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Abstract

This paper deals with the Periodic boundary value problems for Controlled nonlinear impulsive
evolution equations. By using the theory of semigroup and fixed point methods, some conditions
ensuring the existence and uniqueness. Finally, two examples are provided to demonstrate the
effectiveness of the proposed results.
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1. Introduction

The theory of impulsive differential equations has become an important area of investigation in recent
years, stimulated by their numerous applications to problems from mechanics, electrical engineering,
medicine, biology, ecology, etc. Ordinary differential equations of first-and second-order with impulses
have been treated in several works and we refer the reader to ([I, [I1]) and the references therein
related to this matter. First-order partial differential equations with impulses are studied in Bainov
et al. [2] and Liu [5] among others. The Global solutions for impulsive abstract partial differential
equations is studied in Hernandez [3].
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Hernandez and O?Regan [4] and Pierri et al [9] studied, with more details, the existence of

problem

o' (t) = Ax(t) + f(t, z(1)), t € (s tiva), i=0,1,2,...,m,

x(t) = gi(t, z(1)), t € (t;, s, 1=1,2,...,m,

z(0) = z(a) € X,
There are many papers discussing the impulsive differential equations and impulsive optimal controls
with the classic initial condition: z(0) = x¢ (see [0, [7, 13, 14, [10]). In [16] Lanping Zhu and Qianglian
Huang studied the controlled nonlocal impulsive equation :

o' (t) = Au(t) + f(t,u(t)) + B(t)c(t), t € [0,7], t£t;, €Uy
u(0) + g(u) = uo,
Au(t;) = Li(u(t;)), i=1,...,p, ti<tya<...<t,<T,

where ¢ € U,q is a control set which we will introduce later and A : D(A) € X — X is the
infinitesimal generator of strongly continuous semigroup {7'(t),t > 0} in a real Banach space X, f
is a nonlinear perturbation, I;, i =1,...,p is a nonlinear map and Axz(t;) = x(t]) — z(t;), g is a
given X-valued function.

In [I5] Xiulan Yu, JinRong Wang studied the impulsive equation :

u'(t) = Au(t) + f(t,u(t)), t € (s, tisa], i=0,1,2,...,m,
u(t) = x; +1T(t;) ftt gi(s,u(s))ds, t € (t;, s, i=1,2,...,m, x;,€X
(

u(0) = u(a) € X,,

In this paper, we consider the following problems for nonlinear impulsive evolution equations with
Periodic boundary value:

u'(t) = Au(t) + f(t, u(t), u(p(t))) + Bt)e(t), ¢ € (silip],
i=0,1,2,....m, €Uy

u(t) = x; + T(t;) fti gi(s,u(s))ds, t € (i, s, i=12,....m, x;€X

u(0) = u(a) € X,

(IEE)

Provided, the operator A : D(A) : X — X is the generator of a strongly continuous semigroup
{T'(t),t > 0} on a Banach space X with a norm ||.||, and the fixed points s; and ¢; satisfy

0280<t1§81§t2<...<tm§8m§tm+1:a

are pre-fixed numbers, f: [0,a] x X x X — X is continuous, p : [0,a] — [0, a] is continuous and
gi + [ti, si] x X — X is continuous for all i = 1,2,... m.

2. Preliminaries

Next, we review some basic concepts, notations and technical results that are necessary in our study.
Throughout this paper, I = [0,al], C(I, X) be the Banach space of all continuous functions from I
into X with the norm
|lulle = sup{||u(t)|| : t € I} for u € C(I, X), and we consider the space

tel

PC(I,X)={u:I— X :ueC((titi+1],X),i=0,1,...,m and there exist
u(t;) and u(t;r),i =1,...,m with u(t; ) = u(tl)} ,
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endowed with the Chebyshev PC-norm |ju|lpc = sup{||u(t)|| : t € I} for w € PC(I,X). Denote
tel

M = sup,e; [[T(@)]-

Let Y be another separable reflexive Banach space where controls ¢ take values. Denoted Py(Y)
by a class of nonempty closed and convex subsets of Y. We suppose that the multivalued map
w : [0,T] — P¢(Y) is measurable,

w(.) C E, where F is a bounded set of Y, and the admissible control set
Uy ={ce LP(E): c(t) e w(t), ae}, p>1.
Then U,q # O which can be found in [12].

Some of our results are proved using the next well-known results.

Theorem 2.1. (Krasnoselskii’s fixed point theorem). Assume that K is a closed bounded convex
subset of a Banach space X. Furthermore assume that I'y and I'; are mappings from K into X such
that

1. I'y(u) + Te(v) € K for all u,v € K,
2. I'; is a contraction,
3. I'y is continuous and compact.

Then I'y +I'y has a fixed point in K.

To begin our discussion, we need to introduce the concept of a mild solution for (IEE) .
Assume that u : [0,a] — X is a solution of

W/ (8) = Au(t) + f(tu(t),u(p(t) + B)e(t),  0<t<a,

From a strongly continuous semigroups theory, we get

u(t) = T(t)u(0) + /0 T(t = s)(f(s,uls), u(p(s))) + B(s)c(s))ds

(1) [T(a — Sm)u(sm) + ’ T(a

Sm

= T(t)u(a) + /0 T(t = s)(f(s,uls), u(p(s))) + B(s)c(s))ds

Il
S

s)(f(s,u(s), u(p(s))) + B(s)c(s))ds
Tt = s)(f(s,uls), u(p(s))) + B(s)c(s))ds
) [T(a — Sm) (xm + T(tm) /tsm gm (s, u(s))ds)

T(a = s)(f(s,u(s),u(p(s))) + B(S)C(S))dS}

_|._
S—

I
=

S]

+

3

+

o\“o\

T(t = s)(f(s,uls), u(p(s))) + B(s)c(s))ds

I
=

NT(a = $p)Tm +T(a — Sy + tm) /tsm gm(s,u(s))ds

S]

+

T(a = s)(f(s,u(s),u(p(s))) + B(S)C(S))dS}

3

+

o\“o\

T(t—s)(f(s,u(s),u(p(s))) + B(s)c(s))ds for all t € 0,t],
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and
u(t) = T(t — si)u(si) + / T(t —s)(f (s u(s),u(p(s))) + B(s)c(s))ds
=T(t— s;) (wz +T(t;) /:i gi(s,u(s))ds>

i

n / T(t - 5)(f (s u(s), u(p(s))) + B(s)e(s))ds

i

=Tt —si)z;i +T({t—si+1) /:i gi(s,u(s))ds

i

+/ T(t = s)(f (s u(s),u(p(s))) + B(s)c(s))ds,

for all t € (s;,t;41], @=1,2,...,m. This expression motivates the following definition.
Definition 2.2. We say that a function v € PC(/, X) is called a mild solution of the problem
(IEE), if u satisfies

(

u(t) = T(t) [T(a — 5m)Tm + T(a = 8m + 1) [ gm(s, u(s))ds

+ /5, T( G—S)( (s, u(s), u(p(s )))+B(S)C(8))dS}
+ Jo Tt = 9)(f(s,u(s), u(p(s)) + Bs)e(s))ds, ¢ € [0,t];

u(t) = z; + T(t; ftg,su( s))ds, te (tiysi], 1=1,2,...,m;

uw(t) =Tt —si)x; +T(t—s; +1;) j;s gi(s,u(s))ds
T JLT (= $)(F (s, uls). u(p(s)) + B()e())ds, ¢ € (sitia], i=1.2..m.

3. Existence and Uniqueness of mild solutions

To establish our results, we introduce the following assumptions :
] Ho.

1.A: D(A) C X — X is the generator of a strongly continuous semigroup {7'(¢),t > 0}
on X with a norm ||.]|.

2 . B:[0,a] — L(Y, X) is essentially bounded, i.e., B € L*>([0,a], L(Y, X)).

e H;. The functions f € C(I x X x X, X), g; € C([t;, s;] x X, X),
1=1,2,...,mand p: [ — I is continuous.

e H,. There is a constant C'y, Ly > 0 such that
1 (£, ur,v1) = f(t ug, v2)|| < Cpllun — un| + Liljor — w2

for each t € [s;,t;11], w1, uz,v1,v2 € X and i =0,1,...,m.
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e Hj3. There is a constant L > 0 such that
1f (&, w,0)|| < L+ flull* + lv]]"),

for all ¢t € [s;,t;11] and all w,v € X, i =0,1,...,m, u,v € [0,1].

e H,. There is a constant Cy, > 0,4 =1,2,...,m such that
gi(t,u) — gi(t, v)|| < Cyillu — vl

for each t € [t;, s;], and all u,v € E™, i=1,2,...,m.

e H;. There is a function t — ¥;(t), i = 1,2,...,m such that

lgi (8 )|l < 44 (t),
for each t € [t;, s;] and all u € X.

We put C' = max Cy, and N; = sup () < +o0.

te[ti,si}

Remark 3.1. From the assumption Hy — 2 and the definition of U4, it is also easy to verify that
Bc € L*(]0,al; X) with p > 1 for all ¢ € Uy,g. Therefore, Bc € L*([0,al; X) and ||Bcl|1 < oo.

Now, we can establish our first existence result.

Theorem 3.2. Let assumptions Hy, Hy, H, and H, be satisfied. Suppose, in addition, that the
following properties is verified

A: = Mmax {MCgm(sm ) + (Cp + L) (M(a — sp) + 1)

,121%0; {C(si —t;) + (Cp + Ly)(tig1 — si) } }

< 1.
Then, the problem (IEE) has a unique mild solution.

Proof . Define a mapping I' : PC(I, X) — PC(I, X) by

(

T(t) [T(a — Sm)Tm + T(a — Sy + ) f:;” gm(s,u(s))ds
+ 2 Ta = )(f(s,uls), ulp(s))) + Bls)e(s))ds|
+ Jo T(t = $)(f(s,uls), u(p(s)) + B(s)e(s))ds, t € [0,];
(Cu)(t) = . _
xi +T(t:) [, 9i(s,u(s))ds, te(tys], i=12...,m;
T(t—si)w; +T(t—s;+t;) t‘:i gi(s,u(s))ds
+ fsi T(t —s)(f(s,u(s),ulp(s))) + B(s)c(s))ds, t€ (sitiy1], i=1,2,...,m.

Let h > 0 very small and u € PC(/, X), we have
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Case 1: For ¢ € [0, 4], we have
I(Tu)(t + ) — (D) (8)]] = HT(t 1+ h) {T(a — 5) T+ T(@ = 5+ ) /tmm (s, u(s))ds

# [Tl o)) + Bl

b [T R 05 wlpls)) + Bls)elo)s

_T(@) {Tm — s) o+ T(@ — 5+ ) /tmm (s, u(s))ds

5/EW—@U@W@W@@»+B@dmw}

—AT@—ﬂﬂwmwwwm+B@4mw

<M HT(h) {T(a — )T+ (@ — S + ) /t Gm(s, u(s))ds

5me—wuwm@w@@»+B@dww}

— [T(a — S$m)Tm + T(a — S + tm) / gm (s, u(s))ds

tm

[ = 7506 (6D + ()]

#0175 )l + Bt s

#21 [11Bs + hets + ) — Bls)els)lds

01 [ s+, u(p(s-+ 1) = 05 w6 s = 0 a5 0.
Case 2: Fort € (;,5,], i = 1,...,m, we have

t+h t
ot + 1) = T = o+ T(E) [ s u@)ds =2 =T(0) [ als.u(o)ds

t+h
< M/ lgs(s, u(s))|| ds — 0 as b — 0,
t

Case 3: For t € (s;,tip1],i=1,..., m, we have

|(Tu)(t+ h) — (Tu)(t)| = HT(t +h—s)x;+T{t+h—s+t) /ts gi(s,u(s))ds

+ / T(t+h—s)(f(s,u(s),u(p(s))) + B(s)c(s))ds — T(t — s;)x;

_T(t—si+ti)/5i gi(s,u(spdﬁ/ T(t — s)(f(s,u(s), u(p(s))) + B(s)c(s))ds

t;
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and so

[(Tw)(t + h) = (Cu) (@) |

< MT(hye; — il + M HT(h) [ atsatonis = [ oot

si+h t
M [ ul).ulp(s)) + B)els)ds+ M [ Bls + We(s + 1) = Bls)e(s)]ds
+ M/ | f(s+ h,u(s+ h),u(p(s+h))) — f(s,u(s),u(p(s)))||lds = 0 as h — 0.

Then I' is well defined and I'u € PC(I, X) for all u € PC(I, X).
Now we only need to show that I' is a contraction mapping;:
Case 1: For u,v € PC(I,X) and t € [0,t], we have

|(Cu)(t) — (Co)(0)]| = HT(t) [T(a )+ TG = s 1) [ s ul)ds

+ /a T(a = s)(f(s,u(s), u(p(s))) + B(S)C(S))dS]

»
=+ 3

(
—T(t) [T(a —Sm)Tm +T(a — Sm +tm) /tsm gm(s,v(s))ds

+ [ Tla—s)(f(s,0(s),0(p(s))) + B(s)c(s))ds]

3 [ (Crlluts) = o(s)] + Ly ulp(s)) — o(p())]) ds]

+ M/O (Crlluls) = v(s)ll + Lyllu(p(s)) — v(p(s))]) ds

< M[Mcgm(sm —tm) + (Cr+ Ly) M(a — sm) + (Cy + Ly) tl} lu —vllpc

< Alu—v|lpc.

Case 2: For u,v € PC(I,X) and t € (t;,s;], i =1,...,m, we have

t t

1000 = ool = | [ aitsulsds =706 [ (s, 0060

k3 tl
< MCy,(si — ti)||lu — v|lpc

< MC(s; — ti)||lu — v|lpc

< M max {C(si = t:) + (Cy + Lyg)(tiy1 — i)} [[u —vllpc

< Mlu—v|pc.
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Case 3: For u,v € PC(I, X) and t € (si,ti1a], i = 1,...,m, we have
o) = ()0 = |7 = s+ [ s u(eas + | T(t — 5)(F(s, u(s), ulp(s)) + Bls)e(s))ds
(e s [ o) = [T 6006000 + Bl

<M [Cy,(si —ti) + (Cp + Ly) (tiv1 — si)] [[u — vl|lpc
< M max {C(s; — i) + (Cr + Ly)(tiv1 = si)} u = vllpe

< Mlu—v|pc.
Therefore, we obtain
|ITu — Tv|lpe < Allu —v|lpe, Vu,v € PC(I, X).

Finally, we find that I' is a contraction mapping on PC([, X ), and there exists a unique u € PC(I, X)
such that I'u = u.
So we conclude that u is the unique mild solution of (IEE). O

By using Krasnoselskii’s fixed point theorem, we also obtain the existence of mild solution.

Theorem 3.3. Let assumptions Hy, Hy, Hy and Hj be satisfied. Suppose, in addition, that the
semigroup {T'(t),t > 0} is compact and

1
a:= LM max {(M(a — sm) + t1), (tix1 — si)} < 3 i=1,...,m

B = Mmax{MCy,, (Sm —tm),Cy,(si —t;)} < 1.
Then the problem (IEE) has at least one mild solution.

Proof . Let N = max(Ny, Na, ..., Ny,) and B, = {u € PC(I,X) : ||u||pc < r} the ball with radius
r >0,
where

r > Mmax {1, A2}

with
N = M|zl + M Ny (Sm — tm) + (M + 1)||Be||pr + L(M(a — sp) + t1)
e 1 - 2a ’
and
1
)\2 = aX{HQZz” —|—N( )+ HBCHLl +L(tl+1 —Sl)}

1 20( 1<i<m

We introduce the decomposition I' = I'y + I'y, where

T(t) [ (@ = 8m)Tm +T(@ = sm +tm) [ gm(s, u(s))ds|,

(D) () = N |
x; + T(t; ftgl(s,u ))ds, te (tys), i=1,2,...,m;

Tt —si)zi+ Tt —si+t) [ gi(s,uls))ds, t€ (sitip], i=1,2,....,m.
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and

( )+ B(s)c(s))ds
(Tyu)(t) = + [ Tt = s)(f(s,u(s),ulp(s)) + B(s)c(s))ds ¢ € [0,t].

y U
0, tE(tZ‘,SZ‘], 121,2,

fsti T(t—s)(f(s,u(s),u(p(s))) 4’— B(s)c(s))ds, t€ (sitip1], 1=1,2,...

We divide the proof into several steps:
Step 1. We prove that I'u = I'yu + I'yu € B, for all u € B,.. Indeed:
Case 1. For ¢ € [0,t], we have

|(Cru + Ta)(O)] < |7 HT(a )i+ TG = s ) [ s ul)ds

+T( II/ 1T (a = $)II(f (s, uls), ulp(s)] + [ B(s)e(s)[)ds
/ 1Tt = s)I([1Lf (s, uls), ulp(s))| + [[B(s)c(s)])ds

< M Mz + MNp(sm = tm)] + LM? /a (L+ u()|I* + llu(p(s))II”))ds + M?|| Be]| 2

Sm

+LM/O (1 + [Ju(s) 1 + llu(p(s) ") ds + M| Be]| 1

< M? ||z || + M? Ny (8 — tm) + LM?(1 + 2r)(a — $pm) + M (M + 1)||Be|| 11 + LM (1 + 2r)t;

= M?||zpm|| + M2Nyy (S — tm) + M(M + 1)||Be|| 2 + LM (M (a — sp) + t1)
+2rLM (M (a — sp) + t1)
<r(l—-2a)+2ra=r.

Case 2. For t € (t;,8;],i=1,...,m, we have

[(Cru+ Tow) ()] < [l + T ()] /t 19i(s, u(s))llds

< lzill + M Ni(s; — t;)
< lzill + MN(s; — t;)
< MHle + MN(SZ' — ti) <r.

Case 3. For t € (s;,t;41], i =1,...,m, we have

[(Trw + Lou) @O < [T(E = si)llllill + [|T(¢ = si + 2] /: lgi(s, u(s))llds

t

IT(¢ = s)I(1Lf (s, uls), u(p(s)I + [ B(s)e(s)[)ds

S

< MH.CL‘Z” + MNZ'(SZ' — ti) + LM(l + 2T)(ti+1 — SZ‘) + MHBC”Ll

= M||z;|| + M(N(s; — t;) + || Bellpr) + LM (tip1 — si) +2rLM (tiv1 — s4)

<r(l—-2a)+2ra=r.

Then, we infer that I'yu 4+ I'yu € B,.
Step 2. I'; is contraction on B,. Let u,v € B,

309
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Case 1. For t € [0,1,], we have
[(T1w)(t) — (Tro) (@)

< I HT(a st ) /tmm (5. 10(3))ds — T(a — s + tn) /tmm (s, 0(5))ds

< IT@IT@ 5+ t)] " g, u(5)) — g, v(s)llds
< MC,, / " uts) — v(s)ds
< MCy,, (5 — tn)[u— v]lpe

< Bllu —v||pe.

Case 2. For t € (t;,s;],7=1,...,m, we have

[(Tru)(t) — (Tro) (O] < [IT(t: H/ 19i(s,u(s)) = gi(s,v(s))| ds
< MCy,(si —ti)|lu—vllpc
< Bllu—vllpc.

Case 3. For t € (s;,t;41], i =1,...,m, we have

I(T1u)(t) — (o)) < || — i + )| /ts llgi (s, u(s)) — gi(s, u(s))]|ds
< MCy,(si — t;)||u — v|lpe
< Bllu—vllpe.

Which implies that I'; is a contraction.
Step 3. I's is continuous.
Let (u,)n>0 be a sequence such that lim ||u, — ul|pc = 0.

n——+0o00
Case 1. For t € [0,t], we have

[(Taun)(t) = (Tau) (O] < [T(@)]] /a IT(a = $)[I[1f (s, un(s), un(p(s))) = f(s,uls), u(p(s)))llds

+/ 1Tt = $)II1f (s, un(s), un(p(s))) — f(s,uls), ulp(s)))llds
0

(
< M (a— sm)[l£(un( ) un(p()) = £ (), u(p()))llpe
+ M| f (s un(), un(p(-)) = F(sul), ulp()lpe
= M[M(a = sm) +t] [|f (- un() un(p(-))) = F( ul), ulp())lpe

Case 2. For t € (t;,s;],i=1,...,m, we have

I(Taun)(1) = (T2w) @) =

Case 3. For t € (s;,t;41], 1 =1,...,m, we have

[(Poun) () = (T2u) (B)]| < / 1Tt = $)I|f (s, un(s), un(p(s))) = f(s,uls),u(p(s)))llds
= M(tiv1 — i) f (o un(), un(p()) = £ (s ul), up())llpe-

Which implies that liT ITow, — Dou|lpe = 0, then we infer thet I'y is continuous.
n—-+0oo

Step 4. I's is compact.
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1. We have I'; B, C B,, then I's is uniformly bounded on B,.
2. For v € B,, we have
Case 1. For 0 < [; <y, <t;, we have

[(Taw)(l2) = (Taw) (L)l
< |[I7(l2) = T(ll)H/ 17 (a = s)[[(ILf (s, u(s), u(p(s))]| + [[B(s)e(s)|)ds

Iy

] IT(ly = 5) = T(lL = s)I[(I[f (s, uls), ulp(s))I + | B(s)e(s) ) ds

l2

+ [ N7 = 9)ILf (s, uls), ulp(s))I + [ B(s)e(s)])ds

< MA(L(1+2r)(a = spn) + || Bel| o) | T (I = 1) — 1|
+ M(L(1+2r)ty + || Bel|p)|T(ls — ) — I|| + LM (1 + 2r)(ls — 1y)
l2
+M l |B(s)c(s)||ds
= (LM(1+2r) [M(a — s,,) + t1] + (M? + M) ||Be|| )| T (I — 1) — I

l2

+ LM +2r)la—1l)+ M |B(s)c(s)||ds — 0 as Iy — 1.
I

Since {T'(t),t > 0} is compact, then ||T(ly — ;) — I|| — 0 as [y — [;.

Case 2. Fort; <[y <ly <s;,i=1,...,m, we have
[(Tou)(l2) — (Tau)(lh)|| = 0.
Case 3. For s; <13 <lp <tjyq1,i=1,...,m, we have

I(Tau)(l2) = (Tyw) (L)l

l2
[T = )5 p(s)) + Bls)els))ds—

/.1 T(ly — s)(f(s,u(s),u(p(s))) + B(s)c(s))ds

l2

< | 70 = )I1f (s, uls), wlp()) + [|B(s)e(s)l)ds

l1
I

+ | T = ST = 0) = T (s, uls), ulp(s))] + |B(s)e(s)lds
S ILM@A+2r)(ly— 1)+ M - |B(s)c(s)||ds

+ M(L(l + 27’)ti+1 + HBCHLl)HT(lQ — ll) — IH — 0 as l2 — ll.

This permit to conclude that I's is equicontinuous.

We have I'yB, C B,, let © :=T3B,, O(t) := 3B, (t) = {(T2u)(t) : u € B} for t € [0, a].

3. O(t) is relatively compact. Indeed:
We have T'(t) is compact, hence

0(0) = {/: T(a = s)(f(s,u(s),u(p(s))) + B(S)C(S))dS} ,

311
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is relatively compact. For 0 < € < t < a, define
O(t) :=T5B,.(t) = {T(e)(T'yu)(t —€) : u € B,}.

Clearly, ©(t) is relatively compact for t € (¢, al, since T'(t) is compact.
Case 1. For t € (0,t], we have

O.(t) = (T5u)(t) = T(e)(T5u)(t — )
- {T(t) [ 1= 9o oo + B(s)c(s))ds]
+ / B T(t—s)(f(s,u(s),u(p(s))) + B(s)c(s))ds :  ue€ Br} ,
0

and we get

[(Tau)(t) — (Tau)($)]| = /0T(t—8)(f(87U(8)7U(p(8)))+B(8)C(8))d3—

/0 (= ) (F(suls), ulp(s))) + B(s)e(s))ds

S/t 1T(t = $)II([f (s, uls), ulp(s))]| + [ B(s)e(s)[)ds

t
SLM(l—l—Qr)e—l—/ |B(s)c(s)||ds — 0 ase—0.

t—e
Case 2. For t € (t;,8],i=1,...,m, we have
O.(t) :={0,u € B,},
in this case ||(I'2u)(t) — (D5u)(¢)|| = 0.

Case 3. For t € (s;,t;11],1=1,...,m, we have
t—e
Oc(t) := (T5u)(t) = {/ T(t—s)f(s,u(s),u(p(s)))ds: ue Br} ,
and we get

|(C2)(6) = @O = |5 T( = 5)(F (s u(s), u(p(s)) + Bls)els) ds—
ST = )5, uls), u(p())) + Bls)e(s))ds|

< [ T = $)I1f (s, uls), ulp()))]] + | B(s)e(s)])ds
< LM(1+2r)e+ [L_||B(s)e(s)||ds — 0 as e — 0.

Now, from Arzela—Ascoli theorem we can conclude that I'y : B, — B, is completely continuous.

The existence of a mild solution for (IEE) is now a consequence of Krasnoskii’s fixed point theorem.
O

4. Examples

In this section, we make examples to illustrate our abstract results in the previous section. Let
2

X =1%0,1), I =1[0,3], 0=ty =80, t1 = 1, 5y = 2 and a = 3. Define Av = a—v for

0%x
ov 0%
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Then A is the infinitesimal generator of strongly continuous semigroup
{T'(t),t > 0} on X. In addition T'(¢) is compact and ||T'(¢)|| <1 = M, for all ¢ > 0 (see [§]).

Example 4.1. Consider

( 0? 1 )
%u (t,x) %u(t,x) + D cos(u(t,z) + u(t®,x)) + c(t,z), =z €(0,1), t€[0,1)U(2,3],
%u (t,0) = 5 —u(t,1) =0, te0,1)U(2,3],

w0, 7) = u(3.7), = Et(lo’ 0,
u(t,r) =e ™ + T(l)/1 Zsin(u(s,x))ds, re (0,1), t e (1,2].

\

Denote v(t)(x) = u(t,z) and B(t)c(t)(x) = c(t, x), this problem can be abstracted into

v'(t) = Av(t) + f(t;tv(t)a v(p(t))) + B(t)e(t), € [so,t1) U (s1,al,
(1) v(t) =y + T(l)/1 g1(s,v(s))ds, te (t,s1),y1 € X
v(0) =v(a) € X,
Where, p(t) = %, f(t,v(t),v(p(t))(z) = % cos(v(t)(x) + v(t?*)(x))
and g1 (t, v(t))(x) = isin(v(t)(a:)).
1

1
T2 Cy, = — and

In this case, we have, Cy = Ly = 1

7
AN=MI[MC, (s1—t1) + (Cr+ Ly)(a—s1)+ (Cr+ Lp)ta] = 3 < 1.

This implies that all assuptions in theorem 3.1 are satisfied. Then, there exists an unique mild
solution for this problem.

Example 4.2. Consider

( 2 1 )
Gty 2) = Dult,2) + Sfult, D)} + Su(,2)f, w e (0,1), te[0,1)U (2,3,
85 85 8 8

a—xutO)—%u(tl):O te0,1)U(2,3],
u(0,z) = u(3, z),

lu(t, x)
t = T(1 dsd 0,1), ¢t 1,2 X.
( l‘) yll"i‘ //21+|ut:}j sax, 176(7), 6(:]7916

\

This problem can be abstracted into (1), with p(t) = 2,

1 v
o0, 0(p(0)@) = GO + @)@ and o)) = [ S e
Inthiscase,wehaveL:é, leCglzé,M:La:i<%andﬂ:1<1.

This implies that all assuptions in theorem 3.2 are satisfied. Then, this problem has at least one
mild solution.
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