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Abstract

In this paper, we propose an inexact alternating direction method with square quadratic proximal
(SQP) regularization for the structured variational inequalities. The predictor is obtained via solving
SQP system approximately under significantly relaxed accuracy criterion and the new iterate is
computed directly by an explicit formula derived from the original SQP method. Under appropriate
conditions, the global convergence of the proposed method is proved. We show the O(1/t) convergence
rate for the inexact SQP alternating direction method. We also reported some numerical results to
illustrate the efficiency of the proposed method.
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1. Introduction

Let R stand for the real axis; and R} = {x € R;z > 0},R", = {z € R;z > 0}, denote the positive
half-axis and strict positive half-axis, respectively.
Further, given n € N, put

RY = (= (21, 70) ;21,70 € R}
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and
Ri+:{l’:(./L'l,...,xn)—r;xh...,l’n€R++}

where ()T denotes the transpose.
Finally, define
Q:={(u,v);u e R, v R}, Aju+ A = b}

where 4; € R>*" A, € R>*™ b € R are given matrices and vectors, respectively.
Consider the variational inequality problem:
find x €  such that
(¢ —2)"F(x) >0, Va' €Q, (1.1)

where

F(z) = (filu), fo(v))". (1.2)
and f; : R} — R”, f, : R — R™ are given monotone operators. Studies and applications of
such problems can be found in [14] [I8, 19, 20, 2I]. By attaching a Lagrange multiplier vector
A € R! to the linear constraints Au + Ayv = b, the problem —i— may be expressed as find
z € Z':=R"% x RT x R’ such that

(7 —2)TQ(z) >0, V/eZ, (1.3)

where

z=(u,v, A", Q(2) = (filu) — A] X, fo(v) — A3\, Aju+ Ayv — b)T : (1.4)

Various methods have been suggested to find the solution of problem +. A popular approach
is the alternating direction method (ADM) which was proposed by Gabay and Mercier [18] and
Gabay [19]. Typically, problems in applications for example, network economics [32] and nonlinear
mechanics [17], 20, 21] are quite large and are often solved by ADM. The ADM can reduce the scale
of variational inequalities by decomposing the original problem into a series of subproblems with a
lower scale (see [11], 20} 211, 27, 29| 37], for example). The classical proximal alternating directions
method (PADM) is one of the attractive ADMs. From a given (u*,v*, \¥) € RY x R x RY, the new
iterate (u*1, v**1 \k+1) is obtained via solving the following problem

(W —w) {fi(u) — AT\ = B(Aju+ A" = b))+ r(u—uF)} >0, V o' €RY, (1.5a)
(W —v) {fo(v) = Ay [\ = B(AwW"T + Ayv — b)] + s(v —v¥)} >0, V o' €RY, (1.5b)
ML= 2\ — B(Ayu + Agv — D). (1.5¢)

Here r > 0,s > 0 are given proximal parameters and S > 0 is a given penalty parameter for the
linearly constrained equation Aju + Asv — b = 0. Several works have been concentrated on the
generalization of the proximal algorithm replacing in the alternating directions method —
the proximal term r(u — u*) and s(v — v¥) by some nonlinear functionals. Very recently, some
alternating direction methods with logarithmic-quadratic proximal regularization [3], 4] 5] [6, [7, 8 @]
30, 36, B9] have been developed by substituting in the alternating directions method @—
the term 7(u — u*) and s(v — v*) by R[(u — u*) + p(u® — Upu=1)] and S[(v — v*) + p(v* — V2v™1)],
respectively. The predictor zF = (ﬁk,f)k,wk,;k) in [3, 4, (5 ©, [7, 10, B0, B6], B9] is obtained via the
following procedure: From a given 2% = (u*,v*, \¥) € R?, x RT, x R', and p € (0,1), (a*, ", S\k) is
obtained via solving the following system:

fiw) — A] [N = H(Aju+ Ax0* = b)] + R [(u—u*) + p(u* — UZu™)] =0, (1.6a)
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fo(v) = Ay [N — H(Aju+ Asv = b)] + S [(v —v*) + p(o* = VZo™h)] =0, (1.6b)
M=\ — H(Au" + Apok —b), (1.6¢)

where H € R>*!, R € R™*" and S € R™*™ are symmetric positive definite matrices.
Define
Q.= {(u,v,w)T cueRY v eRY weRP, Aju+ A+ Asw = b} ,

where A; € R™*™M Ay € R™*™2 A3 € R™*™ b € R™ are given matrices and vectors, respectively.
In this paper, we consider the following structured variational inequality with three separable oper-
ators: find y € Q2 such that

W —y) Fly) >0, Vyeq (1.7)

where
F(y) = (fi(w), fo(v), fs(w)) ", (1.8)

and f1 : R} = R™, fo : R? = R™, f3: R}® — R™ are given monotone operators. By attaching
a Lagrange multiplier vector A € R™ to the linear constraints A;u + Asv + Azw = b, the problem
(1.7)+(1.8) can be explained in terms of finding z € Z := R' x R’? x R’® x R™ such that

(7 —2)TQ(2) >0, V€ Z, (1.9)
where

2= (u,0,w, A\, Q2) = (filu) — A] X, f2(v) — Ag A, fs(w) — Ag A, Aju + Ayv + Agw — b)T :
(1.10)
The problem —|— is referred to as SVIs.
By combining the ADM and parallel splitting augmented Lagrangian method [33], Cao et al. [12]
proposed a new partial splitting augmented Lagrangian method for solving SVI3. The predictor 2% =
(@, 5% %, \¥) in [12] is obtained via the following procedure: From a given zF = (u*, v% w¥ \F) € Z,
(@, 5% %, A\¥) is obtained via solving the following system:

(uw—a")T(fi(@") — A] [\ — BH(A1@" + Axv® + Azw® —b)]) >0, Vue R, (1.11a)

(v — ) (fi(T%) — Ag [N\ — BH(A1TF + Apt* + Agw® —b)]) >0, Vv eR?P, (1.11b)

(w — ") (fs(@*) — A [\ — BH(A1T" + Axo® + Az —b)]) >0, Vw € R, (1.11c)
A= €\ — BH(A " + Agt® + Asw® — b). 1.11d)

In this paper, we suggest that the complementarity subproblems arising in ADM —
could be regularized by the square quadratic proximal (SQP) regularization, the SQP regularization
forces the solutions of ADM subproblems to be interior points of R’}', R’? and R’?, respectively;
thus the complementarity subproblems ((1.11al), (1.11b)) and reduce to three easier systems of
nonlinear equations. More specifically, the iterative scheme of ADM with SQP regularization is as
follows: From a given 2% = (u*, v", w*, \¥) € R, x R}, x R, x R™, (a*, 0%, w*, :\k) is obtained via
solving the following system:

fi(u) — A] [N — BH(Aju + Ayv + Asw — b)] + Rl[%(u — ")+ pf = U(Vu)™)] =0, (1.12a)

folv) — Ay [NF — BH(Ayu + Ayv + Asw — b)] + Rg[%(v — 8 4 p(0F = V(o)™ =0, (1.12Db)
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Fow) — AT — BH(Ayu+ Asv+ Agw — b)] + Rg[%(w — )+ plwt — W) )] =0, (1.120)

M= \F — BH (A" 4+ Ayt* + Agi® — b),

where € (0,1) and § > 0 are given constants; H € R™™ R; € R™"*™ Ry € R"™*" and
R3 € R™*™ are positive definite diagonal matrices; U, V, and Wj are positive definite diagonal
matrices defined by

— di k k k kY .— .
Up = diag(uyr/uy, ... up\/uk) == . ,

Vi = diag(vF\/vF, .. 0F\/ok)

Wy = dlag(wlf \V wlf7 s ,’LUfL V wfb)’

(vu)~t € R is a vector whose j-th element is 1/, /55, (v/v) ™" € R} is a vector whose j-th element
is 1/\/v5, (yw)™" € R, is a vector whose j-th element is 1/, /;.

Since 1) include both square and quadratic terms, the method is called the Square-
Quadratic Proximal (SQP) method, and (1.12a]), (1.12b]) and are called the SQP system of
nonlinear equations (SQP system).

By combining the ADM and SQP method, we propose an inexact alternating direction method for
SVIs3. Each iteration of the proposed method contains a prediction and a correction, the predictor is
obtained via solving the SQP system approximately under significantly relaxed accuracy criterion and
the new iterate is computed directly by an explicit formula derived from the original SQP method.
We also study the global convergence of the proposed method under certain conditions. Our results
can be viewed as significant extensions of the previously known results.

and

2. Inexact SQP alternating direction method

In this section, we suggest and consider the inexact SQP alternating direction method for solving
SVI;. First, for any vector u € R, ||u]|co = max{|uy]| ..., |u,|}. Let D € R™™ be a symmetry positive
definite matrix, we denote the D-norm of u by ||u||3, = u” Du.

we make the following standard assumptions.

Assumption 2.1. f; is monotone with respect to R}, that is, (fi(z) — fi(y))? (z —y) > 0,Vz,y €
R%*, f is monotone with respect to R’}”> and f3 is monotone with respect to R?.

Assumption 2.2. The solution set of SVI3, denoted by Z*, is nonempty.

Now, we are ready to present the inexact SQP alternating direction method for solving SVI3.
Algorithm 2.1.
Prediction step: For a given zF = (u*, v wk A\*) € R™, x R x R7?. x R™, 1 € (0,1) and 8 > 0,
the predictor zF = (a*, 0% @k, \*) € R, x R x R7?. x R™ is obtained via solving the following
system:

filu) — AT N — BH(Aju+ Ay + Agw — b)) + Rl[%(u — ) 4 p(u® = Upe(Vu) ™)) = €8 = 0, (2.1a)



An inexact alternating direction method with SQP ... 8 (2017) No. 1, 269-289 273

Fov) — AT — BH(Ayu+ Ayv + Agw — b)] + RZ[%(U S 4 pf — V(o) )] = €8 & 0, (2.1b)

1
fg(w)—A;,r[)\k—@H(Alu+Agv+A3w—b)]+R3[5(w—wk)—i—u(wk—Wk(\/E)_l))] = ¢&F %0, (2.1c)
M= \F — BH (A" 4 Ayt* + Azw® —b), (2.1d)
where H € R™*™, Ry € R™*™ Ry € R™*™ and Rz € R™*"™ and
[G716H 5 < 2t - 23, me () (22)
G = 1 +,U G ) )
fk
. i
= v 2.3
0
and ,
( ;M)Rl -,
U+ R
G = 2 2.4
(142r,u,)R3 1 ( )
~1
zH

Correction step: The new iterate 2" (ay,) = (u*T1 v+ w1 A1) is the solution of the following
system:

1— B ~ 1 _
= Zozk[fl(uk) — ATX + Ru[5(u— ) + (e = Uu(va) ™) = 0, (2.5a)
1— N ~ 1 B
o ’;akm(v% — ATN + Ral5 (0 = %) + (o = Vi(Wo) )] = 0, (2.5b)
1-— 5 ~ 1 _
o Zak[f:a(w’“) — ATX + Ry (w — wf) + po® = Wi(vw) )] =0, (2.5¢)
AL = \F 1 ;Z apBH (AL TF + Ay* + Agw® —b), (2.5d)
where ( . ~k)
p(2", 2
_ 2.
U = a5 (2:6)
k =~k 1l~c~k:2 1I<:~k2 1 k. ~k2 1k:~k2 k  ~k\T ¢k
P25, 24) = Gl =y 5 = 0y 5 e = N = R+ (- 2T (2.7)
and
d(2F,3%) = & = 2F - ger, (2.8)

Remark 2.1. The proposed method can be viewed as a prediction-correction method which uses
the SQP systems in both the prediction and correction steps.
The main task of the prediction is to find an approximate solution of the following equations

fi(u) — A [N — BH(Ayu 4 Agv + Asw — b)] + Rl[%(u —uP) 4 pu® = Up(vVu)™)] =0,  (2.9a)

fo(v) — Ag [\¥ — BH(Ayu + Asv + Asw — b)] + RQ[%(U — ") 4 p(0f = Vi(Vo) ™)) =0,  (2.9b)
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Fo(w) — ATV — BH(Ayu + Asv + Agw — b)] + Rg[%(w — ) £ plwt — Wi(vo) )] = 0. (2.9¢)

The exact solution of
fr(u®) — AT\ — BH (A 4+ Apv® + Asw® — b)] + Rl[%(u —u®) + puf = Up(vu)™)] =0 (2.10)
denoted by @*, as the approximate solution of . The exact solution of
Fo0h) — ATNF — BH(Av* + Agob + Agw — b)] + RQ[%(U S ph = V() )] =0 (2.11)
denoted by ©¥, as the approximate solution of . Then the exact solution of
fa(w") — AF[N* = BH (A" + Ast" + Agw® — )] + R3[%(w — ) + p(w® = Wi(Vw) )] =0 (2.12)

denoted by w*, as the approximate solution of ([2.9d).

It follows from (2.1)) and (2.10))- (2.12)) that

u fi(@*) = fi(u?) + BAT HA (0% — u®) + BA] HA (0" —v*) + BA] HA3 (0" — w")
S S f2(0%) = (%) + BAT HA(0* — v%) + BAT H Ay (¥ — wb)
¢ o | f3(@*) — f3(w®) + BAS HAs(w" — wk)
0 0

We need the following result to study the convergence analysis of the proposed method.
Lemma 2.2. Let q(u) € R" be a monotone mapping of u with respect to R} and
R := diag(ry,...,ry) € R

be a positive definite diagonal matriz. For a given u* > 0, u > 0, if

U i= diag(ulfuk, . b /ak), V= (VT ),
and (v/u)™" be an n-vector whose j-th element is 1/,/u;, then the equation
o)+ I (=) + = Uy(v/a) )] = 0 (2.13)
has a unique positive solution w. Moreover, for any v > 0, we have
(v —w)Tq(u) 2 52 (Jlu = vl — o = vlE) + 5 e = ullf (2.14)

Proof . The proof of the first assertion is similar as Proposition 2 in [I]; hence it is omitted. We

now prove the second assertion. For each ¢ > 0, we have % ( — %) <1- \/Li < %(t — 1), then we

obtain after multiplication by vjuf >0 foreach j=1,...,n,
[k
u”
k J kL[ u 1 k
vjug (1 — uj) < VU5 (u_f - ) 50 (u; — uj)
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and after multiplication by uju;? >0foreach j=1,...,n

and recalling (2.13)), thus we obtained

(uj = v)(=q;) 2 1; (M;TM ((uj =) = (uj —v;)*) + = M(uf - “j)2> :

Summing over j = 1,...,n, encountered ([2.14)). O

3. Basic results

In this section, we prove some basic properties, which will be used to establish the sufficient and
necessary conditions for the convergence of the proposed method. The following theorem explains
the reason of choosing ay, in the form ({2.6]).

Theorem 3.1.  For given zF = (u*, 0", wF \¥) € R}P, x R7% x R, x R™, let 2K (ay) =
(ukHL R L kLAY be generated by (2.5a))-(2.5d). Then for any z* = (u*,v*,w*, \*) € Z*, we

have

1—
ko x|2 _ ||kt > Ho 3.1
125 = 2|7 — 12" (o) — 2" T (o) (3.1)
where
D(ay) = 2app(2", 2°) — of|ld(2", 2")||2. (3.2)

Proof . Applying Lemmato , we get
(uPtt — ﬂk)T{fl(ﬂk) — A [)\k — BH(Ay@" + Ay* + Azd® — b)) — 55}
> L (b — o, — e — ) S — (33)
Since

[l — ™R, = llu® — @R, + la =t g, + 200 — ™) TR (W — ).
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Then

1 1 1
S — @) TR = @) = 7 (175 =, — b = o, ) + gl - @,

Adding (3.3)) and (3.4]), we obtain

(1 _ - ) 7
(uh 1 — uk)T{( 5 “)Rl(uk —aF) — fi(@") + A} N+ fff} < g”uk — @[,

which implies

2(1 — p) k41~ (1+ ) ~k L Tk k
Wak(u+_u>{ 5 Ry (uf = @) — fi(F) + AT A +§u}

L—p ko ~k|2
_ — < 0.
. +Mak,u||u a ||, <

Similarly, applying Lemma to (2.1Db)), we get
(WM =) T fo(0%) — AJ[NF — BH (A" + A0" + Azw® —b)] — &5}

> (|5t — o, — o - o, ) + S 5,

Similar as (3.4, we have
1

2
Adding (3.6) and (3.7]), we have

i 1+ . ~ ; 5
(vF T+t — vk”)T{¥R2(vk —F) — fo(0") + AN + 55} < g“”k — 0%,

which implies
2(1—p . 14+ p N - <
(1+u)ak(vk+1_vk)'l'{( . )R2<Uk_vk)_fz(vk)+A;r/\k+§5}

I—p kE  ~kp2
_ < 0.
1+u04kMHU v HRQ >

Similarly, we have
2(1 — p) - (14 p) N ~ N
T ettt T { S Rt i) — i) + ATX b}

L—p k ~k|(2
. +Mak,u||w W%, <

We apply again Lemma to (2.5a)), we get

1 T 1—n ~ Ty
(7 )T (= el (@) = ATAY)

e L T e [ e I

1 1
(W — )T Ry(0F — ) = Z<||17k — "%, — [I0* - URHH%%Q) + ZHUIC — 7|,

(3.4)

(3.8)

(3.10)
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which implies

L+ p . *
(Il =, = = I,
2(1 —p)

1+p
Similarly, applying Lemma to (2.5b)), we obtain
1—p <
k+1 _  o\T( ~k —AT)\k>
(0 =) T (g el @) = AT

> B ([l = ot = o = ol ) + e = o,

* ~ 3 1- H
ap (P =) T (fi(a") — ATAY) + THUk uF I,

which implies

—E(I* = "3, = ot = vl

2(1 — - 1 —
2L (o 0t (o) — ATA) 4 S o o,

1+p
Similarly, we have
1+u w* ]
—E (k= w = = w |, )
2(1 - p) k+1 T ~k Tk L= w"
_— —w* — Az A — +
T ()T () — ATX) + =t —

On the other hand, from (2.5d)), we have
IN* = N = I = X7

2(1 — p)

— )\k_)\k+1 27
L

Since (u*,v*,w*, \*) is a solution of SVI3, a* € R}, o € R% and w* € R'}?_, we have

(@ — )T (filu") — A{X*) >0,
(0" —v*) " (fa(v") — A3 ) >0,
(" —w*) " (fs(w*) — AgA*) >0,

and
Au® + Av* 4+ Agw* — b= 0.

Using the monotonicity of fi, fo and f3, we obtain
T

"t — fr(a*) — AIE\k
oF — v fo(0%) — Ag NE
U:)k —w’ f3(@*) — AFAF
A — AP + AytF + As* — b
kb —u\ filu*) — AT X
o — o fo(v*) — AJ \*
Z | ok — fa(w*) — AJ\* 20
P Aju* + Av* + Asw* — b

apBONT = AT (A TR + Ayd* + Aza® —b).

277

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)
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It follows from (3.11]), (3.14])-(3.16]) that

k k-i-l(

ap) — 2%
L —p — [
el =, S et =t

1 2(1 — p) ) _ -
+ BH)\k — N+ ﬁak(ukﬂ — @) (fr(a*) — A]NF)

n 2(11_::) ak(vk“ _ ﬁk)T(fz({}k) _ A;—S\k)

+ oy = T (fa(4) - AT

2(1 — -
+ —(1 - :) (AT — AT (A ek + Ayt® + Agwk —b).

Adding , , and , we get

k—i—l(

— 'z~ =
L—p

Iz

1
>

[l — ",

(3.17)

ay) — 2"
— —
Tllvk’ — Mg, THw’“ W%,
1 2(1—p) N (1+p) .
ZIIk — R L2 k+1 _ ~k\T Ri(ub — iF k
+5H I + T a a(u )\ g Bt —at) £ 6

n 2(1 — p) (0P — )T ((1 + 1) Ro(v* — o) + 55)

14+ up 2

# 2 ot =ty (U Rt - i) + €

1% = 2*[I& — 12

u

1—p
> - |luf — PR+

2(1 — .
+ %ak()\kﬂ — MYV (A TR + Agt® + Az™ — b)
il

1 —pn E_ ~k2

1+Makullu " ||,
2(1 — ) k+1 SkNT k_ zk —1¢k

ol NG -G

T a ap(z" (ar) — 27) G(" - 2"+ GTEY) (3.18)
L—pl4p, k112 L+, g k112
T (I = R SR o
1+ 1

gl =t A )

20
5( 1t)
l—p ok —H kE o~k 2

1—|—,uak'u||v ||R2 1+Makﬂ||w w ||R3

T MYk Lkt 2, 2(1—p)
I = @)l + =

—H E ~k|2
Tl =t

—H kE_ ~kjp2
Tl =21,

1—pn N
N = A = +Makulluk — "%,

k+1(ak) _ Zk)TGd(Zk,5k>

ag(z

— 2 ot — 5|2,

2 ko ~k|2
a U —u —
0 kMH ||R1 1+u

S oppllut — a3,
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It follows from (3.18)) that

125 =21 = 12" (ew) — 2|1
1 —
T Z (||Z""“ — M )% + 205 (2 () — 2F)TGd(F, 2

+ 20p(2F — ) TG(H, 2) — anpllut — @, — gl — 73,
— anpljt — a3, )

1 —
= 1A (1 - ) — Pl — ol P

T 2, (F — )T GA(F, ) -l — @, — ot — 5%, 1)

— anpljt — a3, )

1 —
> (—aRlla(z", 2412 + 2= — 247 Ga(=*, )

— anplle = @[, — angl* = 3, — annlwt — i, )

—H ko ~kp2 E ~k|2 ko o~kp2
> 1+u<ak(||u — ||, + [[v7 = %[5, + [[w" — 0%,

2 < . -
S0 = o+ 20— 29T€) - af (= 2.

Using the definitions of ® and ¢(z*, 2¥) the assertion of this theorem is proved. O

Theorem shows that ®(ay) is a lower bound of ||2% — 2*||4 — |25 (au) — 2%]|%, and this
motivates us to maximize ®(ay,) to accelerate the convergence of the new method. Note that ®(ay)
is a quadratic function of oy and it reaches its maximum at a4 defined by (2.6). Then

() = app(2, 25). (3.20)
Next theorem is one of the keys to prove the global convergence results.

Theorem 3.2.  For given z¥ € R7Y x R2, x R?. x R™, let ZF be generated by (2.1d)-(2.1d)), then

we have the following

1
o > 5 (3.21)
" (=)0 - p)
—-n “H) Lk skp2
D) > 2" =z G- 3.22
Proof . It follows from (2.7)), (2.8) and under condition ({2.2)), we have
- - _ - . 2 N
20(2*,2) — (", Z)g = llu* = @[, + v = 0%, + llw" — "%, + BHAk = A

[ e P2
1— 1—
= Bk -, + = - |,
2 2
1 ~ _
I = M — G

1 —p

e — a1,
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and so
14+ p . 14+ p -
20(2*, 25) — [ld(", 2 |1& = 1+#< [l = @, + 5 [lv* = 081l
L+p ~k k_ Yk|2 —1¢ky(2
Pt = @, + I = Rl - 16 R (3.23)
=l = 241G - IGT eI
> (=)l - 24
Therefore, it follows from (2.6) and (3.23) that
1
- 3.24
= (3.24)
Comnsequently, from (3.20)), (3.23) and (3.24])) we obtain
1—n?)(1 —
(I)( )Z ( n )( N)HZk_ngé 0

4(1 4 p)

From the numerical point of view, it is necessary to attach a relax factor v € (0, 2) to the optimal
step size a; to achieve faster convergence. The following theorem shows that the sequence {2*} is
Fejer monotone with respect to Z*.

Theorem 3.3. Let 2* € Z* be a solution of SVI3 and let 2**(yay) be generated by (2.5a)-(2.5d)).
Then =¥ and Z* are bounded, and

12 (o) — 27[1& < 1125 = 711G — ell® = 2MllG, ver ez (3.25)

where
2= =)0 - p)?
c:= 4(1 n M) > 0.

Proof . It follows from Theorem [B.1] and Theorem [3.2] that
125 (vag) — 2* |G < |12 = 2*(| —ellz = 2¥)I%, Va2t e 2% (3.26)
Since v € (0,2) we have
” k—i—l(

yar) = 26 <18 = 2lle < .. <120 = 2lle

and thus {z*} is a bounded sequence.
It follows from ((3.25)) that

D ezt = ) < 400
k=0
which means that
lim ||z* — 2¥||¢ = 0. (3.27)
k—o00

Since {2*} is a bounded sequence, we conclude that {Z*} is also bounded. 0
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4. Convergence of the proposed method

281

We start this section with the following lemma which plays an important role in consequent conver-

gence analysis.

Lemma 4.1.  For a given 2% = (uF,v%,w® A\F) € R™, x R72. x R, x R™, let 2 = (aF, 0%, @*, \F)

be generated by (2.1a))-(2.1d). Then for any z = (u,v,w, \) € Z, we have

(= )T () — ATR — €8) > S0~ ) TR+ i — ()},

—_

(0 =) (HE) = ATV =) = 508 =) TR {(1+ v = (" + )}

and

(1 —0#)T (fo(¥) ~ ATNE — €8} > (w — @) R (14w — (e )}

Proof . Applying Lemma [2.2] to to prediction step, it follows that

(w— )T (fi(@) = ATXE = &) = 2 (11" = wllg, - le® = wllf, ) + 540" — a3,

By a simple manipulation, we have

B (= wlf, = o =l ) + St - @),
= @UTRWIC - WUTRJ/‘: — @(ﬂk)TRluk — H||uk||f21
= (1 ; ) u' Ry (uf — %) — (v — ﬂk)TRl(guk + %ﬂk)
= ;(uk k)TRl{(l + p)u — (,uuk + ﬂk) },
and the assertion is proved. Similarly, we can prove the assertions and ( .

Now, we are ready to prove the convergence of the proposed method.

Theorem 4.2. The sequence {2*} generated by the proposed method converges to some z>

15 a solution of SVIs.

Proof . It follows from (3.27) that
lim ||u® — @"||z, =0, lim ||v* — %z, = 0, lim ||w® — ¥ g, = 0
k—o0 k—oo k—o00

and
Hm [|AF — N[ o = lim || A @ + As® + Ag@® — bl|g = 0.
k—o00 k—o0

Moreover, (4.1)), (4.2) and (4.3) imply that

1

(u—a")"(fir(a") - AT)\k)2§( — ") TR { (1 + p)u — (uu* + ")} + (u—a*) el

(4.1)

(4.2)

(4.3)

which

(4.4)

(4.5)
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(vk—v TR{ —i—,uv—(/w + oF }+ k)Tfﬁ

N | —

(v —0")T(fo(0") — A3 N") >

and

(" — @) "Ry{ (1 + p)w — (pw* + ")} + (w — ") "EL.

[\Jlr—t

(w —a*)T (fo(@") = ATN) =

We deduce from (4.4)) that

limyo0 (0 — @F) T{ f1(@%) — AT N} >0, Yu € RT,
limyo0 (v — 0%) T{ fo (%) — AJAF} >0, Vo € R, (4.6)
limy,_o0 (w0 — %) T{ f5(@F) — AJ NF} > 0, Vw € R,

Since {2*} is bounded, so it has at least one cluster point. Let 2> be a cluster point of {2*} and the
subsequence {z%} converges to 2. It follows from . and . that

lim; oo (u — ufd) T{ fi(uh) — AT N} >0, Vu e R},
lim; o0 (v — 0% T{ fo(vF7) — AJ AR} > 0, Vv e R},
limy o0 (w — wh) T{ f3(whi) — AJ N} >0, Yw e R,
lim; o0 (Ayufi + Agvhi + Agwki — b) = 0.

and consequently
(u —u=) T {fi(u®) — A] X>®} >0, Yu € R},

(v — =) T { fo(v>®) — AJA®} >0, Vo € R,
(w — w>®)T{ f3(w>) — Aj A\®} >0, Yw e R,
Aluoo + AQUOO + A3w°° —b= 0,

which means that z*° is a solution of SVIs.
Now we prove that the sequence {z*} converges to 2>. Since

lim ||2* — #*||¢ =0, and {ZM} — 2™
k—o0
for any € > 0, there exists an [ > 0 such that
124 — 2| < % and  ||z" — 27| < % (4.7)
From (3.25)), we have ||2*T! — 2*||¢ < ||2* — 2*||g. Therefore, for any k > k;, it follows from (4.7)) that
12 = 2%lle < 12" = 2%]le < [|2" = 2%l + [|2% — 2¥l¢ <.

This implies that the sequence {2*} converges to 2 which is a solution of SVI;. O
5. Convergence Rate

Recall that Z* can be characterized as (see (2.3.2) in pp. 159 of [16])

:ﬂ{EEZ : (z—2)"Q(2) > 0}.

z2EZ
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This implies that Z is an approximate solution of SVI3 with the accuracy € > 0 if it satisfies

7€ Z and sup{(? —2)"Q(2)} <e (5.1)

zEZ

Now, we show that after ¢ iterations of the proposed method, we can find a Z € Z such that (5.1) is
satisfied with e = O(1/t).

Lemma 5.1. Let 2% be generated by (2.10)-(2.1d) and 2" (yay) be generated by (2.5al)-(2.5d)). If we

take 7, = ﬁvak. Then for any z = (u,v,w,\) € Z, we have

(- #700) Q) > %(sz“ - 2l = 2lE) + gt = el 62)
Proof . It follows from (3.10]) and ( - that
(u— uk—&-l)T(fl(ﬂk) _ AIT:\k;>
> ([t =l — et — ul,) + 2 — u ), (5.3)
and
(v — Uk+1)'l'(f2(z~]k) _ A;’S\k)
> L (R = ol — 0F = ol ) + R - o, (5.4)
Similarly, we have
(w — wk+1)T<f3(wk) _ A;’;\k)
> Bk — wlfd, — k= wl, ) + e =0, (5.5)

On the other hand, from (2.5d), we have
. - - 1
(A =AY T(AG" + Age® + Aga® —b) = m(uwl — AlF— = 1N = A||§1_1)

S llA = A

1
> o (N = Al = 1N = AT )
1—p k k41112
N | - 7 5.6
Recall the definition of @ in ([1.10]), we obtain the assertion (/5.2]). O

Lemma 5.2. For given 2% € R, x R x R, x R™, let z* be generated by (2.10)-(2.1d) and
2P (yay,) be generated by ( m 2.5d). Then we have the following

(- )7 Q) 2 EE%ak 2 + - (14 ) =2l - 1# = 212). (57
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Proof . It follows from (3.5), (3.8), (3.9) and

(N = X9 T (A + Ayt + Ay — ) = %(Ak“ = AT (N3

that

(1 a) = 2) Q) 2 (7 (an) - 2) ' Gd(F, ) = Dt — b, — Sl — o3,

v 5
Bt — a3,
_ kE sk|2 k ak\Tek Moy e ~kp2 My e kg2
= " = 2le + (7 = 27) 7€ = Sllu” = @l = Sllv" = o7,
H ~ T -
ok — a3, + (2 (o) — 24) T G(H, )
= (", ) + (" (you) — zk) Gd(2", 2%)
= aglld(*, )G+ (M (vaw) = 2F) Ga(*, 2).
Adding (5.2)) and ( . we get

(z—z’“)T@@k) > oglld(2F, 2)[E + (4 () — 2F) | G(2F, 2
1 1—p

. E+1 N2 1.k L2 T Lk k;+1
e (1550 = 31 = 1 = 212) + et - G
Using the following inequality
3 1—pu Te(1 + 1) -
k+1 kogk ko k1 kogk
a Gd > — " |z a ——||d :
(1) = )T G4, ) 2 et = s — B 1
we obtain
T ok > (2_7)0%6[ ko oky)2 1 E+L 2 [k )12
(2 =2) QE") =z ———ld"2)le + 5— (Il 26 = 12" = 2llg),
2 2Tk
and by using the monotonicity of (), we obtain ([5.7)). O

Now, we are ready to present the O(1/t) convergence rate of the proposed method.

Theorem 5.3. For any integer t > 0, we have a z; € Z which satisfies
5 T 1 02
(2 —2) Q) < |2 =2, Vze€Z,
27,

where

1 t t
gt = E Tk»gk and Tt = E Tk-
T k=0 k=0

Proof . Summing the inequality (5.7) over k =0, ..., ¢, we obtain

((Zm)z—Zmz) —Hz—zOHG>O

(5.8)
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Using the notations of T; and Z; in the above inequality, we derive

1
(Z — Z)TQ(Z) < —|z — ZOH%;, Vz e Z.

- 27,
Indeed, Z, € Z because it is a convex combination of 2%, z!, ...z,
The proof is completed. O
It follows from (3.21)) that
(1—p)y
T, > ——(t+1).
=201+ p) ( )

Suppose that for any compact set D C Z, let d = sup{||z — 2°||¢|z € D}. For any given ¢ > 0, after

most 1 P
t= {ﬂ _ 1}
(L — pu)ve
iterations, we have

(2, — 2)'Q(2) < ¢,¥Vz € D.

That is, the O(1/t) convergence rate of the inexact SQP alternating direction method is established
in an ergodic sense.

6. Preliminary Computational Results

In this section, we present some numerical experiments to illustrate our algorithm and convergence
result.

We denote by 0,x, € R™"™ the null matrix, and by Iy, € R™" the identity matrix. Let
St o= {XGR”X” : XT:X}, St ={XeS": X =0hn}, B={XeS": H,<X<H,}, and
H, H, € S™ are given proper matrices. The matrix inequality S < T means that T-S is a positive
semi-definite matrix, while S < 7" means that S;; < T;; (Vi,j € [ = {1,2,...,n}). For C € R™",
we denote by [|C|| the matrix Frobenius norm of C, i.e., |Cllr = (301, 27, |Cy5[*)"/?. Note that
the matrix Frobenis norm is induced by the inner product

(A, B) = trace(A" B).
We consider the following optimization problem with matrix variables, which is studied in [12] and
[33]:
1
min{§||U—Q||§ : OnxnjUjM,UeIB%}, (6.1)

where ), M € S™ are given proper matrices. Note that the problem (6.1) can be reformulated into
the following separable form:

min {3[|U = Q[IF + 3[IV +Q — M7 + 3[[W - QI3 }
such that U +V = M,
V —W = 0nxn,
V+W=M,

A~ N N
N

T = W N
~— ~— ~— ~—
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where U,V € S, W € B. Then, the problem (5.2)-(5.5) is equivalent to the following structured
variational inequality problem: Find z* = (U*, V*, W* \*) € Q := S7 x S x B x R**" such that

(U —=U* [(U*) = ATX) >0,
(V =V, [o(VF) = A3 ) >0,

(6.6)

where
Ian In)(n Oan M
Al = [n><n ) AZ - On><n y A3 - _Inxn ; b= Onxn
On><n Inxn In><n M
and

hU)=U=Q, f[(V)=V+Q-M, [f(W)=W-Q.

The entries of ) are randomly with the restriction that Q;; € (0,2) and Q;; € (—1,1). The matrices
H, and H, are given by

(Hu)jj = (Hy)jj =1 and (Hu)” = _(Hv)ij = 0]_, VZ 7& j,l,] = 1,2, o, n.
The matrix M has the following form:
M=XYX, X =I,—2xx", X =diag(e,e,...,en),

where x is a random unit vector, e; (i = 1,2,...,n) is a given eigenvalue of the matrix M. For
simplification, we take Ry = 111, xn, Ro = 1olxn, R3 = r3l,x, and H = I,,«,, where ry > 0, ro > 0
and r3 > 0 are scalars. In all tests, we take p =0.01, 5 =1,7v=1.9, 0 =0.1,r, =1y =r3 = 10 and
(U, VO WO X = (Lisns Lnxns Inxn, 03nxn) as the initial point in the test. The iteration is stopped

as soon as

k _ sk
max(abs(2" — Z")) <105,

max(abs(z0 — 20))

abs(D) is the absolute value of matrix D, that is, if D = [d;;]| where d;; e R,i=1,...,n,7=1,...,n.
Then, abs(D) = [|d;;|]. All codes were written in Matlab, we compare the proposed method with
those in [12] and [33]. The iteration numbers denoted by k, and the computational time for the
problem (/6.1)) with different dimensions are given in Tables .

Table 1: Numerical results for problem (6.1)) with e; € (1.25,2).

Dimension of || The proposed method || The method in [12] | The method in [33]

the problem || k CPU(Sec.) k CPU(Sec.) k CPU(Sec.)
100 185 10.43 623 17.87 736 19.61
200 212 63.88 529 108.41 620 117.26
300 256 220.24 618 383.39 722 398.69
400 271 469.20 641 900.70 747 1024.95
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Table 2: Numerical results for problem (6.1)) with e; € (1.8,2).

Dimension of || The proposed method || The method in [12] | The method in [33]

the problem || k CPU(Sec.) k CPU(Sec.) k CPU(Sec.)
100 81 4.64 296 9.95 358 10.92
200 77 21.51 310 66.41 362 79.51
300 87 61.40 283 162.11 330 164.78
400 100 183.41 286 304.73 333 363.32

Table 3: Numerical results for problem (6.1)) with e; € (2, 3).

Dimension of || The proposed method || The method in [12] | The method in [33]

the problem || k CPU(Sec.) k CPU(Sec.) k CPU(Sec.)
100 87 4.97 303 12.23 343 13.91
200 91 23.18 339 51.53 393 55.08
300 94 60.12 321 139.94 380 154.44
400 89 136.16 335 351.83 393 391.64

Table 4: Numerical results for problem (6.1]) with e; € (10, 12).

Dimension of || The proposed method || The method in [12] | The method in [33]
the problem || k CPU(Sec.) k CPU(Sec.) k CPU(Sec.)
100 81 4.61 196 7.06 213 7.13
200 78 19.46 304 57.93 325 59.88
300 88 57.81 356 141.58 377 149.47
400 99 168.63 389 422.36 417 480.56

Tables show that the proposed method is more flexible and efficient for the problem tested. Moreover,
it demonstrates computationally that the new method is more effective than those in [I2] and [33] in the
sense that the new method needs fewer iterations and less computational time.

References

[1] A. Auslender, M. Teboulle and S. Ben-Tiba, A logarithmic-quadratic prozimal method for variational inequalities,
Comput. Optim. Appl. 12 (1999) 31-40.

[2] A. Bnouhachem, An LQP method for pseudomonotone variational inequalities, J. Global Optim. 36 (2006) 351—
363.

[3] A. Bnouhachem, H. Benazza and M. Khalfaoui, An inezact alternating direction method for solving a class of
structured variational inequalities, Appl. Math. Comput. 219 (2013) 7837-7846.

[4] A. Bnouhachem, On LQP alternating direction method for solving variational, J. Inequal. Appl. 2014 (2014):80.

[5] A. Bnouhachem and M.H. Xu, An inezact LQP alternating direction method for solving a class of structured
variational inequalities, Comput. Math. Appl. 67 (2014) 671-680.



288 Bnouhachem, Rassias

[6] A. Bnouhachem and Q.H. Ansari, A descent LQP alternating direction method for solving variational inequality
problems with separable structure, Appl. Math. Comput. 246 (2014) 519-532.

[7] A. Bnouhachem and A. Hamdi, Parallel LQP alternating direction method for solving variational inequality
problems with separable structure, J. Inequal. Appl. 2014 (2014):392.

[8] A. Bnouhachem, S. Al-Homidan and Q.H. Ansari, New descent LQP alternating direction methods for solving a
class of structured variational inequalities, Fixed Point Theory Appl. 2015 (2015):137.

[9] A.Bnouhachem, A. Hamdi and M.H. Xu, A new LQP alternating direction method for solving vriational inequality
problems with separable structure, Optimization 65 (2016) 2251-2267.

[10] A. Bnouhachem, A. Latif and Q.H. Ansari, On the O(1/t) convergence rate of the alternating direction method
with LQP regularization for solving structured variational inequality problems, J. Inequal. Appl. 2016 (2016):297.

[11] A. Bnouhachem, F. Benssi and A. Hamdi, On alternating direction method for solving vriational inequality
problems with separable structure, J. Nonlinear Sci. Appl. 10 (2017) 175-185.

[12] C. Cao, D.R. Han and L.L. Xu, A new partial splitting augmented Lagrangian method for minimizing the sum of
three convex functions, Appl. Math. Comput. 219 (2013) 5449-5457.

[13] G. Chen and M. Teboulle, A prozimal-based decomposition method for convex minimization problems, Math.
Program. 64 (1994) 81-101.

[14] J. Eckstein and D.P. Bertsekas, On the Douglas-Rachford splitting method and the prozimal point algorithm for
mazimal monotone operators, Math. Program. 55 (1992) 293-318.

[15] J. Eckstein and M. Fukushima, Some reformulation and applications of the alternating directions method of
multipliers, Large Scale Optimization: State of the Art(W. W. Hager et al, Eds.), pp. 115-134, Kluwer Acad.
Publ., 1994.

[16] F. Facchinei and J.S. Pang, Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. 1
and II. Springer Series in Operations Research. Springer, New York, 2003.

[17] M. Fortin and R. Glowinski, Augmented Lagrangian methods: Applications to the solution of boundary-valued
problems, North-Holland, Amsterdam, Holland, 1983.

[18] D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite-element
approzimations, Comput. Math. Appl. 2 (1976) 17-40.

[19] D. Gabay, Applications of the method of multipliers to variational inequalities, in Augmented Lagrange Methods:
Applications to the Solution of Boundary-valued Problems, M. Fortin and R. Glowinski, Eds., NorthHolland,
Amsterdam, 299-331, 1983.

[20] R. Glowinski, Numerical methods for nonlinear variational problems, Springer-Verlag, New York, 1984.

[21] R. Glowinski and P. Le Tallec, Augmented Lagrangian and operator-splitting methods in nonlinear mechanics,
SIAM Studies in Applied mathematics, Philadelphia, PA, 1989.

[22] B.S He, H. Yang and S.L. Wang, Alternating directions method with self-adaptive penalty parameters for monotone
variational inequalities, J. Optim. Theory Appl. 106 (2000) 349-368.

[23] B.S. He, L.Z. Liao, D.R. Han and H. Yang,A new inezact alternating directions method for monotone variational
inequalities, Math. Program. 92 (2002) 103-118

[24] B.S. He and J. Zhou, A modified alternating direction method for convex minimization problems, Appl. Math.
Lett. 13 (2000) 123-130.

[25] B.S. He, L.Z. Liao, D.R. Han and H. Yang, A new inexact alternating directions method for monotone variational
inequalities, Math. Program. 92 (2002) 103-118

[26] B.S. He, Parallel splitting augmented Lagrangian methods for monotone structured variational inequalities, Com-
put. Optim. Appl. 42 (2009) 195-212.

[27] Z.K. Jiang and A. Bnouhachem, A projection-based prediction-correction method for structured monotone varia-
tional inequalities, Appl. Math. Comput. 202 (2008) 747-759.

[28] J Z.K. Jiang and X.M. Yuan, New parallel descent-like method for sloving a class of variational inequalities, J.
Optim. Theory Appl. 145 (2010) 311-323.

[29] S. Kontogiorgis and R.R. Meyer, A variable-penalty alternating directions method for convex optimization, Math.
Program. 83 (1998) 29-53.

[30] M. Li, A hybrid LQP-based method for structured variational inequalities, Int. J. Comput. Math. 89 (2012) 1412—
1425.

[31] B. Martinet, Regularization d’inequations variationelles par approximations sucessives, Revue Francaise
d’'Informatique et de Recherche Opérationelle 4 (1970) 154-159.

[32] A.Nagurney and P. Ramanujam, Transportation network policy modeling with goal targets and generalized penalty
functions, Transportation Science 30 (1996) 3-13.

[33] Z. Peng and D.H. Wu, A partial splitting augmented Lagrangian method for constrained matriz optimization



An inexact alternating direction method with SQP ... 8 (2017) No. 1, 269-289 289

problem, Comput. Math. Appl. 60 (2010) 1515-1524.

[34] R.T. Rockafellar, Augmented Lagrangians and applications of the proximal point algorithm in convex programming,
Math. Oper. Res. 1 (1976) 97-116.

[35] R.T. Rockafellar, Monotone operators and the prozimal point algoritm, SIAM J. Control Optim. 14 (1976) 877—
898.

[36] M. Tao M. and X.M. Yuan, On the O(1/t) convergence rate of alternating direction method with logarithmic-
quadratic prozimal reqularization, SIAM J. Optim. 22 (2012) 1431-1448.

[37] M. Teboulle, Convergence of proximal-like algorithms, STAM J. Optim. 7 (1997) 1069-1083.

[38] K. Wang, L.L.Xu and D.R. Han, A new parallel splitting descent method for structured variational inequalities,
J. Ind. Manag. Optim. 10 (2014) 461-476.

[39] X.M. Yuan and M. Li, An LQP-based decomposition method for solving a class of variational inequalities, SITAM
J. Optim. 21 (2011) 1309-1318.



	Introduction
	Inexact SQP alternating direction method
	Basic results
	Convergence of the proposed method
	Convergence Rate
	Preliminary Computational Results

