm+ 1
2
) +

∆t

2

∂V

∂t
(z, tm+ 1

2
) +

(∆t)2

8

∂2V

∂t2
(z, tm+ 1

2
) +O((∆t)3).IH ,

V (z, tm) = V (z, tm+ 1
2
)− ∆t

2

∂V

∂t
(z, tm+ 1

2
) +

(∆t)2

8

∂2V

∂t2
(z, tm+ 1

2
) +O((∆t)3).IH .

By using these expansions, we get

V (z, tm+1)− V (z, tm)

∆t
=
∂V

∂t
(z, tm+ 1

2
) +O((∆t)2).IH , (2.3)

and by Taylor series expansion of
∂V

∂t
, we have

∂V

∂t
(z, tm+1) =

∂V

∂t
(z, tm+ 1

2
) +

∆t

2

∂2V

∂t2
(z, tm+ 1

2
) +

(∆t)2

8

∂3V

∂t3
(z, tm+ 1

2
) +O((∆t)3).IH ,

∂V

∂t
(z, tm) =

∂V

∂t
(z, tm+ 1

2
)− ∆t

2

∂2V

∂t2
(z, tm+ 1

2
) +

(∆t)2

8

∂3V

∂t3
(z, tm+ 1

2
) +O((∆t)3).IH .

By using these expansions, and

∣∣∣∣∂3V∂t3
∣∣∣∣ ≤ c.IH on Ω (see relation (1.3)), we have

1

2

∂

∂t
[V (z, tm+1) + V (z, tm)] =

∂

∂t
V (z, tm+ 1

2
) +O((∆t)2).IH .

This implies

∂V

∂t
(z, tm+ 1

2
) =

1

2

∂

∂t
[V (z, tm+1) + V (z, tm)] +O((∆t)2).IH

=
1

2
[LV (z, tm+1) + I(V (z, tm+1)) + LV (z, tm) + I(V (z, tm))] +O((∆t)2).IH .

By using this relation in (2.3) we get

(1− ∆t

2
L)V (z, tm+1) = (1 +

∆t

2
L)V (z, tm) +

∆t

2
[I(V (z, tm+1)) + I(V (z, tm))] +O((∆t)3).IH ,

by (2.1). Then, we obtain

(1− ∆t

2
L)em+1 = (1 +

∆t

2
L)em +

∆t

2
[I(em+1) + I(em)] +O((∆t)3).IH .

We may bound the term O((∆t)3) by c(∆t)3 for some c > 0, and this upper bound is valid uniformly
throughout [0, T ]. Therefore, it follows from the triangle inequality that∥∥∥∥(I − ∆t

2
L)em+1

∥∥∥∥
H

≤
∥∥∥∥(I +

∆t

2
L)em

∥∥∥∥
H

+
∆t

2
(‖I(em)‖H + ‖I(em+1)‖H) + c(∆t)3.



A spline collocation method for integrating . . . 8 (2017) No. 1, 69-80 73

It follows from the Lipschitz condition we have

‖(I − ∆t

2
L)em+1‖H ≤ ‖(I +

∆t

2
L)em‖H +

∆t

2
(‖I(em)‖H + ‖I(em+1)‖H) + c(∆t)3,

≤ ‖(I +
∆t

2
L)‖H‖em‖H +

∆t

2
‖K‖H‖f‖H (‖em‖H + ‖em+1‖H) + c(∆t)3.

Clearly, the operator

(
IH ±

∆t

2
L
)

satisfies a maximum principle (see, [4, 5]) and consequently

∥∥∥∥∥
(
IH ±

∆t

2
L
)−1∥∥∥∥∥

H

≤

 1

1 +
∆t

2
γ̃

 .

Since we are ultimately interested in letting ∆t → 0, there is no harm in assuming that ∆t.η < 2,
with η = (‖L‖H + ‖K‖H‖f‖H). We can thus deduce that

‖em+1‖H ≤

1 +
1

2
∆t.η

1− 1

2
∆t.η

 ‖em‖H +

 c

1− 1

2
∆t.η

 (∆t)3. (2.4)

We now claim that

‖em‖H ≤
c

η


1 +

1

2
∆t.η

1− 1

2
∆t.η


m

− 1

 (∆t)2. (2.5)

The proof is by induction on m. When m = 0 we need to prove that ‖e0‖H ≤ 0 and hence that
e0 = 0. This is certainly true, since at t0 = 0 the numerical solution matches the initial condition
and the error is zero.
For general m ≥ 0, we assume that (2.5) is true up to m and use (2.4) to argue that

‖em+1‖H ≤ c

η

1 +
1

2
∆t.η

1− 1

2
∆t.η



1 +

1

2
∆t.η

1− 1

2
∆t.η


m

− 1

 (∆t)2 +

 c

1− 1

2
∆t.η

 (∆t)3,

≤ c

η


1 +

1

2
∆t.η

1− 1

2
∆t.η


m+1

− 1

 (∆t)2.

This advances the inductive argument from m to m + 1 and proves that (2.5) is true. Since 0 <
∆t.η < 2, it is true that1 +

1

2
∆t.η

1− 1

2
∆t.η

 = 1 +

 ∆t.η

1− 1

2
∆t.η

 ≤ ∞∑
l=0

1

l!

 ∆t.η

1− 1

2
∆t.η


l

= exp

 ∆t.η

1− 1

2
∆t.η

 .

Consequently, relation (2.5) yields

‖em‖H ≤
c(∆t)2

η

1 +
1

2
∆t.η

1− 1

2
∆t.η


m

≤ c(∆t)2

η
exp

 m∆t.η

1− 1

2
∆t.η

 .
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This bound is true for every nonnegative integer m such that m∆t < T . Therefore

‖em‖H ≤
c(∆t)2

η
exp

 T.η

1− 1

2
∆t.η

 .

We deduce that
‖V (x, tm)− V m‖H ≤ Cte(∆t)2.

In other words, problem (2.2) is second order convergent. �

For any m ≥ 0, problem (2.2) has a unique solution and can be written on the following form:{
PV ′(z) +RV (z) = f̂(z) ∈ RH , ∀z ∈ [0, L],

V (0) = β.IH ,
(2.6)

In the sequel of this paper, we will focus on the solution of problem (2.6).

3. Spatial discretization and quadratic spline collocation method

Let ⊗ denotes the notation of Kronecker product, ‖ . ‖ the Euclidean norm on Rn+1+H and S(k) the
kth derivative of a function S.

In this section we construct a quadratic spline which approximates the solution V of problem
(2.6), in the interval [0, L] ⊂ R.

Let Θ = {0 = z−2 = z−1 = z0 < z1 < · · · < zn−1 < zn = zn+1 = zn+2 = L} be a subdivision of the

interval [0, L]. Without loss of generality, we put zi = a+ ih, where 0 ≤ i ≤ n and h =
L

n
. Denote by

S3([0, L],Θ) := P1
2([0, L],Θ) the space of piecewise polynomials of degree less than or equal to 2 over

the subdivision Θ and of class C1 everywhere on [0, L]. Let Bi, i = −2, · · · , n−1, be the B-splines of
degree 2 associated with Θ. These B-splines are positives and form a basis of the space S3([0, L],Θ).

Consider the local linear operator Q2 which maps the function V onto a quadratic spline space
S3([0, L],Θ) and which has an optimal approximation order. This operator is the discrete C1

quadratic quasi-interpolant (see [16]) defined by

Q2V =
n−1∑
i=−2

µi(V )Bi,

where the coefficients µj(V ) are determined by solving a linear system of equations given by the
exactness of Q2 on the space of quadratic polynomial functions P2([0, L]). Precisely, these coefficients
are defined as follows:

µ−2(V ) = V (z0) = V (0),

µ−1(V ) = 1
6
(−2V (z0) + 9V (z1)− V (z2)),

µj(V ) = 1
8
(−V (zj−1) + 10V (zj)− V (zj+1)), for j = 0, ..., n− 3,

µn−2(V ) = 1
6
(−V (zn−2) + 9V (zn−1)− 2V (zn)),

µn−1(V ) = V (zn) = V (L).

It is well known (see e.g. [6], chapter 5) that there exists constants Ck, k = 0, 1, 2, such that, for any
function V ∈ C3([0, L]),

‖V (k) −Q2V
(k)‖H ≤ Ckh

3−k‖V (3−k)‖H , k = 0, 1, 2, (3.1)
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By using the boundary conditions of problem (2.6), we obtain µ−2(V ) = Q2V (0) = V (0) = β.IH .
Hence

Q2V = βB−2IH + S,

where

S =

[
n−1∑
j=−1

µj(V1)Bj, · · · ,
n−1∑
j=−1

µj(VH)Bj

]T
.

From equation: (3.1), we can easily see that the spline S satisfies the following equation

PS(1)(zj) +RS(0)(zj) = g(zj) +O(h).IH , j = 0, ..., n (3.2)

with
g(zj) = f̂(zj)− (PβB

(1)
−2(zj) +RβB

(0)
−2(zj)) ∈ RH , j = 0, ..., n.

The goal of this section is to compute a quadratic spline collocation S̃pi =
n−1∑
j=−2

c̃j,iBj, i = 1, ..., H

which satisfies the equation (2.6) at the points τj, j = 0, ..., n + 2 with τ0 = z0, τj =
zj−1 + zj

2
,

j = 1, · · · , n, τn+1 = zn−1 and τn+2 = zn.
Then, it is easy to see that

c̃−2,i = β, for i = 1, ..., H

Hence

S̃pi = βB−2IH + S̃i, where S̃i =
n−1∑
j=−1

c̃j,iBj, for i = 1, ..., H

and the coefficients c̃j,i, j = −1, ..., n− 1 and i = 1, ..., H satisfy the following collocation conditions
:

PS̃(1)(τj) +RS̃(0)(τj) = g(τj), j = 1, ..., n+ 1, (3.3)

where
S̃ = [S̃1, ..., S̃H ]T ,

g(τj) = f̂(τj)− (PβB
(1)
−2(τj) +RβB

(0)
−2(τj)) ∈ RH , j = 1, ..., n+ 1.

Taking
C = [µ−1(V1), ..., µn−1(V1), ..., µ−1(VH), ..., µn−1(VH)]T ∈ Rn+1+H ,

C̃ = [c̃−1,1, ..., c̃n−1,1, ..., c̃−1,H , ..., c̃n−1,H ]T ∈ Rn+1+H ,

and using equations (3.2) and (3.3), we get:(
P ⊗ A(1)

h +R⊗ A(0)
h

)
C = F + E, (3.4)

and (
P ⊗ A(1)

h +R⊗ A(0)
h

)
C̃ = F, (3.5)

with

F = [g1, ..., gn+1]
T and gj =

1

∆t
g(τj) ∈ RH ,

E = [O(
h

∆t
), ..., O(

h

∆t
)]T ∈ Rn+1+H ,

A
(k)
h = (B

(k)
−2+p(τj))1≤j,p≤n+1, k = 0, 1.
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It is well known that A
(k)
h =

1

hk
Ak for k = 0, 1 where matrices A0 and A1 are independent of h, with

the matrix A1 is invertible [13].
Then, relations (3.4) and (3.5) can be written in the following form

(P ⊗ A1) (I + U)C = hF + hE, (3.6)

(P ⊗ A1) (I + U) C̃ = hF, (3.7)

with
U = h(P ⊗ A1)

−1(R⊗ A0). (3.8)

In order to determine the bounded of ‖ C − C̃ ‖∞, we need the following Lemma.

Lemma 3.1. If h2ρ <
∆t

4
, then I + U is invertible, where ρ = ‖(P ⊗ A1)

−1‖∞.

Proof . From the relation (3.8) and ‖A0‖∞ ≤ 1, We have

‖U‖∞ ≤ h‖(P ⊗ A1)
−1‖∞‖(R⊗ A0)‖∞,

≤ hρ‖(R⊗ A0)‖∞,
≤ hρ‖R‖∞.

For h sufficiently small, we conclude
‖U‖∞ < 1. (3.9)

Therefore I + U is invertible. �

From (3.7), we get C̃ = h(I + U)−1(P ⊗ A1)
−1F.

Proposition 3.2. If h ≤ 4t
ρ

, then there exists a constant K1 which depends only on the functions

p, q, l and g such that
‖C − C̃‖ ≤ cte h. (3.10)

Proof . Assume that h ≤ 4t
ρ

. According to Lemma 3.1 and relations (3.6) and (3.7), we have

C − C̃ = h(I + U)−1(P ⊗ A1)
−1E. Since E = O(

h

4t
), then there exists a constant K1 such that

‖E‖ ≤ K1
h

4t
. This implies that

‖C − C̃‖ ≤ h‖(I + U)−1‖∞‖(P ⊗ A1)
−1‖∞‖E‖,

≤ hρ

4t
‖(I + U)−1‖∞K1h,

≤ ‖(I + U)−1‖∞K1h,

≤ 1

1− ‖U‖∞
K1h,

≤ cte h.

Finally, we deduce that
‖C − C̃‖ ≤ cte h.

�

Now, we are in position to prove the main theorem of our work.
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Proposition 3.3. The quadratic-spline approximation S̃p converges to the exact solution V of the
boundary value problem (2.6) with order one by the ‖.‖H norm, i.e., ‖V − S̃p‖H = O(h).

Proof . From the relation (3.1), we have
‖V −Q2(V )‖H = O(h), so ‖V −Q2(V )‖H ≤ Kh, where K is a positive constant. On the other hand
we have

Q2(Vi(x))− S̃pi(x) =
n−1∑
j=−1

(µj(Vi)− c̃j,i)Bj(x), for i = 1, ..., H.

Therefore, by using (3.10) and
n−1∑
j=−1

Bj(x) ≤ 1, we get

|Q2(Vi(x))− S̃pi(x)| ≤ ‖C − C̃‖
n−1∑
j=−1

Bj(x) ≤ ‖C − C̃‖ ≤ K1h, for i = 1, ..., H.

Since ‖Q2(V )− S̃p‖H ≤ ‖V −Q2(V )‖H + ‖Q2(V )− S̃p‖H , we deduce the stated result. �

Theorem 3.4. If we assume that the discretization parameters h and ∆t satisfy the following rela-
tion

h ≤ 4t
ρ
, (3.11)

and we suppose that V (z, t) is the solution of (1.1) and Vc(z, t) is the approximate solution by our
presented method, then we have,

‖V (z, tm)− Vc(z, tm)‖∞ ≤ cte(4t2 + h),

where cte, is finite constant. Therefore for sufficiently small 4t and h, the solution of presented
scheme (3.4-3.5) converges to the solution of initial boundary value problem (1.1) in the discrete
L∞-norm and the rates of convergence are O(4t2 + h).

4. Numerical examples

In this section we verify experimentally theoretical results obtained in the previous section. If the
exact solution is known, then at time t ≤ T the maximum error Emax can be calculated as:

Emax = max
z∈[0,L],t∈[0,T ],1≤i≤H

| SM,N
i (z, t)− Vi(z, t) | .

Otherwise it can be estimated by the following double mesh principle:

Emax
M,N = max

z∈[0,L],t∈[0,T ],1≤i≤H
| SM,N

i (z, t)− S2M,2N
i (z, t) |,

where SM,N
i (z, t) is the numerical solution on the M + 1 grids in space and N + 1 grids in time, and

S2M,2N
i (z, t) is the numerical solution on the 2M + 1 grids in space and 2N + 1 grids in time, for

1 ≤ i ≤ H.
We present two examples to better illustrate the use of the quadratic spline collocation approach

and the proposed evaluation methodology in concrete situations. These examples are concerned with
isothermal and nonisothermal plug flow reactor respectively.
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4.1. Example 1: isothermal plug flow reactor

Consider the model state equations representing material balances in the reactor (see [19]) exactly
match the mathematical model (1.1) with:

Ω = (0, 10)× (0, 1), and ϑ = 2,

V (z, t) = [cx(z, t) cy(z, t)]
T ,

f(V (z, t)) = cx(z, t)
2,

u(t) = [0 0]T ,

K = [−2.63 0.00109]T ,

α(z) = [−0.1z + 1.5 0.05z + 0.5]T ,

β(t) = [4.10−3t2 − 0.09t+ 1.5 0]T ,

C =

 0 0

0 −0.00109

 .
Table 1: Numerical results for Example 1.

N 10 20 40 80 160

M 5 10 20 40 80

max error 2.660× 10−2 1.140× 10−2 5.225× 10−3 2.493× 10−3 1.217× 10−3

Table 1 shows values of the maximum error (max error) obtained in our numerical experiments
for different values of N , and M , we note the convergence of the solution S to the function V depends
on the discretization parameters h, and ∆t. Theorem 3.4 is shown the convergence of the method
provided that the parameters h and ∆t satisfy the relation (3.11). Moreover, the numerical error
estimates behave like which confirms what we are expecting.

4.2. Example 2: nonisothermal plug flow reactor
Consider the mathematical model of the plug flow reactor (see [2]) exactly matches the mathematical
model (1.1) with:

Ω = (0, 10)× (0, 1) and ϑ = 2,

V (z, t) = [cx(z, t) T (z, t)]T ,

f(V (z, t)) = 5.1012cx(z, t),

u(t) = [0.01 74585.07455507456]T ,

K = [−1 − 17065.897]T ,

α(z) = [0.5 300]T ,

β(t) = [0.5 sin(0.1t+ 2000) + 2 0.1625t+ 300]T ,

C =

 −0.1 0

0 −240.6002405002405

 .
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Table 2: Numerical results for Example 2.

N 10 20 40 80 160

M 5 10 20 40 80

max error 2.100× 10−2 0.900× 10−2 4.125× 10−3 1.968× 10−3 0.960× 10−3

Table 2 shows values of the maximum error (max error) obtained in our numerical experiments
for different values of N and M , we note the convergence of the solution S to the function V depends
on the discretization parameters h and ∆t. Theorem 3.4 is shown the convergence of the method
provided that the parameters h and ∆t satisfy the relation (3.11). Moreover, the numerical error
estimates behave like which confirms what we are expecting.

5. Conclusion

In this paper, a quadratic spline collocation approach is prosed in the context to be used for reducing
a nonlinear PDEs plug flow reactors models for numerical simulation and/or control design. After
a brief review of the nonlinear tubular reactor model in consideration, we present the details of
our methodology which consists of first discretizing in time (by Crank-Nicolson scheme) and then
collocating in space (by a quadratic spline collocation method). The two test problems which are
studied in this paper demonstrate that this approach is an efficient alternative and confirm the
theoretical behavior of the rates of convergence.
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